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Chapter 1

Introduction

1.1 Background

Automatic speech recognition (ASR) technologies have become a popularized tech-

nology for us. It is mainly due to a spread of interface, e.g., smart-phone and smart

speaker, and also because of an openness of speech recognition API. In terms of tech-

nical aspect, deep learning has achieved a great success in many computer science

competitions including automatic speech recognition [1, 2, 3, 4, 5, 6], and machine

learning has become a big trend in the technology industry for these 10 years.

ASR systems are used across a wide range of situations. The difficulty of speech

recognition task is decomposed to multiple factors, e.g., recognition target, speaker

differences, environmental variability, and reverberation. Recognition of keyword and

phrase with low environmental variability is applicable to control of home appliances,

and recognition of spontaneous speech is applicable in scenarios such as meeting and

call center. Extension to the recognition of spontaneous speech requires additional

treatment in general, e.g., an introduction of grammatical information. One example

of recognition of short utterance under high environmental variability is control of

an automotive navigation system. Recognition under the noisy condition requires

additional treatments, e.g., identification and filter out of noise signal, for robust

execution. Recognition of spontaneous speech under noisy condition is applicable to

a general purpose such as Application Programming Interface (API) for third parties.

ASR system models conversion from speech to text by using big data called training

data. During operation, the ASR system recognizes input speech uttered by various

speakers which are recorded in various conditions. However, since the system can

not identify a test speaker and speech environments in advance, there is a problem-
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atic degradation in speech recognition performance owing to a mismatch between the

input speech and the training data. Adaptation is one approach to alleviate this

mismatch. Adaptation techniques can be roughly classified into three types: feature

adaptation [7, 8, 9, 10], model adaptation [11, 12, 10, 13, 14, 15, 16], and addition

of auxiliary features [17, 18, 19, 20, 21]. In the case of feature adaptation, the input

acoustic feature is adapted and the adapted feature is fed into the ASR system. In

the case of auxiliary feature based adaptation, information which degrades recognition

performance, e.g., speaker and noise information, is extracted and the information is

used as the auxiliary feature to take the noise and speaker information into consid-

eration. In the case of model adaptation, one promising approach, parameters of the

ASR system are re-updated using data called adaptation data. The adaption data

are collected in the same condition as the recognition target. The distinction between

model adaptation and feature adaptation is getting blurry. For example, re-update

of a denoising auto-encoder can be regarded as both the feature adaptation and the

model adaptation.

The adaptation techniques are employed in some existing applications. For example,

Google voice search collects speech of “Ok google” for 3 times, and Cortana collects

6 utterances*1, respectively. The existence of these data collection procedures shows

the importance of adaptation to personalize the ASR system.

However, data collection depending on each speaker and each condition takes te-

dious time and leads to the poor user experience. In other words, users have to utter

additional words before the recognition of intended words which leads to undesired

high latency. Therefore, it is important to adapt the ASR system rapidly and robustly

using a small amount of adaptation data. We call such low latency adaptation “rapid

adaptation”. The size of adaptation data should be small because it saves time and

effort of data collection. Robustness is also a key factor for adaptation. Adaptation is

employed to improve recognition performance but not degradation. When the adap-

tation data is too small, it makes difficult to estimate the detailed auxiliary feature in

the case of auxiliary feature based adaptation. In the case of model adaptation, the

ASR system often overfits to the given adaptation data which leads to performance

degradation.

*1 October, 2018
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1.2 Motivation

One approach for the development of robust Gaussian Mixture Model (GMM) based

ASR system is composed of speech data clustering and following cluster-dependent

acoustic modeling, that is, leading to multiple ASR systems. This method divides

the training data into multiple clusters depending on acoustic feature similarity, and

models multiple ASR systems using each cluster. In an inference stage, recognition

is performed by selecting an ASR system which cluster is similar to the input speech.

The cluster dependent modeling can reduce the diversity of speaker individuality and

recognize the input speech using the ASR system trained by speech close to the test

speaker [22, 23]. The similarity of speech is defined as the speaker’s characteristics

including vocal tract parameters [24], eigen voice [25], speaking rate [26], i-vector [27],

and so on. Deep neural network (DNN) can take various input feature by concatenat-

ing different types of features and the feature extraction is conducted in a data-driven

manner. This enables the reduction of feature engineering stage and eases the usage

of auxiliary feature [18, 19, 20]. The i-vector, which represents speaker information, is

used as speaker representation for the auxiliary feature based adaptation [19]. In the

case of recognition of short time utterance, e.g., keyword and phrase, it is considered

that a duration of the input speech is approximately within 0.5 second. However,

the earlier works assume the availability of speech from several ten seconds to sev-

eral minutes. Therefore, these methods are difficult to apply for the recognition of

short time utterance. Tsujikawa, et al., proposed a method to estimate i-vector from

a short time utterance [28]. However, they also reported that it is difficult to esti-

mate robust speaker characteristics from a short time speech, i.e., 0.5 second. Lie,

et al., investigated a relation between speech duration for i-vector estimation and

recognition performance, and reported that more than 5.0 seconds are required for

an improvement of speech recognition performance [29]. They also reported that the

performance got worse when the acoustic characteristics in the training data do not

cover that of the input speech (in the evaluation) [29]. Therefore, it is difficult to

apply the conventional auxiliary feature based speaker adaptation techniques to the

recognition of short time utterance.

One main advantage of DNNs is a hierarchical non-linear feature extraction un-

der a simple objective function. Exploiting this property, some recent novel ap-

proaches focus on front-end learning based on DNNs that take low-level acoustic
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features [30, 31, 32, 33, 34, 35]. Sainath, et al., [34] and Sailor, et al., [33] pro-

posed a DNN model that uses waveforms and performs a frequency analysis. These

studies reported that some of the learned characteristics showed a similarity with

human auditory characteristics and traditional refined hand-crafted feature extrac-

tors [33, 34]. In addition, Sailor, et al., [33] investigated the difference of center

frequencies among models that were trained by both clean and noisy speech. They

reported that the center frequency of learned filters do not show consistency between

clean speech and noisy speech, suggesting that the optimal properties of filterbanks

depend on the task and target environments. Zhu, et al., [31] also presented a model

to learn features directly from waveforms and performed convolution operations with

several types of window sizes and stride parameters to push past the inherent trade-

off between temporal and frequency resolutions. These DNN-based systems eliminate

the feature extraction stage and significantly improve the recognition performance.

Earlier works reported the difference of filter characteristics caused by the condition

of training data. However, since a system can not identify test speaker and test en-

vironment in advance, there is a mismatch between input test speech and learned

model which causes a performance degradation. Therefore, adaptation remains a ma-

jor challenge for DNN-based systems, which must alleviate the mismatch and recover

recognition performance. In practical use, it is preferable for low-level feature extrac-

tor to track various test conditions. The model adaptation is a promising approach

for the alleviation of this mismatch problem. Earlier works on model adaptation,

which update sub-modules of neural network architecture, introduce various restric-

tion methods [10, 13, 14, 15, 16, 36] and regularization methods [37] for prevention

of an over-fitting problem. However, there is a trade-off between complexity and

expressiveness. In other words, the update of a large number of parameters causes

over-fitting problem or requirement of much adaptation data, and extreme restriction

(low expressiveness) makes it difficult to adapt to given adaptation data. There-

fore, it is important to maximize expressiveness while minimizing the number of free

parameters to robustly update the system using a small size adaptation data.

1.3 Thesis summary

In this research, we focus on the rapid adaptation of the ASR system based on a

small size of adaptation data and propose two adaptation methods.

Firstly, we propose an auxiliary feature based adaptation technique targeting recog-



1.4 Thesis organization 5

nition of a short time utterance which is suitable for current situations of recognition

system, e.g., command recognition and voice search, by focusing on data-clustering

and cluster-dependent modeling of ASR system. For this purpose, we cluster training

data and train GMMs using each speech data cluster. Then, we define a speaker

representation as a set of similarities between an input speech and the GMMs, and

use it as an auxiliary feature. For an evaluation targeting the recognition of short

time utterance, a duration of the speech for estimation of the proposed speaker repre-

sentation is limited to a first 50 frames (∼ 0.5 second) of the utterance. This method

is categorized to the auxiliary feature based adaptation.

Secondly, we propose a new model adaptation technique, filterbank incorporated

DNN, by incorporating a physiologically-motivated model into the deep neural net-

work based ASR system. The introduced filterbank layer and the following neural

networks of the proposed model are trained jointly by exploiting the advantages of the

hierarchical feature extraction of DNN, while most current systems use pre-defined

mel-scale filterbank features as its input. In addition, the introduced filterbank layer

is parameterized to represent speaker characteristics while minimizing a number of

parameters. Furthermore, introducing restrictions resulting from a physiologically

motivated model protects the neural network (filterbank layer) module from extreme

deterioration. The optimization of one type of parameters corresponds to Vocal Tract

Length Normalization (VTLN) [38], and another type corresponds to feature-space

Maximum Linear Likelihood Regression (fMLLR) [39] and feature-space Discrimina-

tive Linear Regression (fDLR) [10]. Therefore, it is considered that our method is

advantageous in adaptation under limited adaptation data and it prevents extreme

deterioration or overfitting problem. This method is categorized to both the feature

adaptation and the model adaptation.

Our approach, rapid adaptation of ASR systems, further improve user experience

in terms of data collection procedure and recognition performance, and will lead to

further popularization of ASR systems under various surrounding environments.

1.4 Thesis organization

The thesis is organized as follows:

• Chapter 2 describes an outline of speech recognition and introduces base of

ASR system including acoustic feature, GMM-HMM hybrid systems, language
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model, and WFST decoder. We also introduce deep neural network based

ASR systems including DNN-HMM hybrid system and attention-based encoder

decoder networks.

• Chapter 3 describes an auxiliary feature based adaptation technique and eval-

uate its effectiveness for recognition of short time utterance.

• Chapter 4 presents a filterbank incorporated DNN and evaluates our method

as data-driven feature extractor. Next, we apply this method to speaker adap-

tation and compare with other model adaptation methods. We also investigate

relation between the learned filter shapes and physical characteristics of speak-

ers by applying gender adaptation.

• Chapter 5 extends our model adaptation technique targeting the filterbank

layer to an end-to-end attention-based encoder decoder networks, and evaluate

the proposed method for noise adaptation. We also compare the proposed

method with other conventional adaptation methods.

• Chapter 6 concludes the thesis and suggests future research directions.
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Chapter 2

Outline of speech recognition

In this chapter, we first define the speech recognition problem in Section 2.1 and

review the commonly used approaches including GMM-HMM, DNN-HMM, and end-

to-end encoder decoder networks. Section 2.2 describes the acoustic features com-

monly used for the speech recognition system. Section 2.3 introduces an acoustic

model, GMM-HMM hybrid system, and Section 2.4 introduces a language model, N-

gram language model. Deep neural network and its extension to the hybrid system,

DNN-HMM, are described in Section 2.5. Section 2.6 describes a WFST decoder, Sec-

tion 2.7 describes an end-to-end speech recognition system, and Section 2.8 describes

an evaluation metric for speech recognition. We conclude this chapter by reviewing

freely available open source ASR system and projects in Section 2.9.

2.1 Definition of speech recognition problem

A speech recognition problem is defined as an estimation of the most probable label

sequence ŷ given an input speech feature x = (x1, ..., xT ) consists of T -frames, and is

defined as:

ŷ = arg max
y

P (y|x) (2.1)

where y = (y1, · · · , yl, · · · , yL) is the output target label sequence and y is the words

in vocabulary (yn|n = (1, · · · , L)) ∈ V. In case of hybrid system, P (y|x) in Eq. (2.1)

is factorized by the Bayes’ theorem as:

ŷ = arg max
y

P (x|y)P (y)
P (x)

≈ arg max
y

P (x|y)P (y). (2.2)
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The term P (x|y) is called an acoustic model and P (w) is called a language model.

In general, a modeling unit of the acoustic model is phoneme and the modeling unit

of the language model is a word. Let Ψ be the modeling unit of the acoustic model.

Then, the Eq. (2.2) leads to:

ŷ = arg max
y

∑
Ψ

P (x|Ψ)P (Ψ|y)P (y)

In the following, Section 2.2 describes the acoustic feature x, Sections 2.3 and 2.4

describe the acoustic model and the language model, respectively.

2.2 Speech analysis

Feature engineering is one of the main research topics and is crucial for the speech

recognition performance. Acoustic feature for GMM-HMM includes Mel-Frequency

Cepstrum Coefficients (MFCC) [40], Perceptual Linear Prediction (PLP) [41], and

PNCC [42]. In deep learning era, neural network based feature extraction from low-

level speech signal is mainstream and is trained to minimize ASR-related objective

function [30, 31, 33, 34, 35]. *1 Many deep learning based systems use filterbank

feature as its input. In this section, we first describe filterbank feature in Section 2.2.1

followed by MFCC feature in Section 2.2.2.

2.2.1 Filterbank feature

Firstly, speech signal is converted to digital signal. In this paper, we use 16kHz

sampling frequency and 16 sampling bit rate unless otherwise noted. Speech signal

has a large amplitude at lower frequency region and small amplitude at higher fre-

quency region. Therefore, pre-emphasis is applied to the signal by taking a first-order

difference equation. Let st ∈ (st|t = 1, · · ·T ) be the speech signal at time t and s′t be

the speech signal after pre-emphasis. Then, the pre-emphasis is defined as:

s′t = st − kempst−1,

where kemp is the pre-emphasis coefficients, and we used kemp = 0.97 in this paper.

Then, the signal is divided into a sequence of frames by applying a window function

which can be regarded as a stationary signal (quasi-stationary signal). An N -point

*1 We describe the details in Chapter 4.
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Hamming window, one commonly used window function, is defined as:

wn = 0.54− 0.46 cos(
2πn

N − 1
), n = 0, · · · , N − 1.

N -dimensional amplitude spectrum at frame t is obtained by applying fast Fourier

transform (FFT) to the windowed N-point speech signal:

xt,k =
N−1∑
n=0

s′t+nwne
−i2πk n

N , k = 1, · · · , N,

xt = (xt,k|k = 1, · · · , N)

Finally, filterbank feature is obtained by applying weighted sum between the obtained

amplitude spectrum and mel-scale triangular filterbank. The triangular filters are

deployed according to the mel-scale defined as:

Mel(f) = 1127.0 ln(
f

700.0
+ 1.0),

where f is the linear-scale frequency. The L-dimensional filterbank feature is calcu-

lated as:

mt,l =

fhigh∑
k=f low

Wk,l|xt,k|, l ∈ (1, · · · , L)

where Wk,l is the k-th dimensional weight of l-th filter. The l-th filter takes positive

values at certain region ranging from klowl to khighl :

Wk,l =


k−klow

l

kc
l −klow

l

{klowl ≤ k ≤ kcl }
khigh
l −k

khigh
l −kc

l

{kcl ≤ k ≤ k
high
l },

where kcl is the center frequency of the l-th filter, klowl and khighl are the lower bound

and upper bound spectum channel number, respectively. These values satisfy:

khighl−1 = kcl = klowl+1,

and center frequencies, (kcl |l = 1, · · · , L), are evenly spaced along the mel-scale.

2.2.2 MFCC

Mel-Frequency Cepstral Coefficients (MFCC) is obtained by further applying the

Discrete Cosine Transform (DCT) to the filterbank feature:

ct,k =

√
2

N

L∑
l=1

mt,l cos
(πi
N

(l − 0.5)
)
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Typically, the low-dimensional representations (e.g., 13 dimensions) are selected as

a final representation to retain spectrum envelop, and the other high-dimensional

parts are discarded. The (time-domain) values obtained by performing discrete cosine

transform towards spectrum is called cepstrum.

2.2.3 Delta feature

Derivatives of the acoustic feature are added with the basic statistical feature, e.g.,

MFCC, targeting improvement of speech recognition performance. In the case of

HMM Toolkit (HTK) [43], the dynamic feature called delta coefficients at time frame

t is computed as:

dt,k =

∑Θ
θ=1 θ(ct+θ,k − ct−θ,k)

2
∑Θ

θ=1 θ
2

where Θ is the window size set to 2. Acceleration coefficients are obtained by applying

same computation targeting the delta coefficients.

2.3 Acoustic model

2.3.1 Hidden Markov model

Definition of HMM

A hidden Markov model (HMM) is one approach to model time series data and is

defined as Non-deterministic Finite Automaton (NFA). A structure of the HMM is

depicted in Figure 2.1. A set of HMMs are used to model labels, e.g., phonemes and

syllables, and each HMM consists of multiple components as follows:

• Set of finite number of states: {Si|(i ∈ {i ∈ N : 1 ≤ i ≤ N}} where N is the

number of states.

• Transition probability from an i-th state Si to a j-th state Sj : aij

• Set of probability distributions of acoustic feature for each state:{
P (c|Si) = bi(c)

}
where c is the acoustic feature, e.g., MFCC.

An acoustic feature characteristics of phonemes change depending on preceding

and succeeding phonemes but not only depending on a phoneme at current position.

For the detailed modeling, typical HMM uses (context-dependent) triphone as its

modeling unit which concatenating the preceding and succeeding phonemes. However,
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Fig. 2.1 Structure of HMM

the number of triphones is three power of the number of phonemes, and it leads to

data-sparsity problem. Therefore, state tying is applied to reduce the number of

triphone states [44, 45]. In the case of syllable-based HMM, a preceding vowel is

concatenated to the syllable as a left-context [46]. A set of the unique HMM states

is called senones.

Parameter estimation of HMM

The Baum-Welch algorithm [47] updates the HMM parameters using the

Expectation-Maximization (EM) algorithm to find the maximum likelihood. Let

MHMM be a set of HMM parameters. Then the objective is defined as:

arg max
MHMM

P (c|MHMM) = arg max
MHMM

P (z, c|MHMM)

P (z|c;MHMM)
,

where z is the latent variable representing the state transitions. Since there are

multiple combinations of state transitions for a given observation sequence, the log

likelihood is estimated by calculating the expected values for all transition state paths.

The EM algorithm repeats update of the HMM parameters. LetMHMM′
be the HMM

parameters before update and MHMM be the model parameters after the update.

Then, the log-likelihood is defined as:

logP (c|MHMM) = log
∑
z

{
P (z|c,MHMM′

)
P (z, c|MHMM)

P (z|c,MHMM)

}
,

and the Jensen’s inequality gives:

logP (c|MHMM) ≥
∑
z

[
P (z|c,MHMM′

) log
P (c, z|MHMM)

P (z|c,MHMM)

]
= Q(MHMM,MHMM′

)−
∑
z

{P (z|c,MHMM′
) logP (z|c,MHMM)}

(2.3)

where Q(MHMM,MHMM′
) =

∑
z

P (z|c,MHMM′
) logP (c, z|MHMM).

(2.4)
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Eq. (2.3) is further re-formulated as:

logP (c|MHMM)− logP (c|MHMM′
) = Q(MHMM,MHMM′

)−Q(MHMM′
,MHMM′

)

+ KL(P (z|c,MHMM′
), P (z|c,MHMM))

≥ Q(MHMM,MHMM′
)−Q(MHMM′

,MHMM′
),

where KL(·, ·) is the Kullback-Leibler (KL) divergence defined as:

KL(p, q) =
∑
i

pi log
pi
qi
≥ 0.

When we assume the parameter MHMM maximizes the Q-function in Eq. (2.4), it

leads to:

Q(MHMM,MHMM′
) ≥ Q(MHMM′

,MHMM′
),

P (c|MHMM) ≥ P (c|MHMM′
).

Therefore, the maximization of P (c|MHMM) can be replaced as the maximization

of Q(MHMM,MHMM′
). The Baum-Welch algorithm repeats the following two steps,

Expectation-step and Maximization-step, to estimate the HMM parameters:

E-step Calculation of expected log-likelihood: Q(MHMM,MHMM′
).

M-step Calculation of MHMM that maximizes Q(MHMM,MHMM′
).

Computation of acoustic score

Forward algorithm [48] calculates the most probable symbol sequence path with its

probability as Algorithm 1. Let α(i, t) be the probability to generate observations c

up to time t at state i:

α(i, t) = P (c1, c2, · · · , ct, qt = i|MHMM),

where qt is the state at time t. Then, α(·, ·) can be defined recursively as:

α(j, t+ 1) =
N∑
i

α(i, t)ai,jbj(ot+1). (2.5)

Finally, the probability to generate observation sequence c under the HMM MHMM

is represented as:

P (o|MHMM) =

N∑
i

α(i, T ).
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The forward algorithm updates the accumulated probability α by considering all the

states at the previous time step. Replacement of the summation operation
∑

in

Eq. (2.5) to a max operation leads to the Viterbi algorithm [49, 48]. Algorithm 2

shows the Viterbi algorithm. The most probable path is estimated by saving the

computation history and back-tracking the candidate states which corresponds to

lines (10, 14-15) in the Algorithm 2.

Algorithm 1 Forward algorithm

1: N ← number of states

2: πi ← initial state

3: T ← length of observation sequence

4: for i = 1 to N do

5: α(i, 0) = πi

6: end for

7: for t = 1 to T do

8: for j = 1 to N do

9: α(j, t+ 1) =
∑

i∈(1,···N) α(i, t)ai,jbj(ct+1)

10: end for

11: end for

12: P (c|MHMM) =
∑

i∈(1,···N) α(i, T )

2.3.2 GMM-HMM

The GMM-HMM hybrid system models the state emission probability of HMM

states, bi(c) = P (c|Si), using Gaussian Mixture Model (GMM). Let nmix be the

number of mixtures, µi,n and Σi,n be the n-th dimensional mean vector and covariance

matrix of the state i, respectively. Then, the state emission probability of state i is

represented as:

bi(c) =

nmix∑
n=1

αGMM
n N (c;µi,n,Σi,n), (2.6)

nmix∑
n=1

αGMM
n = 1.0

N (c;µi,n,Σi,n) =
1

(2π)
d
2 |Σi,n|

1
2

exp
(
−
(c− µi,n)

TΣ−1
i,n(c− µi,n)

2

)
,



14 Chapter 2 Outline of speech recognition

Algorithm 2 Viterbi algorithm

1: N ← number of states

2: πi ← initial state

3: T ← length of observation sequence

4: for i = 1 to N do

5: α(i, 0) = πi

6: end for

7: for t = 1 to T do

8: for j = 1 to N do

9: α(j, t+ 1) = maxi∈(1,···N) α(i, t)ai,jbj(ct+1)

10: ζ(j, t+ 1) = arg max
i∈(1,···N)

α(i, t)ai,jbj(ct+1)

11: end for

12: end for

13: P (o|MHMM) =
∑N

i α(i, T )

14: q∗T = arg max
i∈(1,···N)

ζ(i, T )

15: q∗T = ζ(q∗t+1, t+ 1)

where αGMM
n is the weight of the n-th Gaussian component, and d is the number of

dimension of the observation acoustic feature c. Figure 2.2 depicts an example of the

GMM-HMM hybrid system. The combination with the HMM enables modeling of the

observation acoustic feature sequence as a sequence of Gaussian mixture distribution

by switching the states of HMM.

Fig. 2.2 Modeling of time series data.
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2.4 Language model

2.4.1 Definition of N-gram language model

N-gram language model (LM) [50] models a probability to generate a word sequence

w = (w1, · · · , wi, · · · , wK) consists of K words by assuming (N − 1)-order Markov

chain:

p(w) = p(w1, · · · , wi, · · · , wK) =
K∏
i=1

P (wi|wi−N+1, · · · , wi−2, wi−1)

=
K∏
i=1

p(wi|wi−1
i−N+1),

P (wi|wi−N+1, · · · , wi−1) =
c(wi−N+1, · · · , wi)

c(wi−N+1, · · · , wi−1)
,

where c(wi−N+1, · · · , wi) is the frequency that the word sequence (wi−N+1, · · · , wi) is

appeared in the training text data. When the number N is large, it is considered that

theN -length long word sequences do not appear in the training data. In this situation,

these probabilities should not be set as 0 and is necessary to give an appropriate

probability mass. There are several techniques including interpolation and back-off

smoothing. In the case of interpolation, the probability is approximated by using

low-order N -grams:

p(wi|wi−1
i−N+1) =

K∑
k=1

λLMk p(wi|wi−1
i−k+1),

where λLMk is the interpolation parameters. The back-off smoothing technique ap-

proximates probabilities for word sequences where c(·) = 0. In the case of Witten-bell

smoothing [51, 52], the N -gram probabilities are represented as:

P (wi|wi−1
i−N+1) =


c(wi

i−N+1)

c(wi−1
i−N+1)+r(wi−1

i−N+1)
if c(wi

i−N+1) > 0,

ri−1
i−N+1

c(wi−1
i−N+1)+r(wi−1

i−N+1)
αP (wi|wi−1

i−N+2) if c(wi−1
i−N+1) > 0,

P (wi|wi−1
i−N+2) otherwise,

where ri−1
i−N+1 is the number of different vocabulary words which appear next to the

word wi−1
i−N+1.
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2.4.2 Evaluation of N-gram language model

Perplexity (PP) [53] is one method to evaluate the language models which represents

a number of candidate words in a probabilistic form given a word history. Let wN
1 =

(w1, w2, · · · , wn, · · · , wN ) be the word sequence consists of N words. In the case of

3-gram language model, the perplexity is defined as:

PP = P (w1, · · · , wN )−
1
N

=
[ N∏
n=1

P (wn|wn−1
n−2)

]− 1
N

and the log-domain perplexity is:

log2 PP = − 1

N
log2 P (w1, · · · , wN )

= − 1

N

N∑
n=1

log2 P (wn|wn−1
n−2)

The vocabulary of the generated recognition result is restricted by a vocabulary

of collected text data. Words outside the vocabulary are called out of vocabulary

(OOV) words. The OOV words are replaced to a unique symbol and modeled as

P (“UNK′′|wn−1
n−2). For comparison of N-gram LMs of different vocabulary size, ad-

justed PP (APP) [54] discounts the score of “UNK” by a number of unknown vocab-

ulary size as:

log2 APP = − 1

N

{
log2 P (w1, · · · , wN )− o log2m

}
= − 1

N

{ N∑
n=1

log2 P (wn|wn−1
n−2)− o log2m

}
where o is the observed number of OOV words and m is the number of different OOV

words.

2.5 Neural networks for hybrid-base speech recognition

system

2.5.1 Outline of neural network

The deep neural network (DNN) composed of multiple hidden layers. Figure 2.3

shows an example of the DNN with 2 hidden layers. Let x ∈ (x1, · · · , xt, · · · , xT )
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be the D-dimensional input feature of length T and r ∈ (r1, · · · , rt, · · · , rT ) be the

T -length V -dimensional output label sequence. Then, the j-th hidden unit at l-th

hidden layer, hlj , is calculated as:

olj =
∑
i

wl
j,ih

l−1
i + blj ,

hlj = f(olj),

where wl
j,i is the connection weight of the i-th unit at (l−1)-th layer and the j-th unit

at l-th layer, and blj is the j-th bias at l-th layer. In the following sub-sections, we

discard time index t for simplicity. The function f is an activation function, including

sigmoid function:

f(x) =
1

1 + e−x
,

rectified linear unit (ReLU) [55, 56]:

f(x) = max(0, x),

hyperbolic tangent function, and maxout function [57, 58]. In the case of DNN for

the hybrid system, posterior probabilities of senones are estimated at the last layer.

Let L be the number of layers of the DNN. Then, the posterior probability of the k-th

label is calculated as

p(yk|x) = softmax(hL−1)

=
exp(hL−1

k )∑V
i exp(hL−1

i )
. (2.7)

In summary, the network is trained to output hypotheses as:

y = DNN(x; θDNN)

where x and y are the input and output feature and θDNN is the set of parameters of

the DNN. Then a loss value is calculated by comparing with a corresponding correct

reference r, and the parameters of the DNN are optimized to minimize the loss in a

supervised manner as:

l = Loss(y, r),

θDNN ← arg min
θDNN

l.

In the early deep learning era, unsupervised pre-training methods for the DNN

are studied to give good initial values which bring performance improvement at the
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Fig. 2.3 Structure of multi-layer fully-connected neural network.

following supervised training stage [59]. In the following section, we first describe

one pre-training method, contrastive divergence, in Section 2.5.2. We describe the

supervised training method in Section 2.5.3 followed by the DNN-based hybrid system

DNN-HMM in Section 2.5.4.

2.5.2 Unsupervised training of deep neural network

The Contrastive Divergence (CD) [60] algorithm first estimates parameters of bot-

tom two layers by regarding the sub-network of the DNN as Restricted Boltzmann

Machine (RBM). The parameters are connection weights between visible nodes v (at

the first layer) and hidden nodes h (at the second layer), and biases of both visible

and hidden nodes. There is no connection within the visible units and the hidden

units, respectively as shown in Figure 2.4. After the estimation of bottom first and

second layers, parameters of the second and the third layers are estimated in the same

manner and repeats the parameter estimation.

As the acoustic features take real values, the bottom RBM consisting of the first

and the second layer is trained as Gaussian-Bernoulli RBM. The following RBMs are

trained as Bernoulli-Bernoulli RBM. Let vrbm ∈ R|V | (V = {1, · · · , |V |}) be the

Fig. 2.4 Structure of Restricted Botlzmann Machine.
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|V |-dimensional acoustic feature vector, and hrbm ∈ R|H| (H = {1, · · · , |H|}) be the

|H|-dimensional hidden vector.

Then an energy function of the Gaussian-Bernoulli RBM is defined as:

E(vrbm, hrbm) =
∑
i∈V

(vrbmi − arbmi )2

2
−

∑
j∈H

brbmj hrbmj −
∑

i∈V,j∈H

vrbmi hrbmj wrbm
i,j ,

and the energy function of the Bernoulli-Bernoulli RBM is defined as:

E(vrbm, hrbm) = −
∑
i∈V

arbmi vrbmi −
∑
j∈H

brbmj hrbmj −
∑

i∈V,j∈H

vrbmi hrbmj wrbm
i,j .

Conditional probabilities of the visible node and the hidden node for the Gaussian-

Bernoulli RBM are calculated as:

p(vrbmi = v|hrbm) = N(v|arbmi +
∑
j

hrbmj wrbm
i,j , 1),

p(hrbmj = 1|v) = σ(brbmj +
∑
i

vrbmi wrbm
i,j ),

where σ(x) is the sigmoid function defined as:

σ(x) =
1

1 + e−x
.

In case of the Bernoulli-Bernoulli RBM, the conditional probabilities are defined as:

p(vrbmi = 1|hrbm) = σ(arbmi +
∑
j

hrbmj wrbm
i,j ),

p(hrbmj = 1|vrbm) = σ(brbmj +
∑
i

vrbmi wrbm
i,j ).

Given the set of RBM parameters: θ = (wrbm, arbm, brbm), a log-likelihood of the

RBM is then defined as:

ln p(vrbm|θ) = ln
1

Z

∑
j∈H

e−E(vrbm,hrbm)

= ln
∑
j∈H

e−E(vrbm,hrbm) − ln
∑

i∈V,j∈H

e−E(vrbm,hrbm),

and the partial differentiation of the log-likelihood with regard to the parameter θk

is represented as:

−∂p(v
rbm|θ)
∂θk

=<
∂E

∂θk
>data − <

∂E

∂θk
>model .
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In the case of weight wrbm
i,j , it leads to:

−∂p(v
rbm|θ)

∂wrbm
i,j

=< vrbmi hrbmj >data − < vrbmi hrbmj >model .

The first term < vrbmi hrbmj >data is estimated by the input acoustic feature and the

conditional probability p(hrbmj = 1|v). Since the computation of < vrbmi hrbmj >model

is intractable, it is commonly approximated using sampling algorithm, e.g., Gibbs

sampling [61].

After the parameter estimation of the bottom two layers, the parameters of the

bottom layers are fixed and the above two layers, i.e., the second and third layers,

are trained as the RBM. The input to the second layer is p(hrbm = 1|vrbm) which is

calculated at the previously estimated RBM(s).

2.5.3 Supervised training of deep neural network

Backpropagation (BP) algorithm [62, 63] is one supervised learning method for

training of the DNN. The algorithm computes the prediction y given an input speech

sample x and updates parameters to correctly output reference label r. The parame-

ters of DNN are optimized to minimize an error defined by a loss function. A typical

ASR task is categorized to a classification task, and a cross entropy loss is employed

in many cases. The cross entropy loss is defined as:

ECE = −
|V |∑
k

{
rk log(p(yk|x))

}
.

A derivative of the cross entropy loss ECE with regard to the parameter wl
j,i is:

∂ECE

∂wl
j,i

=
∂ECE

∂hlj

∂hlj
∂wl

j,i

= δljo
l−1
i where

{
δlj = hlj − rj if l = L,

δlj = olj(1− olj)
∑

k(δ
l+1
k wl+1

k,j ) otherwise.
(2.8)

The parameters of DNN are updated to decrease the error as:

wl
j,i ← wl

j,i − ηδljol−1
i ,

where η is the learning rate which controls contribution of the calculated deriva-

tive. More sophisticated optimization methods are proposed, e.g., AdaGrad [64],

AdaDelta [65], and Adam [66].
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Glorot, et al., [55] and Tóth [56] reported that an usage of a rectified linear unit

(ReLU) enables elimination of the pre-training procedure without degradation of

speech recognition performance. In the case of DNN-based hybrid system, we fol-

lowed these research and used the ReLU activation function without the pre-training

procedure for the training of DNN-HMM hybrid system to reduce training time. The

usage of ReLU function replaces Eq. (2.8) to:

δljo
l−1
i where

{
δlj = hlj − rj if l = L,

δlj = max(0,
∑

k(δ
l+1
k wl+1

k,j )) otherwise.

2.5.4 DNN-HMM hybrid system

The acoustic model computes the posterior probability P (x|Ψ) as described in

Section 2.1. This is factorized as:

P (x|Ψ) =
P (Ψ|x)P (x)

P (Ψ)

≈ P (Ψ|x)
P (Ψ)

The probability P (x) is discarded because of independence from the state transition.

The P (Ψ) is computed by calculating frequencies of labels of the training data. In the

framework of hybrid system, the DNN is trained to predict the posterior probability

of states Ψ given the input acoustic feature x. The probability estimated by the

GMM as in Eq. (2.6) is replaced by the DNN as in Eq. (2.7).

2.6 WFST Decoder

Weighted Finite State Transducer (WFST) [67] based decoding is one framework to

search hypotheses by integrating the acoustic model and the language model. Finite

State Transducer (FST) consists of a finite input symbol set, a finite output symbol

set, a finite state set, a state transition function, and an initial and a final state set.

A transition state is determined by the current state and its input. WFST can define

a weight with regard to the state transition in FST and can compute cost along the

state transitions. Hybrid systems, i.e., GMM-HMM and DNN-HMM, use the HMM,

pronunciation dictionary, and the language model. These models are represented as

WFSTs, and are combined to one WFST using a composition operation. When the

HMM is modeled as a context-dependent form, an additional WFST C is introduced
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for a conversion to the context-dependent form. When we define a WFST for a

conversion from characters to a word as L, a WFST for a conversion from a word to

word sequence for N-gram LM as G, and a WFST from a conversion from the acoustic

feature sequence to the modeling unit of the HMM as H, the WFSTs are combined

to one WFST as:

H ◦ C ◦ L ◦G,

where ◦ is the composition operation. In addition to the composition operation, the

WFST supports operations including determinization operation (for an elimination

of ambiguity) and minimization operation (for minimization of state number) for

efficient hypothesis search.

2.7 End-to-end ASR system

2.7.1 Attention-based encoder decoder networks

Attention-based encoder decoder networks [68] consist of three modules, an encoder

network, a decoder network, and an attention network. Let Y = (y1, · · · , yN ) be the

label sequence generated by the encoder decoder networks, R = (r1, · · · , rN ) be the

reference label sequence, and O = (ot ∈ RD|t = 1, · · · , T ) be the T -frame sequence

of D-dimensional input feature vector. The encoder network takes the input feature

vector and converts to an L-frame sequence of C-dimensional high-level representation

H = (hl ∈ RC |l = 1, · · · , L) as:

H = Encoder(O).

Typical encoder networks consist of a stack of bi-directional long short-term memory

(BLSTM) [69, 70]. The length of the input feature vector and the hidden vector

is different when the encoder network takes sequence length reduction techniques,

including convolutional operation [6], max-pooling [71], and sub-sampling [68, 72].

The decoder network repeats computation of posterior probabilities by taking a

context vector c, and a previous label yn−1 generated by the decoder network. The

posterior probability of yn at decoding time step n is defined as:

patt(yn|O, y1:n−1) = Decoder(cn, yn−1),

where the context vector is calculated by the attention network which takes the hidden
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representation H, an attention weight a, and a hidden state en:

cn, an = Attention(an−1, en,H),

en = Update(en−1, cn−1, Ln−1).

The posterior probability for generation of the label sequence is defined as:

patt(Y |O) =
N∏

n=1

patt(yn|O, y1:n−1)

=
N∏

n=1

Decoder(cn, yn−1)

At training stage, the previous label history y1:n−1 is replaced to the reference label

history r1:n−1 in a teacher-forcing fashion for efficient training.

For the models including Decoder(·), Attention(·), and Update(·), many researchers

proposed various types of network architectures. In this section, we describe detailed

modules which are employed in an open source project ESPnet [73] and are also used

in this thesis. The context vector is calculated as a weighted sum between the hidden

representation and the attention weight as:

cn =

L∑
l

an,lhl,

where n is the index of label sequence and l is the index of the hidden representation.

The attention weight is calculated as:

an,l =
exp(αkn,l)∑L
l=1 exp(αkn,l)

,

kn,l = wT tanh(V Een−1 + V Hhl + V F fn,l + b),

fn = F ∗ an−1,

where w, V E , V H , V F , b, F are the weight parameters, and α is a constant value. The

operation ∗ is a convolution operation. The hidden state e is calculated as:

en = Update(en−1, cn−1, yn−1)

= LSTM(Lin(en−1) + Lin(cn−1) + Emb(yn−1)),

where LSTM(·) is the LSTM module, Lin(·) is the linear layer, and Emb(·) is the

embedding layer which converts a label index to a fixed size dense vector.
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2.7.2 Sequence-to-sequence frameworks

The attention-based encoder decoder networks directly model the relation between

the input acoustic feature and the label sequence in a sequence-to-sequence manner

without a conditional independence assumption. In addition to the encoder decoder

networks, many studies proposed end-to-end architectures, e.g., Connectionist Tem-

poral Classification (CTC) [74, 75, 5], recurrent neural network transducer [76], and

transformer [77]. Hori, et al., proposed a method to train the attention-based encoder

decoder networks described in Section 2.7 and CTC jointly as multi-task learning to

encourage the attention network to generate monotonic alignment [6]. This method

shares the encoder network for the extraction of high-level representation, and the

CTC module is added for an encouragement of monotonic alignment. When we de-

fine the loss of encoder decoder networks and CTC as Latt and LCTC, the final loss

is defined as

Lmtl = λLLatt + (1− λL)LCTC

where λL is the interpolation factor.

2.8 Evaluation of speech recognition

Word error rate (WER) is one metric to measure the performance of the ASR

systems by taking the generated hypothesis word sequence and ground-truth reference

word sequence. The WER is calculated based on the Levenshtein distance because the

length of the reference word sequence and the hypothesis word sequence is different.

Let #werr be the number of error words consisting of substitution errors (#werr
S ),

deletion errors (#werr
D ), and insertion errors (#werr

I ), and let #wcorr be the number

of correct words and #w be the number of words in the reference. Then, the WER

is defined as:

WER =
#werr

#w

=
#werr

S +#werr
D +#werr

I

#werr
S +#werr

D +#werr
C

. (2.9)

The error rate is defined using other modeling unit other than the word. CER (Char-

acter Error Rate) and PER (Phoneme Error Rate) are alternative metrics for the
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measurement of ASR performance. The CER and PER are defined by using Eq. (2.9)

with the change of counting units to character and phoneme, respectively.

2.9 Summary

This chapter described the definition of speech recognition problem and general

approaches to building a speech recognition system. There are freely available

toolkits to build automatic speech recognition systems. The Hidden Markov Model

Toolkit (HTK) [43] supports the training of GMM-HMM hybrid systems. The Kaldi

toolkit supports the training of GMM-HMM and DNN-HMM hybrid systems and

WFST based decoding. ESPnet (End-to-End Speech Processing Toolkit) [73] and

EESEN [78] are active projects developing the end-to-end speech recognition system.
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Chapter 3

Rapid speaker class adaptation

using speaker information

3.1 Introduction

Difference of acoustic condition among training data and test data, e.g., environ-

ment and recording interface, is one crucial factor for degradation of speech recog-

nition performance in real environments. Several approaches have been proposed to

address this problem. Normalization of the acoustic feature is one of the methods

for a suppression of acoustic difference in transfer characteristics [79, 23]. Another

approach is class-dependent modeling of acoustic feature which aims at modeling

multiple acoustic models depending on several conditions by splitting data into some

clusters [22]. The training data is split into multiple clusters by measuring a similarity

of speech, and is defined as speaker’s characteristics including vocal tract parame-

ters [24], eigen voice [25], speaking rate [26], i-vector [27], and so on. Class-dependent

modeling is deeply studied by targeting the GMM-HMM hybrid system in the above

research.

The trained multiple ASR systems are also used as an ensemble for improvement of

generalization ability [80, 81, 82]. Tan, et al., proposed a method to construct speaker-

dependent DNN by computing a weighted sum of multiple DNN model parameters as

an extension of cluster adaptive training (CAT) [81]. Kosaka, et al., incorporated mul-

tiple DNN-HMM systems at a level of posterior probability generated by the DNNs.

These systems control contribution of each model using a specific metric which can

measure a similarity of an input speech (for evaluation) and the clusters (for training).

This similarity is defined as a distance between speaker characteristics. Some studies
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proposed methods to add these speaker representations with conventional acoustic

features [18, 19, 20]. Hamid, et al., proposed an usage of speaker-code [18], and

Huang, et al., proposed an usage of bottleneck feature [20] as an auxiliary feature.

However, the earlier works assume the availability of speech from several tens seconds

to several minutes, and are difficult to apply for the recognition of short time utter-

ance. Tsujikawa, et al., proposed a method to estimate i-vector from a short time

utterance. However, they also reported that it is difficult to estimate robust speaker

characteristics from a short time speech, i.e., 0.5 second [28]. Lie, et al., investigated a

relation between speech duration for i-vector estimation and recognition performance,

and reported that more than 5.0 seconds are required for the improvement of speech

recognition performance [29]. They also reported that the recognition performance

got worse when the acoustic characteristics in the training data do not cover that

of the input speech (in the evaluation) [29]. Therefore, it is difficult to apply the

conventional auxiliary feature based speaker adaptation technique to the recognition

of short time utterance.

In this chapter, we first apply cluster-dependent modeling technique to the DNN-

HMM hybrid system, which was proposed by our group for a GMM-HMM hybrid

system [83] and investigate its effectiveness. Next, we investigate a method to inte-

grate the similarity measure used for data-clustering with the conventional acoustic

feature to handle class-dependent clustering information within the DNN model. The

proposed system is evaluated as an ASR system for the recognition of short time utter-

ance targeting voice command recognition and voice search system. For this purpose,

we restrict an available time period for the estimation of speaker information to 0.5

second and regard it as an auxiliary feature.

This chapter is organized as follows: We first review conventional feature normal-

ization methods in Section 3.2. Section 3.3 describes the proposed method, clustering

of speech data and its cluster-dependent modeling. Section 3.4 describes experimental

setup and results.

3.2 Normalization of acoustic feature

Let c = (c(1), c(2), · · · , c(t), · · · , c(T )) be a sequence of cepstrum feature consist-

ing of T frames, e.g., MFCC, and c(t) = (c1(t), c2(t), · · · , cD(t)) be a set of dimen-

sions of cepstrum feature at time frame t. These methods first computes mean,

µ = (µ1, µ2, · · · , µD), and variance, σ2 = (σ2
1 , σ

2
2 , · · · , σ2

D), of the cepstrum feature
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using training data per each dimension:

µi =
1

T

T∑
t=1

ci(t) (3.1)

σ2
i =

1

T

T∑
t=1

(ci(t)− µi)
2 (3.2)

Cepstral mean normalization (CMN) transforms the i-th dimensional cepstrum fea-

ture at frame t as:

ĉi(t) = ci(t)− µi, (3.3)

and Cepstral variance normalization (CVN) transforms the i-th dimensional cepstrum

feature at frame t as:

ĉi(t) =
ci(t)√
σ2
i

. (3.4)

Combination of Eqs. (3.3) and (3.4) results in Cepstrum Mean and Variance Normal-

ization (CMVN) [79] as:

ĉi(t) =
ci(t)− µi√

σ2
i

. (3.5)

These normalization methods are employed to suppress the mismatch of acoustic

features, and they are also applied to suppress the mismatch among speakers. How-

ever, these normalization methods need to compute statistical values, Eqs. (3.1) and

(3.2). In other words, when the system waits for an end of the utterance to calculate

the statistical values, this constraint leads to a delay in the speech recognition process.

In contrast, a restriction of usable frames leads to an inaccurate statistical estimation

because of unbalanced appearance of phonemes. Pujol, et. al., [84] proposed an on-

line CMVN that updates the statistical values successively along the input streaming

speech.

µi(t) = βµi(t− 1) + (1− β)ci(t)
σ2
i (t) = βσ2

i (t− 1) + (1− β)(ci(t)− µi(t))
2,

β = 0.992.

Nakano, et al., [85] proposed a class dependent CMVN. This method first splits train-

ing data into multiple clusters and statistical values are calculated per each class.

They modeled a distribution of the cepstral features by using the GMM with respect

to each class. Then, a test utterance (for evaluation) is classified to the nearest class
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using the first short (e.g., 50) frames and the set of GMMs, and the CMVN is applied

using the mean and variance of the selected class.

3.3 Reduction of acoustic feature variation

3.3.1 Acoustic feature clustering

This section describes an algorithm to cluster speech data. The purpose of data

clustering is a suppression of acoustic diversity within clusters. At an initialization

step, a number of classes M is defined and the training data is randomly split to

M classes. Then, initial GMMs are trained by using the speech data of each class.

At a clustering step, we employed a soft-clustering which allows an assignment of a

single utterance into multiple classes to prevent a decrease of data size of each class

as shown in Algorithm 3.

Let ui be an i-th utterance in the training data U = (u1, · · · , ui, · · · , u|U|), and n

Algorithm 3 Clustering of speech data

1: for utterance ui ∈ U do

2: n = 1

3: Calculate likelihood sci,m between ui and m ∈ (1, · · · ,M) for each model

4: Sort classes in descending order with regard to scores (sci,m|m ∈ (1, · · · ,M))

(1, · · · ,mmin, · · · ,mmax, · · · ,M)

5: for j = 2 to M do

6: if sc(1) − sc(j) < rs then

7: n = n+ 1

8: end if

9: end for

10: if n < mmin then

11: Assign ui to 1, · · · ,mmin

12: else if n > mmax then

13: Assign ui to 1, · · · ,mmax

14: else if mmin ≤ n ≤ mmax then

15: Assign ui to n classes.

16: end if

17: end for
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be the number of classes for assignment. The algorithm calculates the likelihood sc

between the utterance ui and a set of GMMs:

λ = (λm|m ∈ (1, · · · ,M))

as:

sci,m = Likelihood(ui, λm)

= log p(ui|λm)

=

T∑
t=1

log p(ui(t)|λm)

where m is the index of M classes and T is the length of input acoustic feature.

Then, the M classes are sorted in descending order with regard to the corresponding

likelihoods, and it is used to decide the number of classes for assignment (n) at

lines 5-9 in the algorithm. This algorithm assigns the utterance ui to class j when

a difference between the likelihood of most probable class and that of j-th class is

smaller than a threshold value rs. In other words, the training data size is controlled

by rs, and we set rs with the constraint that the data size in each class exceeds that of

the initial class. Constant values mmin and mmax are also introduced at lines 10-16

to restrict a range of n as mmin <= n <= mmax to prevent extreme assignment.

After the execution of clustering algorithm, the GMMs are retrained by using the

generated clusters, and a ratio of fluctuated utterances is calculated for each class.

This procedure is repeated until the ratio is saturated. The ratio of fluctuation is

defined by the number of the fluctuated utterances divided by the total number of

utterances in the training data.

3.3.2 Class dependent modeling

In the case of class dependent modeling of ASR systems, the clusters generated by

the algorithm described in Section 3.3.1 are used. In the evaluation stage, the most

probable model is selected by calculating the set of likelihoods between the input

speech and the M GMMs. The likelihood is defined as:

sci,m = log p(o|λm)

=
T∑

t=1

log p(ot|λm), (3.6)

where ot is the acoustic feature at time frame t and T is the available time frame.

The available time frame T is set to 50 in the experiment.
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3.3.3 Class dependent feature normalization

In the case of class dependent feature normalization [85], the statistics are calculated

using each cluster. Eq. (3.5) is replaced as:

ĉi(t) =
ci(t)− µi,m√

σ2
i,m

where m ∈ (1, · · · ,M) is the m-th cluster. As class dependent modeling in Sec-

tion 3.3.2, the statistics are selected based on Eq. (3.6).

3.3.4 Addition of auxiliary speaker class information

The above section focuses of the selection of the most probable class for the employ-

ment of class dependent statistics and class dependent acoustic models. However, it is

considered that the DNN has an ability to model the complex distribution of acoustic

features because of its expressive power, and class-specific transformation is modeled

within the DNN automatically. Therefore, we investigate methods to input speaker

information with the conventional acoustic feature, and further compare various input

types of speaker information.

Figure 3.1 shows an overview of our proposed method. In the training stage, we

first cluster the training data on the basis of acoustic feature similarity as described in

Section 3.3.1. After the clustering, a set of GMM likelihoods are calculated between

Fig. 3.1 Overview of speaker class incorporation.
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the GMMs and the input utterance. We regarded each cluster as speaker-class, and

defined a set of likelihoods as “speaker-class information” which represents speaker

characteristics. This speaker class information is fed into the DNN as a speaker

information. In other words, a number of units added to the DNN corresponds to the

number of clusters. The speaker class information of i-th utterance sci is defined as:

sci = (csi,m|m ∈ (1, · · · ,M))

sci,m = log p(o|λm)

=

T∑
t=1

log p(ot|λm).

The available time period is set to the length of input speech in the training stage,

and it is set to 50, i.e., 0.5 second, in the evaluation stage.

In addition to the input of likelihoods, we investigated various types of speaker class

information as follows:

a. Input of speaker class information as an auxiliary feature

（1）Log likelihood: A set of likelihoods between the input utterance and the

class-dependent GMMs are calculated and they are fed into the DNN with

the acoustic feature.

（2）Estimated class: In order to investigate whether the function of CMVN

can be performed inside the DNN, we used a one-hot vector by assigning 1

to the most probable class and zeroing out the other M − 1 speaker classes

as a one-of-M representation.

（3）Posterior probability distribution: Log-likelihood varies on the utterance

with high variance and there is a possibility for unstable speaker class

modeling. This method applies a softmax operation on the likelihoods for

re-scaling of the range of likelihoods.

b. Speaker class dependent CMVN: Most probable speaker class is calculated by

computing the likelihoods between the input speech and the class-dependent

GMMs. The CMVN is applied by the selected class-dependent statistics and

the normalized feature is input to the DNN-HMM. For the purpose of rapid

selection, 50 frames of the utterance are used for the selection of speaker class.

c. Combination of speaker class information and class dependent CMVN: This

method combines both the input of speaker class information and the normal-

ization of acoustic feature based on the class dependent CMVN.



3.4 Experimental work 33

3.3.5 Stepwise training

As reported in the following experiment, when training the DNN using the high-

dimensional acoustic feature and the low-dimensional speaker class information, the

DNN mainly focuses on the optimization with regard to the acoustic feature, and

makes it difficult to take the low-dimensional speaker class information into account

for the DNN. Therefore, we trained the DNN using two-step procedure aiming at a

stable training of the DNN, and additional parameter search based on the auxiliary

speaker class information. First, the DNN is trained by using only the acoustic feature

while the speaker class information is set to 0.0. Then the DNN is retrained by using

both the acoustic feature and the speaker class information. We called it stepwise

training.

3.4 Experimental work

3.4.1 Corpus

To ensure an age- and gender-independent speech recognition system, we used three

types of corpora consisting of adult speakers, elder speakers, and child speakers,

summarized in Table 3.1. The database used for an adult class is ASJ+JNAS [86, 87]

database consisting of 133 male and 164 female speakers aged 18 to 59. This corpus

consists of 20,337 sentences (≈33 hours) and 25,056 sentences (≈44 hours) uttered

by males and females, respectively. The database for an elder class is S-JNAS [88]

database consisting of 151 male and 150 female speakers aged 60 to 90. This corpus

consists of 24,081 sentences (≈53 hours) and 24,061 sentences (≈53 hours) uttered

by males and females, respectively. The database for a child class is CIAIR-VCV [89]

database consisting of 140 male and 138 female speakers aged 6 to 12. This corpus

consists of 7,538 sentences and 3,993 words (≈11 hours) and 7,744 sentences and 3,910

words (≈11 hours) uttered by males and females, respectively. In the CIAIR-VCV

corpus, the child class was mainly composed of speech obtained from a reading of

fairy tales. However, a language model we used in the experiment was trained by

newspapers. As a result, the child class’s out-of-vocabulary rate (OOV) was high as

13.8 and 13.6% for male and female respectively, while the rates for the elder class

and the adult class were 0.5% and 2.1%, respectively. In the following experiment,

we refer to these initial speaker class as “6-class-init”. Each corpus contains male and
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female speech data. Therefore we divided the data into six (initial) classes: speakers

of adult male speakers (SAM), speakers of adult female speakers (SAF), speakers of

elder male speakers (SEM), speakers of elder female speakers (SEF), speakers of child

male speakers (SCM), speakers of child female speakers (SCF).

Test data for each class was 100 sentences. The number of speakers in the test data

for SAM and SAF were 23 speakers. The number of speakers for SEM and SEF were

10 speakers, and SCM and SCF were 7 and 8 speakers, respectively.

The average number of frames per one utterance was 540 frames. Although our

aim is to recognize a short utterance, there was no appropriate test set to evaluate

speaker adaptation/recognition on the short utterance. Therefore, we restrict the

available frames to the first 50 frames of the utterance and calculate the speaker class

information and the most probable class from the trimmed data.

Table. 3.1 Dataset for rapid speaker class adaptation.

AS+JNAS

Gender Male (SAM) Female (SAF)

Age 18-59 18-59

# speakers 133 164

# utterances 20,337(≈ 33h) 25,056(≈ 44h)

OOV 0.45% 0.45%

S-JNAS

Gender Male (SEM) Female (SEF)

Age 60-90 60-90

# speakers 151 150

# utterances 24,081(≈ 53h) 24,061(≈ 53h)

OOV 2.07% 2.05%

CIAIR-VCV

Gender Male (SCM) Female (SCF)

Age 6-12 6-12

# speakers 140 138

# utterances 7,538(+3993) ≈ 11h 7,744(+3910) ≈ 11h

OOV 13.81% 13.64%
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3.4.2 Acoustic feature and acoustic model

(i) Acoustic feature

The speech was analyzed using a 25-ms Hamming window with a pre-emphasis

coefficient of 0.97 and shifted with a 10-ms frame advance. All acoustic models,

GMM-HMM and DNN-HMM, and GMMs for speaker classification are trained

by using 12 MFCCs along with their first and second derivatives and the first

and second derivatives of the logarithm power (38-dims.) extracted by Hidden

Markov Model Toolkit (HTK) [43]. In the case of DNN-HMM, the input MFCCs

of ±5 frames are stacked to take context information into account.

(ii) Syllable-based modeling

The basic unit of Japanese is syllable and there are 116 context-independent

syllables in total. In this study, we used left context (vowels and pause: a, i,

u, e, o, N, qs, silence), which leads to 928 left context-dependent syllables in

total [46]. Each HMM has four states, and the number of output units increases

to 3,712 (=928 × 4). To reduce the number of output units, we used tied 3 state

syllables (TC3), which tied the latter three states of the syllable.

Figure 3.2 shows an example of the left-context dependent syllable and TC3.

In this example, the left context is “a” and the syllable is “ka”. In the case of

TC3, the last three states are tied and the the syllable (without preceding left

context) share same symbol, i.e., TC. If the latter three states are tied, only the

first state is a left context-dependent syllable (or states) and the others consist

of the context-independent syllables (or state). Therefore, the number of output

Fig. 3.2 Left context dependent syllable based HMM.
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units becomes 1,276 (= 1× 928 + 3× 116).

(iii) GMM-HMM

The 928 context-dependent syllable-based HMMs were trained using the EM

estimation algorithm. In the case of speaker class dependent GMM-HMM hy-

brid system, each HMM has four states and each distribution was represented

with 32 mixture diagonal Gaussians. In the case of speaker class independent

monolithic GMM-HMM hybrid system, the distribution of each HMM was set

to 128 mixture diagonal Gaussians. The GMM-HMMs were trained by using

HTK [43].

(iv) DNN-HMM

The acoustic features were normalized to zero mean and unit variance using

the training data except for the speaker class dependent CMVN. The training

targets were obtained by applying force alignment using the corresponding tied

3 state context-dependent syllable-based GMM-HMM. To reduce the training

time of the DNNs, the DNNs were fine-tuned by using a rectified linear unit

as an activation function [55, 56] and skipped the pre-training procedure [60].

As a preliminary experiment, we trained the DNN without pre-training with

the usage of the rectified linear unit and the DNN with contrastive-divergence

based pre-training with the usage of sigmoid function, and these two models

showed comparable results. The DNN has 3 hidden layers with 2,048 units and

an output layer with 1,276 (= 928 + 116 × 3) units. The initial parameters of

DNN were set sampled from the following uniform distribution [90]:

w ∼ U
[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
,

where nj and nj+1 are the number of units of j-th layer and (j + 1)-th layer.

(v) Language model and WFST decoder

As a language model, a tri-gram word-based language model was trained on

the Mainichi newspaper corpus collected from January 1991 to September 1994

and from January 1995 to June 1997 (11,533,739 words, vocabulary of 20,000

words) [91]. The cut-off was set to 1, and Witten-Bell method was used for

the computation of back-off. The perplexities of 6 classes were 125.7 (SAM),

125.7 (SAF), 129.4 (SEM), 129.4 (SEF), 293.0 (SCM), and 301.2 (SCF). As a

decoder, we used the SPOJUS++ (SPOken Japanese Understanding System)

WFST version [92].



3.4 Experimental work 37

(vi) GMM for speaker classification

The initial 6 GMMs (SAM, SAF, SEM, SEF, SCM, SCF) for speaker class

classification were trained by using 10,000 utterances and the number of mixtures

was set to 8. The GMMs were retrained by repeating the clustering algorithm

and EM algorithm. We set the number of mixtures of the final GMMs to 64, and

called it “6 class soft”. In the experiment, the number of clusters was further

increased to 12, and it was called “12 class soft”. It was executed by randomly

halving “6 class soft” and repeating clustering algorithm and GMM training.

The threshold rs was set to 0.6, and mmin and mmax were set to 1 and 3,

respectively.

3.4.3 Baseline class independent model

Table 3.2 shows WER of the baseline class-independent models which were trained

using all training data. GMM-HMM showed an average WER of 13.0% and DNN-

HMM showed an average WER of 11.2%. Our result indicates the advantage of DNN

as with earlier works.

3.4.4 Class dependent models

Table 3.3 shows WERs obtained by training 6 GMM-HMMs and 6 DNN-HMMs

using 6-class-init which corresponds to the original corpora in Table 3.1. In this ex-

periment, one model among the 6 models has to be selected for the evaluation of

each utterance. This table shows the result assuming that the correct class is known.

When we focused on the GMM-HMM, class-dependent GMM-HMM obtained an aver-

age WER of 13.0%, and showed better performance than the monolithic GMM-HMM

system in Table 3.2. Especially, child classes, i.e., SCM and SCF, obtained signifi-

cant performance improvement. It is considered that there is an acoustic difference

between the child class and other classes, and the reduction of acoustic variation

brought the curated GMM-HMMs for child classes.

Table. 3.2 WER (%) of the baseline GMM-HMM and DNN-HMM hybrid systems.

Acoustic Model SAM SAF SEM SEF SCM SCF Ave.

GMM-HMM 9.2 8.3 10.4 8.3 32.3 24.2 15.4

DNN-HMM 5.5 4.5 7.1 6.2 23.5 20.0 11.2
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Table. 3.3 WER (%) of the class dependent models trained by 6-class-init (class-known).

Acoustic Model SAM SAF SEM SEF SCM SCF Ave.

GMM-HMM 6.5 6.4 10.4 6.6 26.8 21.1 13.0

DNN-HMM 6.1 4.9 7.1 5.3 22.8 21.1 11.2

When we trained 6 DNN-HMMs, an average WER was 11.2%. Different from the

GMM-HMM, there is no significant difference between the monolithic DNN-HMM in

Table 3.2, and it is considered that the DNN-HMM is robust against the diversity

of speakers. However, it should be noted that the 6-class-init (corpus) dependent

modeling leads to a decrease in training data. This trade-off between the number of

models and the available training data affects a generalization ability of the DNN.

In the case of GMM-HMM, the split of training data brought performance improve-

ment. Therefore, we investigated further split of the training data and evaluated its

performance. We clustered the training data to 12 clusters. The classification result

of training data and test data are described in Table 3.4 and Table 3.5, respectively.

Labels 1 to 12 represents each cluster name. As initial training data for 12 clusters,

we randomly halved the “SAM” of 6 class initial and assigned to labels 1 and 2, and

repeated same procedures for all other classes, SAF, SEM, SCM, and SCF. The labels

1, 2, 5, and 6 mainly consists of SAM and SEM, and the labels 3, 4, 7, and 8 mainly

consists of SAF and SEF. The labels 9, 11, and 12 mainly consists of SCM and SCF,

and the label 10 is the cluster that equivalently contains the utterances of all classes.

We can see that there is an acoustical similarity between SAM and SEM, SAF and

SEF (adult and elder speakers), and SCM and SCF (child speakers).

Table 3.6 shows the speech recognition performance. In this experiment, we as-

sumed that the correct speaker class is unknown, and the speaker class for speech

recognition is selected by calculating the likelihoods between the input speech and

the GMMs for speaker classification. The likelihoods were calculated by using both

the first 50 frames of an utterance (50 frames) and all the frames of an utterance (all

frames).

In the case of 6-class-init, when the class is unknown and the available time pe-

riod was 50 frames, the WER was 16.1% and it was worse than the condition where

the corresponding class was known (15.4%). However, when all frames of an utter-

ance were available, the WER was recovered to 14.1% and it was better than the

class-known condition (15.4%). The selected classes were changed by restricting the
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Table. 3.4 Result of 12-class clustering targeting training data using all frames

of utterance (%).

label 1 label 2 label 3 label 4 label 5 label 6

SAM 44.2 54.0 0.4 0.2 43.0 24.0

SAF 0.2 2.6 64.3 46.7 0.7 1.3

SEM 54.4 42.8 1.0 0.7 52.2 60.8

SEF 1.1 0.3 33.8 52.1 4.0 13.8

SCM 0.1 0.4 0.3 0.2 0.1 0.1

SCM 0.0 0.0 0.2 0.2 0.0 0.0

Sum. 100.0 100.0 100.0 100.0 100.0 100.0

label 7 label 8 label 9 label 10 label 11 label 12

SAM 0.7 0.3 0.1 11.2 0.0 0.1

SAF 31.0 32.1 1.3 44.0 0.3 6.0

SEM 1.9 1.3 0.0 14.3 0.0 0.0

SEF 66.1 65.9 0.0 19.6 0.0 0.1

SCM 0.3 0.2 46.5 7.8 45.7 44.1

SCM 0.1 0.2 52.1 3.1 53.9 49.7

Sum. 100.0 100.0 100.0 100.0 100.0 100.0

Table. 3.5 Result of 12-class clustering targeting test data using all/50- frames

of utterance (# utterances).

label 1 label 2 label 3 label 4 label 5 label 6

SAM 23/15 58/46 0/0 0/0 8/6 7/5

SAF 0/0 0/0 31/27 32/27 0/1 0/0

SEM 34/20 6/8 0/1 0/1 16/29 39/26

SEF 0/1 0/0 22/20 13/24 0/0 6/5

SCM 0/0 0/0 0/5 0/0 0/0 0/0

SCM 0/0 0/0 0/5 0/1 0/0 0/1

label 7 label 8 label 9 label 10 label 11 label 12 Sum.

SAM 0/1 0/0 0/1 4/26 0/0 0/0 100/100

SAF 13/7 14/7 0/1 8/27 0/0 2/3 100/100

SEM 0/4 0/0 0/0 5/11 0/0 0/0 100/100

SEF 23/28 24/18 0/0 12/2 0/0 0/2 100/100

SCM 0/0 0/0 32/22 2/18 10/22 56/33 100/100

SCM 0/0 0/0 5/16 0/7 74/36 21/34 100/100
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Table. 3.6 Increase of speaker-class and changes in WER (class-unknown).

Acoustic
Model

Training
data

Class estimation: all frames

SAM SAF SEM SEF SCM SCF Ave.

GMM-HMM

6 class init (6 GMMs) 6.8 7.5 11.2 9.1 28.0 22.3 14.1

12 class soft (12 GMMs) 7.1 5.9 8.8 7.0 28.4 20.4 12.9

Class estimation: 50 frames

SAM SAF SEM SEF SCM SCF Ave.

GMM-HMM
6 class init (6 GMMs) 8.3 10.2 17.2 8.2 28.9 23.9 16.1

12 class soft (12 GMMs) 8.7 6.0 11.3 8.1 28.9 23.7 14.4

available time frames. Therefore, it is considered that the decrease in accuracy of the

speaker class selection had an influence on the decrease of recognition performance.

By increasing the speaker class to 12 clusters, the GMM-HMM systems obtained the

average WER of 14.4% when 50 frames of an utterance were used for the speaker

class selection, and the relative improvement of 6.5% was obtained from the baseline

monolithic GMM-HMM (15.4%).

From these results, clustering of speech data based on the acoustic feature and

speaker class dependent training of acoustic models are effective for the GMM-HMM

hybrid system. However, in the case of DNN-HMM hybrid systems, the performance

of class depending modeling and monolithic modeling was comparable. In the fol-

lowing section, we further evaluate robust DNN-HMM hybrid systems against the

diversity of speakers by applying cepstrum normalization and auxiliary feature based

model adaptation in Section 3.4.5 and Section 3.4.6, respectively.

3.4.5 Cepstrum normalization

(i) Speaker class dependent CMVN

Table 3.7 shows WERs of the DNN-HMM systems with speaker class dependent

CMVN. The speaker class for CMVN was selected by using all frames or 50

frames of an utterance. By applying CMVN using 6 initial class, the WERs were

10.8% on all frames and 10.9% on 50 frames. We applied data clustering and

generated 6 class soft and 12 class soft. When the speaker class was estimated by

using all frames of an utterance, the averageWERs were 11.4% on 6 class soft and

11.2% on 12 class soft. The best performance was obtained by applying 6 class

init dependent CMVN, and the same result was obtained in the case of 50 frames.

These results indicated that the increase of speakers class leads to performance
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degradation for DNN-HMM while it brings performance improvement for GMM-

HMM.

(ii) Unit of CMVN

We conducted several comparisons by changing unit of CMVN as corpus,

speaker, and utterance. Table 3.8 shows the average WER obtained under

various CMVN unit conditions by assuming that the oracle classes (corpus,

speaker, and utterance) are known. The corpus dependent CMVN showed

an average WER of 11.1% and 6 class init based CMVN showed an average

WER of 11.2%. These results were the same as the baseline DNN-HMM hybrid

system in Table 3.2.

When we applied CMVN per utterance consuming all frames (≈ 540 frames)

of an utterance, the average WER was 10.2%. However, the CMVN using 50

frames degraded the WER to 20.6%. We can see that it is difficult to estimate

Table. 3.7 WER (%) using speaker class dependent CMVN (class-unknown)

Acoustic
Model

Training
data

Class estimation: all frames

SAM SAF SEM SEF SCM SCF Ave.

DNN-HMM

1 class (Table 3.2) 5.5 4.5 7.1 6.2 23.5 20.0 11.2

6 class init 5.7 4.4 6.5 5.5 23.3 19.5 10.8

6 class soft 5.7 4.6 7.2 5.5 24.9 20.5 11.4

12 class soft 5.3 4.7 7.5 4.9 24.6 20.3 11.2

Class estimation: 50 frames

SAM SAF SEM SEF SCM SCF Ave.

DNN-HMM

1 class (Table 3.2) 5.5 4.5 7.1 6.2 23.5 20.0 11.2

6 class init 5.5 4.3 6.5 5.3 23.4 20.2 10.9

6 class soft 5.7 4.6 7.2 5.5 24.9 20.5 11.4

12 class soft 5.5 4.7 6.8 4.9 24.4 20.9 11.2

Table. 3.8 Comparison of CMVN unit (class-known)

CMVN unit # normalization unit Ave. WER (%)

corpus 3 11.1

6 class init 6 11.2

speaker 81 10.6

utterance (all frames) 6×100 10.2

utterance (50 frames) 6×100 20.6
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robust statistics for CMVN, and not applicable to the recognition of short time

utterance.

(iii) Online CMVN

Table 3.9 shows the WER of online CMVN targeting the DNN-HMM hybrid

system as described in Section 3.2. We employed two methods “Online” and

“Batch” in the training stage. In the case of “Online”, the statistical values,

mean and variance for CMVN, were updated sequentially in an online manner

by taking the statistical value of the previous frame. In the case of “Batch”,

CMVN was applied by assuming the input utterance is known and the statistical

values are calculated before CMVN as an offline manner.

The WER was 10.7% in the case of “Online” and it was 12.3% in the case

of “Batch”. In general, online CMVN is applied only for the test data and it

corresponds to the “Batch”. This is due to a requirement of certain steps of sta-

tistical update from the statistics estimated by training data to the appropriate

statistics for each specific input utterance. During this certain steps, CMVN

was applied by using the inappropriate statistics. In the case of this experiment,

“online” showed better performance than the baseline monolithic DNN-HMM

system in Table 3.2.

We considered that the difference of corpora normalized by CMVN is limited,

and a degree on how to normalize speaker characteristics per utterance appeared

as a difference in recognition performance. We further investigate the evaluation

of short-time utterance in Section 3.4.8.

3.4.6 Input of speaker information

This section evaluated the recognition performance of the auxiliary feature based

adaptation technique by adding the speaker class information. The speaker class

information was extracted by using all frames or 50 frames of an utterance and the

extracted feature was fed into the DNN with the acoustic feature. Results without

Table. 3.9 Utterance level online cepstral normalization on DNN-HMM hybrid system.

Training Test Ave. WER (%)

Online Online 10.7

Batch Online 12.3
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the stepwise training is shown in Table 3.10 and results with the stepwise (two steps)

training is shown in Table 3.11.

(i) Without stepwise (two steps) training

When we focus on the 6-class-init with the usage of 50 frames, the average

WER of the speaker-class-dependent CMVN was 10.9% as in Table 3.7, and

the addition of speaker class information, input of likelihoods, was 10.8%. The

Table. 3.10 WER (%) using speaker class information without stepwise training

(class-unknown)

Training
method

Training
data

Class estimation: all frames

SAM SAF SEM SEF SCM SCF Ave.

Baseline 1 class (Table 2) - - - - - - -

w/o stepwise training

6 class init 5.3 4.3 6.7 5.2 23.1 19.9 10.8

6 class soft 5.8 4.4 6.5 5.0 23.1 20.1 10.8

12 class soft 5.1 4.7 7.3 6.2 23.0 19.1 10.9

Training
method

Training
data

Class estimation: 50 frames

SAM SAF SEM SEF SCM SCF Ave.

Baseline 1class (Table 2) 5.5 4.5 7.1 6.2 23.5 20.0 11.2

w/o stepwise training

6 class init 5.3 4.3 6.7 5.2 23.1 19.9 10.8

6 class soft 5.8 4.4 6.5 5.0 23.1 20.1 10.8

12 class soft 5.7 4.7 7.1 6.5 23.3 18.7 11.0

Table. 3.11 WER (%) using speaker class information with stepwise training

(class-unknown)

Training
method

Training
data

Class estimation: all frames

SAM SAF SEM SEF SCM SCF Ave.

Baseline 1 class (Table 2) - - - - - - -

w/ stepwise training

6 class init 5.5 4.1 6.2 4.9 21.9 20.6 10.6

6 class soft 5.7 4.6 6.3 5.1 22.2 19.6 10.6

12 class soft 5.1 4.4 6.4 4.6 22.0 20.0 10.4

Training
method

Training
data

Class estimation: 50 frames

SAM SAF SEM SEF SCM SCF Ave.

Baseline 1class (Table 2) 5.5 4.5 7.1 6.2 23.5 20.0 11.2

w/ stepwise training

6 class init 5.6 4.1 6.0 4.9 22.2 20.7 10.6

6 class soft 5.6 4.1 5.9 4.6 22.2 20.2 10.4

12 class soft 5.1 4.4 6.4 4.6 22.0 20.0 10.4
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same performance was also obtained by using all frames of an utterance for the

estimation of speaker class information, and these results were better than the

baseline monolithic DNN-HMM hybrid system of 11.2% as in Table 3.2. These

results showed that the extraction and incorporation of speaker class information

provided better results than the monolithic 1-class DNN-HMM (11.2%) even if

the available time period was only 50 frames. Additionally, we conducted a

significance test between the monolithic DNN-HMM system without the use of

speaker class information and the DNN-HMM with the addition of speaker class

information defined by 6 class init. The significance test showed that our method

was statistically significant at the 10% level (p = 0.084). When we combined

the two methods, the speaker class dependent CMVN and the usage of speaker

class information, the average WER was not improved. These results indicate

that the combination of the two approaches does not provide a complementary

function.

We also conducted experiments using 12 class soft to investigate whether the

further increase of speaker class could lead the recognition performance im-

provement as same as the GMM-HMM system. The recognition performance of

the DNN-HMM with the usage of 12 class soft based speaker class information

showed almost the same WER as the 6 class init based DNN-HMM system,

unlike the GMM-HMM system. The increase of speaker class could represent

more detailed speaker information. On the other hand, it is considered that

the increase of speaker class suffered the lack of training data to achieve better

generalization.

(ii) With stepwise (two steps) training

We evaluated the effectiveness of stepwise training as shown in Table 3.11. When

the available time period was 50 frames, the DNN-HMM hybrid system with the

usage of 6 class soft based speaker class information showed the best performance

and the average WER was 10.4%. This improvement was significant at the 1.0%

level compared with the DNN-HMM with speaker class dependent CMVN in

Table 3.7 (10.4 vs. 10.9%).

Next, we investigated the relation between the recognition performance and

the updated layer during a second step of the stepwise training. DNN has the

characteristic of hierarchical non-linear transformation, and it is considered that

neural networks at the low-level layers are responsible for feature extraction.

Based on this assumption, we retrained the first, second, or first and second
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layers during the second step of stepwise training. The results were described in

Table 3.12. The update of the first layer and second layer obtained the average

WERs of 11.0% and the update of the first and second layer obtained the average

WER of 10.7%. However, these results were worse than the model with full layer

update, and it showed the requirement of full layer update as a classifier but not

feature extractor.

3.4.7 Comparison of speaker representation

This section evaluates various representation methods of speaker class information

as described in Section 3.3.4. The speaker representations were estimated by using

the first 50 frames of an utterance, and a set of likelihoods were calculated by using

the GMMs of 6 class soft.

a. Input of speaker class information as an auxiliary feature

（1）Log likelihood: The use of likelihood showed the average WER of 10.8%

without the stepwise training and the use of stepwise training improved

the average WER to 10.4%.

（2）Estimated class: The use of estimated speaker class as one-hot vector repre-

sentation showed the average WER of 12.2% without the stepwise training,

and the use of stepwise training improved the average WER to 10.7%.

（3）Posterior probability distribution: The use of posterior probabilities

showed the average WER of 11.6% without the stepwise training, and the

use of stepwise training improved the average WER to 10.6%.

b. Speaker class dependent CMVN: The average WER was 11.4%.

c. Input of speaker class information and CMVN: Simultaneous use of speaker

Table. 3.12 Relation between the updated layer at the second step and WER

(%) (class-unknown).

Retrained layer
Class estimation: 50 frames

SAM SAF SEM SEF SCM SCF Ave.

all 5.6 4.1 5.9 4.6 22.2 20.2 10.4

1 6.2 4.3 6.2 5.7 23.2 20.6 11.0

2 5.7 4.7 6.5 4.8 23.7 20.5 11.0

1 and 2 6.3 4.4 6.2 4.8 22.7 19.6 10.7
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class dependent CMVN and addition of speaker class information (log likeli-

hood) obtained the average WER of 11.2% without the stepwise training and

the stepwise training further decreased the average WER to 10.7%. The com-

binational use did not show performance improvement, and it can be seen that

there is no complementary relation in both two methods.

These results supported the effectiveness of stepwise training, and there is no dif-

ference between the input of likelihoods and posterior probabilities in the case of

stepwise training.

3.4.8 Evaluation using first one word

The purpose of this study is the recognition of short-time utterance. However, there

is no speech database consisting of a few words uttered by various speakers including

child speakers, adult speakers, and elder speakers. Therefore, we calculated WER

by collecting the first words of the recognition results that we reported in the above

section. Out-of-vocabulary ratio (OOV) of the first words was 0.0%, and the average

duration of the first words was 0.88 second, which was measured by the GMM-HMM

hybrid system’s alignment. The results were shown in Table 3.13.

We can see that the input of speaker class information improved the recognition

performance compared with the baseline DNN-HMM system. On the contrary, the

WER of the online CMVN was worse than the baseline DNN because it is difficult to

estimate robust statistics from 0.5 second which corresponds to approximately 2∼3
syllables. These results were obtained from only 6 classes × 100 utterances (total of

600 words). Therefore, there was no significant difference between the baseline and

the proposed method, that is, the input of speaker class information with stepwise

training, although 4 classes out of 6 classes showed performance improvement and

other classes showed comparable performance to the baseline DNN-HMM system.
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Table. 3.13 WER (%) calculated by first words of sentences.

method SAM SAF SEM SEF SCM SCF Ave.

baseline (1class, 1DNN) 95 92 85 88 85 89 89.0
stepwise training

(6 class soft, 50 frames) 95 92 87 91 87 90 90.3
online CMVN

(training: online,

recognition: online) 93 94 86 88 84 88 88.8
online CMVN

(training: batch,

recognition: online) 94 90 84 88 76 88 86.7
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Chapter 4

Rapid speaker adaptation by neural

network based feature extraction

4.1 Introduction

Deep neural networks (DNNs) have achieved significant success in the field of auto-

matic speech recognition. One main advantage of DNNs is automatic feature extrac-

tion under a simple objective function without human intervention. Exploiting this

property, some recent novel approaches focus on front-end learning based on DNNs

that take low-level acoustic features [30, 31, 32, 33, 34, 35]. Chen, et al., [30] trained

a neural network based on a multi-task training by integrating a speech enhancement

module and a speech recognition module. Variani, et al., [32] proposed Complex

Linear Projection (CLP) which can take complex spectrum into account.

Sainath, et al., [34] and Sailor, et al., [33] proposed an end-to-end model that uses

raw waveforms and performs a frequency analysis. These studies reported that some

of the learned characteristics showed a similarity with human auditory characteristics

and traditional refined hand-crafted feature extractors [33, 34]. In addition, Sailor,

et al., [33] investigated the difference of center frequencies among models that were

trained by both clean and noisy speech. They reported that the center frequencies of

the learned filters did not show consistency between the clean speech and the noisy

speech, suggesting that the optimal properties of the filterbanks depend on the task

and target environments. Zhu, et al., [31] also presented a model to learn features

directly from waveforms and performed convolution operations with several types

of window sizes and stride parameters to push past the inherent trade-off between

temporal and frequency resolutions. These DNN-based systems eliminate the feature
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extraction stage and significantly improve the recognition performance.

Earlier works reported the difference of the filter characteristics caused by the con-

dition of training data. However, since a system can not identify varying test speaker

and test environment in advance, there are mismatches between the input speech (for

evaluation) and the learned model which causes the recognition performance degra-

dation. Therefore, adaptation remains a major challenge for the DNN-based systems,

which must alleviate the mismatch and recover speech recognition performance. In

practical use, it is preferable for a low-level feature extractor to track various test

conditions rapidly using a small size adaptation data. In the case of model adapta-

tion, parameters of the DNN are re-estimated by using the adaptation data. In this

scenario, the trade-off between the size of the adaptation data and the number of

parameters becomes a critical problem. In other words, too many parameters cause

poor generalization and overfitting to the given data if the available adaptation data

are limited.

In contrast to the DNNs, physiologically motivated models are composed of a small

number of parameters. Therefore, the physiologically motivated model is advan-

tageous in the model adaptation under limited adaptation data. Furthermore, in-

troducing restrictions resulting from the physiologically motivated model explicitly

protects the introduced filterbank layer from extreme deterioration. In this chapter,

we propose a filterbank-incorporated DNN that incorporates a filterbank layer that

presents the filter shape/center frequency and the DNN-based acoustic model. The

filterbank layer and the following neural networks of the proposed model are trained

jointly by exploiting the advantages of the hierarchical feature extraction, while most

systems use pre-defined triangular mel-scale filterbank features as its input. Filters in

the filterbank layer are parameterized to represent speaker characteristics while mini-

mizing the number of free parameters. Since the filterbank layer consists of just a few

parameters, it is advantageous in the adaptation under limited available adaptation

data. We evaluate the advantage of filterbank-incorporated DNNs in speaker/gender

adaptations as the model adaptation. The followings are the contributions of this

work:

(i) proposed a filterbank-incorporated DNN and evaluated it as a speaker inde-

pendent model;

(ii) evaluated our proposed model for speaker/gender adaptation and compared

various filter types;
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(iii) discussed the relation between the physical characteristics of speakers’ vocal

tracts and optimal filterbanks from an engineering viewpoint.

This chapter is organized as follows: We first describe earlier model adaptation

techniques in Section 4.2. Section 4.3 describes the proposed neural network based

filterbank layer. Section 4.4 summarizes the advantages of the proposed neural net-

work filterbank layer and its expected behavior under adaptation of filter shapes.

Experimental setup and results are described in Section 4.5.

4.2 Earlier works on model adaptation

In this section, we first review model adaptation techniques. We also discuss in-

troduced constraints for some adaptation techniques from a viewpoint of matrix mul-

tiplication. The model adaptation is a promising method to adapt the DNN that

updates its parameters given the adaptation data. For the model adaptation, struc-

tural changes and parameter restrictions are introduced to robustly learn a speaker

specific transformation without overfitting using a small speech data sampled from

the recognition target speaker. Neto, et al., and Bo, et al., presented a Linear In-

put Network (LIN) that restricts the adapting layer to the input layer [11, 12]. The

same idea is also applicable to the other layers: Linear Hidden Network (LHN) and

Linear Output Network (LON). The computation of each layer consists of a matrix

multiplication and a non-linear transformation.

• SVD

Singular value decomposition (SVD) replaces the weight matrix to the product of

two low-ranked matrices. The SVD-based parameter reduction showed effective

adaptation [13]. The SVD is applied to the weight matrix of l-th hidden layer as:

wl
m,n = U l

m,nΣ
l
n,n(V

l
n,n)

T ,

≈ U l
m,kΣ

l
k,k(V

T
n,k)

T ,

where Σ is the diagonal matrix of singular values, and subscript is the size of weight

matrix. The adaptation of the decomposed diagonal matrix and a further selection

of k singular values decrease the number of free parameters. In our compared

experiment, the singular values in the diagonal matrix, Σl
k,k, are updated for each

target speaker.

• LHUC
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Swietojanski, et al., [14] presented an approach that adapted the hidden units

called learning hidden unit contributions (LHUC), which directly re-scaled ampli-

tudes of the hidden units as following equation:

hlj = 2σ(rl,sj ) · ψ(wl
jh

l−1 + blj),

where j the the index of the hidden units, wl
j is the weight vector, and ψ(·l) com-

putes the l-th hidden units. The hidden units are re-scaled by applying element-

wise multiplication with σ(·) ranging from 0.0 to 1.0. Variables rl,sj are optimized

for each target speaker s.

• fDLR

In the particular case of feedforward DNNs, the neighboring frames of the acous-

tic features are concatenated to take the context information into account that

contributes to the senone classification. Focusing on this stacked frames, Seide,

et al., [10] inserted a linear layer that is tied across neighboring frames (fDLR;

feature-space discriminative linear regression).

Zhao, et al., [93] presented an adaptation method to adapt the node activation

function. LHUC and the adaptation of the node activation function also resemble

a matrix multiplication of a diagonal matrix. During the model adaptation, a large

number of parameters must be trained without causing any overfitting. Yu, et al., [94]

presented a Kullback-Leibler divergence-based regularization to address this concern.

Such model adaptation techniques only focus on the reduction of free parameters.

However, we must consider expressiveness against the total number of free parameters

for the adaptation under limited available data.

Several model adaptation techniques can be regarded as matrix multiplications.

Figure 4.1 summarizes the relation among adaptation methods and the introduced

restrictions to the matrix. LIN inserts a matrix at the bottom of the DNN without

any restrictions that resembles a fully connected layer. fDLR introduces a restriction

where the matrix is a block-diagonal type and the block is shared across the diagonal.

Therefore, the frame-based transformation is carried out for each frame. Likewise,

VTLN is regarded as a transformation by a tri-diagonal matrix, even though it is

not adapted under the backpropagation framework [95]. LHUC is also regarded as

a matrix multiplication by introducing a restriction under which the matrix takes a

diagonal matrix. From these results, LHUC’s expressiveness is included in the fDLR,

which is again included in the LIN. The categorization of the feature transformations,
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which are based on the considerations of the Spectro-Temporal domain, was previously

discussed in [96].

Some studies reported acoustic models based on convolutional neural networks

(CNNs) [97]. A convolution operation focuses on small localized regions of the input

speech, unlike the fully connected layer. In addition, weight sharing significantly re-

duces the number of free parameters. Kaneyama, et al., [98] proposed a method to

apply convolutional filters that follows a Gabor function for an image texture clas-

sification task. CNN’s success shows that the introduction of structural restrictions

is critical to capture locally invariant features and further improves the recognition

performance even though fully connected neural networks include CNN capability.

Other studies reported methods that represent speaker characteristics as a combi-

nation of components of bases. Cluster adaptive training (CAT) combines multiple

weight matrices using an interpolation vector to form one final DNN layer [15]. In the

adaptation stage, the interpolation vector is updated while maintaining the weight

matrices. The Factorized Hidden Layer (FHL) approach resembles CAT [16]. In FHL,

Fig. 4.1 Relations among adaptation methods and introduced restrictions: LIN

inserts a matrix A without adaptation. Here, the input is composed of four

frames. fDLR introduces a restriction with a block-diagonal matrix and the block

is shared across the diagonal (At = At∗ = ...). VTLN and LHUC are regarded

as a matrix multiplication with tri-diagonal and diagonal matrices, respectively.
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the interpolation vector is shared among the several layers and initialized by the i-

vector. By introducing the interpolation vector, these studies separate speaker and

phone spaces for efficient adaptations. CAT and FHL only adapt the interpolation

vector, and the robust adaptation is guaranteed only within the range that covered

by the training data.

4.3 Neural network based filterbank layer

4.3.1 Hand-crafted triangular filterbank

Filterbank feature is calculated by weighing spectra of speech waveform using tri-

angular filterbank. The vertex of triangles is configured according to the mel-scale

which models non-linear sensitivity of human perception. The mel-scale is defined as

follows:

Mel(f) = 1127.0 ln(
f

700.0
+ 1.0)

where f is the linear frequency and Mel(f) is the mel-scale frequency. The pre-defined

configuration of filterbank is unchanged at all times.

4.3.2 Gaussian filterbank

The hand-crafted triangular filters are used as filter shapes in general. However,

this triangular filter is not differentiable and cannot be incorporated into a scheme of

the backpropagation algorithm. To parametarize the filter, Biem, et al., modeled its

shape as a Gaussian function [99]:

θn(f) = φn exp
{
−βn(Mel(γn)−Mel(f))2

}
, (4.1)

where θn(f) is the n-th filter at frequency f . φn is the gain parameter, βn is the band-

width parameter, and γn is the center frequency parameter, respectively. A function

Mel(·) maps linear frequency f to the mel-scale. Three trainable parameters, φn, βn,

and γn, control the filter shape. Figure 4.2 visualizes the role of three parameters.

A change of the gain parameter scales the magnitude of the filterbank feature. This

function is also realized by the adjusted weight in the following layer. A change of the

center frequency parameter shifts the region of the power spectra on which the filter

is focused. A change of the bandwidth parameter enlarges the power spectra region

on which the filter is focused. A set of Gaussian filters can be regarded as a neural

network layer that maintains a function of frequency domain smoothing.
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(a) Initial Gaussian filter and in-

put power spectra

(b) Change of gain parameters

(c) Change of center frequency (d) Change of bandwidth

Fig. 4.2 Roles of parameter changes, gain, center frequency, and bandwidth.

The x- and y-axis of each subfigure are power spectra and corresponding ampli-

tude. The red line represents an initial filter shape, and the green dotted line

represents the filter shape after re-tuning.

Figure 4.3 shows an overview of the Gaussian filterbank-incorporated DNN. Power

spectra at frame t, xt(f), are concatenated from several consecutive frames and fed

into the filterbank layer. These features are multiplied by the corresponding filter

gain given by Eq. (4.1) and summed across the frequency bin. Then applying a log-

compression gives the following neural network based log mel-scale filterbank features:

ht,n = log(
∑
f

θn(f)xt(f))

ht = [ht,1, ht,2, ..., ht,n, ..., ht,N ]

where N is the number of filters and t is the frame index. For the training of the

following DNN, ht with consecutive ±c frame features, [ht−c, ...,ht, ...,ht+c], are fed

into the following layer to compute the posterior probability of the triphone states.

We call this architecture Gaussian filterbank incorporated DNN (GFDNN).
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Fig. 4.3 Overview of Gaussian filterbank incorporated DNN: Filterbank weight-

ing is performed at DNN’s bottom. Horizontal axis is for the frequency bin, and

vertical axis is for the power spectrum. In the experiment, input power spectra

are concatenated from several consecutive frames (depth).

4.3.3 Gammatone filterbank

Under this framework, arbitrary differentiable filter functions can be used as filter

shapes. To compare the recognition performance among filter types, we also used

a Gammatone filter, which is a widely used model as an auditory filter [100]. A

Gammatone filter is modeled as:

gn(t) = cnt
a−1 exp(−2πbnt) cos(2πf0(n)t+ ζn), (4.2)

where cn is the constant value, ζn is the phase, a is the order, bn is the temporal

decay, and f0(n) is the center frequency, respectively. A equation (4.3) is obtained by

applying the Fourier transform to Eq. (4.2):

Hn(f) =
cn
2
(a− 1)!(2πbn)

−a{
e(iζn)

[
1 +

i(f − f0(n))
bn

]−a

+ e(−iζn)

[
1 +

i(f + f0(n))

bn

]−a
}
,
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θn(f) = |Hn(f)|2 ∼ k2n
[
1 +

(f − f0(n))2

b2n

]−a

+

[
1 +

(f + f0(n))
2

b2n

]−a
 ,

(4.3)

where

a = 4,

kn =
cn
2
(a− 1)!(2πbn)

−a
,

ζn(f) = tan−1

{
−2f0(n)bn

b2n + (f2 − f0(n)2)

}
.

The followings are trainable parameters of the Gammatone filter: kn (gain), f0(n)

(center frequency), and bn (temporal decay). In the experiment, the initial values of

f0(n) and bn are set [101, 102]:

f0(n) = −η + (fmax + η) exp

{
n log fmin+η

fmax+η

N

}
(4.4)

bn = 1.019× 24.7× (f0(n)×
4.37

100
+ 1) (4.5)

η = 228.83, (4.6)

where n is the index of filters, N is the total number of filters, and fmin (in Hz)

and fmax (in Hz) are the lowest and highest cutoff frequencies of the filterbank,

respectively. As seen in Eq. (4.3), the Gammatone filter takes a line asymmetric

curve. Mitra, et al, reported the effectiveness of Gammatone filterbank features for

DNN acoustic model in noisy condition (Note that our experimental condition is clean

environment) [103]. The Gammatone filterbank incorporated by DNN (GtFDNN)

without the update of filterbank corresponds to the DNN with Gammatone filterbank

features.

4.4 Discriminative learning of filterbank

4.4.1 Training of filterbank layer

The filterbank layer parameters are trained by backpropagation. The update rule

of φn, for example, is as follows:

φnew
n = φold

n − η ∂L
∂φn

= φold
n − η ∂L

∂hn

∂hn
∂φn

,
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where L is the objective function and η is the learning rate. The other parameters,

βn, γn (for GFDNN), k, f0, and b (for GtFDNN), are updated in the same manner. In

the experiment, the filterbank incorporated models are trained in two stages. First,

except for the filterbank layer, the DNN was fine-tuned until a convergence criterion

is met. Hereinafter, we refer to this model as a fixed model. Then the filterbank

layer and the following DNN are trained jointly with the same initial learning rate.

Hereinafter, we refer to this model as a trained model.

4.4.2 Adaptation of filterbank layer

During the adaptation stage, the filterbank layer is adapted for specific speaker

while the other network parameters are fixed. The target speakers for adaptation

have different vocal tract shape and vocal tract length. This difference of vocal tract

length corresponds to the shift of power spectra in the acoustic feature space domain.

We considered whether there is a relation between the learned center frequencies

and the vocal tract length. A vocal tract’s average length depends on gender and

age. The average length of the vocal tracts of Japanese adult males and females is

17.0 cm and 15.5 cm, respectively. Theoretically, the spectra of female speakers shift

to an approximately 9.7% (17.0/15.5) higher frequency domain from that of male

speakers due to the differences of vocal tract length. Therefore, we assume that the

center frequencies of the filterbank layer shift to an 9.7% higher frequency domain

by adapting the filterbank layer of the male-specific DNN using the female speech

data. It should be noted that the shift (warping) of frequencies in VLTN is also

accomplished by the adjustment of channel gains. The function of VTLN is executed

by both the shift of center frequencies and the scale of filter gains.

4.4.3 Advantage of filterbank learning

The filterbank incorporated DNNs have some advantages compared with earlier

studies.

• The proposed method can compute the neural network based log mel scale

filterbank features.

• The shapes of filters are adapted in a discriminative manner using backpropa-

gation.

• Unlike the fully connected layer, the proposed system performs a framewise
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transformation. Each filter takes a certain portion of the input power spectra.

The initial center frequency and bandwidth values are described in Section ii.

• An adjustment of the gain parameters corresponds to fMLLR [39] and

fDLR [10]. An adjustment of the center frequency parameters corresponds to

VTLN [38] by regarding the frequency shift as frequency warping. In summary,

our proposed system has fMLLR and VTLN capability while minimizing the

number of free parameters.

• The filterbank layer, which consists of a small number of parameters, is effective

for the adaptation under limited available data while fully neural network based

architecture suffers from the overfitting problem (e.g. time-domain convolution

layer in [34] has 16,000 parameters).

4.4.4 Earlier works on filterbank learning

Finding an optimal filterbank is an important topic not only for speech recogni-

tion but also for speaker recognition, dialization, and event detection. Several studies

proposed methods based on heuristic search algorithms. Pinheiro, et al., [104] pro-

posed a scheme to find the best filterbank configuration using an Artificial Bee Colony

(ABC) algorithm for speaker verification. Charbuillet, et al., [105] proposed a method

to search for optimal center frequency and bandwidth based on genetic algorithms.

These heuristic search algorithms independently repeat both the selection and eval-

uation stages. Several studies proposed methods that introduce objective functions.

Kobayashi, et al., [106] and Burget, et al., [107] proposed methods based on a dimen-

sionality reduction technique, and Suh, et al., [108] proposed a method that measures

filterbank properties derived from the Kullback-Leibler (KL)-divergence among fil-

ters. Recently, hierarchical feature extraction based on deep neural networks has

become a topic of interest in classification tasks [35]. Sainath, et al., [34] presented

a method to apply convolution over a raw time-domain waveform. Sailor, et al., [33]

also proposed a method based on a convolutional Restricted Boltzmann Machine that

uses a raw time-domain waveform. Tokozume, et al., [109] presented an end-to-end

convolutional neural network for environmental sound classification. Su, et al., [110]

further introduced an event-specific Gaussian filterbank layer to handle different tem-

poral properties of audio events. In this paper, we propose a novel approach to train

and adapt a filterbank based on DNN.
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• ExpFDNN (DNN with exponential filter)

Sainath, et al., [111] proposed a method to jointly train a filterbank layer and

the following networks under a restriction where the elements of the filters

take positive values by introducing the exponential of weights (Exponential

filterbank incorporated DNN; ExpFDNN):

ht,n = exp (wn)xt =
∑
f

exp (wn(f))xt(f),

where n is the filter index, f is the frequency bin, wn is the weight vector

of n, and x(f) are the input power spectra. However, this weak restriction

does not explicitly give a frequency-domain smoothing function, which is the

original purpose of the hand-crafted triangular filterbank. In other words, the

parameters of the filterbank layer overfit to the given data and the shape of the

filters leads to multiple peaks. Figure 4.4 shows an example of the actual filter

shapes that were fine-tuned in the experiment. This ExpFDNN characteristic

could become a disadvantage in the adaptation. Therefore, we also trained this

model for comparison.

Fig. 4.4 Example of actual filter shapes that were fine-tuned in the experiment.

Blue double line shows conventional triangular filter. Green dotted line is a

Gaussian filter, and red bold line is an exponential filter.
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4.5 Experimental work

4.5.1 Experimental setup

(i) Corpus

We used the Corpus of Spontaneous Japanese (CSJ) [112] for the validation.

The details of the corpus is shown in Table 4.1*1. It consists of 186.0 hours

of speech of male speakers (SM) and 42.0 hours of speech of female speakers

(SF). We used an officially attached evaluation set-2 for the evaluation that

consists of five male speakers and five female speakers. We used all utterances

of the evaluation set-2 as the test data for speaker-independent experiment and

gender adaptation experiment. In the case of speaker-independent experiment,

we trained SM-specific, SF-specific, and gender independent models and tested

the models using the gender-matched test data. In the case of gender adaptation

experiment, we adapted the SM-specific models using the training data of female

speakers, and tested the models using female speakers in the evaluation set-2.

In the case of speaker adaptation experiment, we assigned 20 utterances to the

adaptation data and 40 utterances to the test data. The SM specific models

were trained by male speakers and they were adapted/tested by 5 male speakers

in the evaluation set-2. The OOVs are 0.0% and 0.0%, and the perplexities are

73.5 and 73.2 for male and female speakers, respectively.

The speech was analyzed using a 25-ms Hamming window with a pre-emphasis

coefficient of 0.97 and shifted with a 10-ms frame advance.

(ii) Acoustic model

We built hybrid DNN-HMM systems. For the experiment of speaker and gender

Table. 4.1 Details of CSJ corpus.

Gender Male (SM) Female (SF)

Train
Lectures 787 166

Data 186 hours 42 hours

(Test

Evaluation set-2)

Lectures 5 5

Data 1.0 hours 0.9 hours

*1 We first evaluated the effectiveness of our proposed method using a small size corpus. The

results are described in Appendix A.
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adaptations, we implemented some conventional model adaptation techniques.

The following is the experimental setup of GMM-HMM and DNN:

GMM-HMM

To obtain the training target labels for DNNs, GMM-HMMs are trained using

a corpus of SM, SF, and SM plus SF (mixed). The models were trained on

the standard MFCC features. The senones of SM, SF, and SM plus SF were

4783, 4860, and 5023, respectively. Corresponding GMM-HMMs were used

for forced alignment.

Baseline DNN (Triangle filterbank)

As a baseline system, we trained a fully connected DNN, which has five hid-

den layers with 2,048 rectified linear units [55]. Its input was 11 consecutive

frames of 40-dimensional log mel-scale triangular filterbank features extracted

using the Hidden Markov Model Toolkit (HTK) [43]. The features were nor-

malized to zero mean and unit variance. Due to the fixed and undifferentiable

shape of the triangular filters, the filter shapes are unchanged all the times.

Gaussian filterbank incorporated DNN (GFDNN)

The Gaussian filterbank layer in Eq. (4.2) was inserted to the bottom of the

baseline DNN as in Fig. 4.3. Its input was 11 consecutive frames of 256-

dimensional power spectra. The number of filters was set to 40, which is

the same as the baseline system (n = 1, 2, ..., 40). The initial values of the

gain parameter were set to 1.0. The center frequencies were spaced equally

along the mel-scale. The bandwidths were set so that the two-sigma range

of Gaussian filter, i.e., (µ− 2σ, µ+ 2σ), equals the corresponding bandwidth

of the mel-scale filterbank. At the Gaussian filterbank layer, 120 parameters,

which consist of φ (gains), γ (center frequencies), and β (bandwidths), were

updated using the backpropagation.

Gammatone filterbank incorporated DNN (GtFDNN)

The Gammatone filterbank layer in Eq. (4.3) was inserted to the bottom of

the baseline DNN. The initial values were set according to Eqs. (4.4), (4.5),

and (4.6). The other setup was the same as the GFDNN. At the Gammatone

filterbank layer, 120 parameters were updated using the backpropagation.

ExpFDNN

A DNN with the exponential filterbank layer [111] was trained for the com-

parison. The initial values of the filterbank layer were set similar to the

triangular filterbank. At the filterbank layer, 10,240 parameters (256 fre-
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quency bins of 40 filters) were updated using backpropagation. The other

setup was identical to the GFDNN.

feature-space discriminative linear regression (fDLR)

A linear layer was inserted to the bottom of the baseline DNN, and it was

inserted after the filterbank layer for the GtFDNN. The size of identity matrix

was 40 by 40.

Learning hidden unit contribution (LHUC)

To adapt the models, we re-scaled the hidden units using LHUC. In the

experiment, the hidden units of the third layer were adapted which showed the

best performance in the preliminary experiment. The number of parameters

was 2,048.

Singular value decomposition (SVD)

We applied SVD on the 1st fully connected layer and kept top 420 singular

values. These values were decided from the best performance.

Table 4.2 summarizes the number of updated parameters for each adaptation

method. Comparative adaptation methods, fDLR, LHUC, and SVD, are appli-

cable to GtFDNN since the training of filterbank layer and the adaptation of

hidden layer is independent. Therefore, we applied comparative speaker adapta-

tion methods targeting the baseline (triangular shape filter) DNN and GtFDNN.

The filterbank layer was un-adapted when the comparative methods were ap-

plied to GtFDNN.

We used Chainer [113] for training the DNNs. The models were trained using

Adam [66] with batch normalization [114]. The 1% of training data were used for

the model selection. We followed the existing Kaldi recipe [115] for the training

of GMM-HMMs and decoding.

Table. 4.2 Number of parameters updated in adaptation stage.

Target of adaptation Parameters

GFDNN 120 (40filters× 3)

GtFDNN 120 (40filters× 3)

ExpFDNN 10,240 (256bins× 40filters)

fDLR 1,600 (40dims.× 40dims.)

LHUC 2,048 (hidden units)

SVD 420 (hidden units)
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4.5.2 Speaker independent model

The performance of the speaker-independent models is shown in Table 4.3. The

baseline gender independent DNN, which takes triangular filterbanks, achieved an

average WER of 13.4%. When we focused on the baseline models and the fixed

(untrained) models, the latter outperformed the baseline models in all cases, even

though the filter shapes were the only difference between the two models. This dif-

ference changes the coverage of the frequency bin. The Gaussian and Gammatone

filters focus on all the frequency bins while the baseline triangular filter zeroes out

the frequency bins outside a certain bin distance. These results comparing fixed and

baseline models showed the importance of refined acoustic features. Mitra, et al.,

also investigated the effectiveness of robust features for DNN including Gammatone

filterbank [103]. The performance improvement of the fixed models corresponds with

their results. The Gammatone filter is widely used as an auditory filter. However,

the difference between filter types did not show any performance gain.

In comparison with the fixed models, the trained models did not show performance

improvement. We considered that the difference in optimal center frequencies between

male and female speakers made it difficult to learn universal center frequencies for

both male and female speakers. In the following experiment, we only present the

results of the trained models.

Table. 4.3 WERs (%) of baseline DNN and filterbank incorporated DNNs.

System
WER (%)

SM SF Ave. SM+SF

Baseline (Triangle) 12.4 20.4 16.4 13.4

GFDNN (fixed) 12.4 18.8 15.6 12.5

GFDNN (trained) 12.5 19.0 15.8 12.9

GtFDNN (fixed) 12.1 16.3 14.2 12.6

GtFDNN (trained) 12.1 15.9 14.0 12.6

ExpFDNN 12.3 17.0 14.7 12.9
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Table. 4.4 WERs (%) of gender adaptation from adult male speakers to adult

female speakers. Bold is the best performance among models.

Adaptation data # speakers
GFDNN GtFDNN

filterbank filterbank fDLR LHUC SVD

0.0 h 0 26.8 24.4 24.4 24.4 28.2

0.02 h (72 seconds) 20 22.3 22.7 23.3 22.9 28.2

0.03 h (108 seconds) 30 18.9 20.1 22.0 20.9 27.2

0.1 h (360 seconds) 51 16.4 16.5 17.8 20.3 22.3

0.5 h (1800 seconds) 166 15.7 14.9 17.0 13.9 18.2

1.0 h 166 15.4 15.4 16.5 13.8 14.6

10.0 h 166 14.9 15.6 16.1 14.2 14.3

30.0 h 166 15.0 15.2 16.1 13.6 14.0

Adaptation data # speakers
Baseline DNN (Triangle) ExpFDNN

fDLR LHUC SVD filterbank

0.0 h 0 26.5 26.5 26.5 25.2

0.02 h (72 seconds) 20 26.0 32.8 28.6 23.6

0.03 h (108 seconds) 30 27.1 32.2 28.2 20.4

0.1 h (360 seconds) 51 19.1 31.8 23.7 17.2

0.5 h (1800 seconds) 166 17.4 31.2 18.2 15.7

1.0 h 166 19.4 31.6 16.2 14.1

10.0 h 166 16.6 31.2 14.3 14.6

30.0 h 166 16.6 31.4 14.1 14.7

4.5.3 Gender adaptation

Next, we performed gender adaptation from SM to SF as shown in Table 4.4 to

confirm the presence of the filters’ shift to alleviate the difference of vocal tract length.

The first column is a duration of SF speech data for adaptation. The row of 0

utterance is WERs of the models without the adaptation. The WERs of the SM-

specific GFDNN and GtFDNN were worse at 26.8% and 24.4%, due to the gender

mismatched condition. For the evaluations of 10 and 20 utterances, 60 utterances in

Table 4.4 were split into six or three folds, and averaged to alleviate any selection bias.

In the scenario of limited adaptation data, the best performance was obtained when

we adapted the filterbank layer of GFDNN. We considered that the focus on filter

adaptation worked on the alleviation of gender mismatch effectively while discarding
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Table. 4.5 Shift of center frequencies [Hz] of 1-st to 20-th filters caused by gender

adaptation from SM to SF speakers using 10 hours of data. SM → SF shows

center frequencies of unadapted and adapted models. SF column shows center

frequencies of SF-specific model trained using SF speech data.

SM → SF SF

n
Before

Adaptation
After

Adaptation Difference -

1 28.1 74.4 46.4 (165.2 %) 31.5

2 86.1 95.7 9.6 (11.2 %) 87.0

3 156.1 213.3 57.3 (36.7 %) 153.5

4 192.6 207.6 15.0 (7.8 %) 187.9

5 251.2 299.5 48.3 (19.2 %) 249.2

6 315.8 369.7 54.1 (17.2 %) 310.5

7 382.6 438.1 55.5 (14.5 %) 374.3

8 449.4 508.1 58.7 (13.1 %) 439.3

9 530.6 592.0 61.4 (11.6 %) 524.3

10 597.2 669.0 71.8 (12.0 %) 589.5

11 701.1 741.1 39.9 (5.7 %) 687.1

12 783.9 912.9 129.1 (16.5 %) 783.7

13 866.1 976.1 110.0 (12.7 %) 874.9

14 953.6 1033.9 80.4 (8.4 %) 965.4

15 1055.1 1103.9 48.7 (4.6 %) 1061.5

16 1183.2 1219.9 36.7 (3.1 %) 1186.8

17 1307.8 1374.9 67.1 (5.1 %) 1316.3

18 1433.6 1501.3 67.7 (4.7 %) 1439.3

19 1553.3 1604.6 51.4 (3.3 %) 1561.3

20 1734.1 1805.8 71.7 (4.1 %) 1724.7

other mismatched conditions that were difficult to adapt under limited data. When

the adaptation data increased to 0.5 hour and more, the best model was replaced by

LHUC which has larger free parameters.

By adapting the GFDNN from SM to SF speakers, we considered that the frequency

shift of the filters was caused by the differences of the vocal tract lengths. Table 4.5

and 4.6 show the relation among the center frequencies of SM-dependent GFDNN,

adapted GFDNN from SM to SF using 10 hours of data, and SF-dependent GFDNN.

Theoretically, an ideal frequency shift is approximately 9.7%, as described in Sec-
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Table. 4.6 Shift of center frequencies [Hz] of 21-th to 40-th filters caused by

gender adaptation from SM to SF speakers using 10 hours of data. SM → SF

shows center frequencies of unadapted and adapted models. SF column shows

center frequencies of SF-specific model trained using SF speech data.

SM → SF SF

n
Before

Adaptation
After

Adaptation Difference -

21 1879.2 1963.4 84.2 (4.5 %) 1878.0

22 2032.8 2151.0 118.3 (5.8 %) 2040.1

23 2169.0 2180.0 11.0 (0.5 %) 2188.4

24 2363.0 2425.7 62.7 (2.7 %) 2373.9

25 2558.3 2587.2 28.9 (1.1 %) 2564.3

26 2774.0 2785.9 11.9 (0.4 %) 2780.7

27 2990.7 2991.2 0.5 (0.0 %) 3000.2

28 3240.0 3250.1 10.1 (0.3 %) 3246.6

29 3492.0 3514.4 22.5 (0.6 %) 3497.1

30 3757.5 3798.2 40.7 (1.1 %) 3752.5

31 4004.2 4098.8 94.6 (2.4 %) 4026.6

32 4323.6 4355.2 31.6 (0.7 %) 4340.0

33 4637.1 4619.7 -17.4 (-0.4 %) 4654.4

34 4993.6 5063.9 70.3 (1.4 %) 4999.3

35 5373.9 5481.7 107.8 (2.0 %) 5376.7

36 5740.0 5843.0 103.0 (1.8 %) 5747.4

37 6148.8 6189.1 40.4 (0.7 %) 6155.0

38 6596.5 6719.6 123.1 (1.9 %) 6595.5

39 7067.0 7200.9 133.9 (1.9 %) 7067.7

40 7535.7 7657.5 121.7 (1.6 %) 7537.1

tion 4.4.2. The column of difference shows that the actual shift was approximately

4.6% to 17.2%, which resembles the theoretical value at low- and middle-frequency re-

gion (300Hz ∼ 1000Hz). These results show that the optimization of the filterbank

layer causes a shift of the center frequencies to discriminatively perform frequency

warping. This characteristic corresponds to the VTLN function.

The last column of the Table 4.5 and 4.6, SF, showed the center frequencies of the

SF-dependent GFDNN. When we focused on the SM- and SF-dependent GFDNNs,

the relation between the two models cannot be observed in the experiment. Instead,
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Fig. 4.5 Changes of gain parameters from SM-specific model (SM) to SF-

adapted model and averaged Gaussian filterbank features of SM- and SF-

speakers.

the learned center frequencies based on SF speakers showed lower frequencies than

those of the SM speakers at n = 6 ∼ 12 because the optimal position of the filters

in the training stage depends on the condition of the following DNN. However, in

the adaptation stage, the filterbank layer was updated, and the parameters of the

following DNN were fixed. In this situation, the filterbank layer can be handled

independently of the following DNN to perform frequency warping.

Figure 4.5 shows the gender-dependent Gaussian filterbank features and the change

of gain parameters. The square markers and diamond markers show the Gaussian fil-

terbank features of SM and SF speakers, respectively. The triangle markers show the

SM-dependent features with horizontal shifting according to the change of center fre-

quencies caused by gender adaptation to SF-speakers from SM-speakers. We can see

that the features of SM at low-frequency region shifted toward the ones of SF speak-

ers. Next, the change of gain parameters was depicted at the right vertical axis. To

emphasize the conspicuous change of gains, their relative changes were plotted with

circle markers by computing log(gains of SF/gains of SM) . In the low-frequency

region, the change of gain was relatively small while the shift of center frequency was

remarkable. Conversely, the shift of center frequency was relatively small at a high-

frequency region (∼ 2000Hz). The variances of the filterbank features are relatively

large enough to overlap the SM- and SF-speakers. Therefore, the optimization of the

gain parameters was a secondarily important factor in gender adaptation. In con-

trast to the above two parameters, no discrimination of the change of the bandwidth
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parameters was observed in gender adaptation.

4.5.4 Speaker adaptation

Table 4.7 shows the supervised adaptation result. The models trained by SM in

Table 4.3 were used as the source models. The 0 utterance row shows theWERs, which

were recognized using the model without adaptation. By adapting the filterbank layer

of GFDNN using 5 utterances, the WER was improved from 12.5% to 12.0%, and a

word error reduction rate (WERR) of 4.0% was obtained. By adapting the filterbank

layer of GtFDNN using 15 utterances, the WER was improved from 12.1% to 11.2%,

and a word error reduction rate (WERR) of 7.4% was obtained. This WERR was

better than the unadapted GtFDNN at a significance level of 0.005 under a statistical

sign test. These results showed that the adjustment of the filter shapes can handle

the diversity of speakers.

Performance gains were observed when adaptation was applied for GFDNN with 5

utterances (p < 0.03) and GtFDNN with 10 utterances (p < 0.005). These results

were better than the other adaptation methods, although the baseline DNN with

LHUC and ExpFDNN also showed performance improvements when more than 15 or

10 utterances were available for each method. Table 4.7 also shows the adaptation

result using fDLR, LHUC, and SVD under the same GtFDNN. The adaptation of

the filterbank layer obtained the best performance on all conditions of adaptation

utterances among other adaptation methods.

Finally, we depicted the relation between adaptation utterances and WERs per

Table. 4.7 WERs (%) of the triphone level supervised speaker adaptation. Bold

is the best performance among models.

#utt
GFDNN GtFDNN Baseline DNN (triangle) ExpFDNN

filterbank filterbank fDLR LHUC SVD fDLR LHUC SVD filterbank

0 12.5 12.1 12.1 12.1 13.2 12.4 12.4 13.4 12.3

1 12.3 12.2 13.6 13.3 13.1 36.0 13.2 13.3 12.4

2 12.2 12.9 13.6 14.1 13.1 15.4 12.8 13.4 12.7

3 12.5 12.8 13.6 14.4 13.2 12.7 12.4 13.4 13.1

4 12.4 12.6 13.2 14.1 13.1 13.1 12.5 13.3 13.0

5 12.0 12.3 13.4 13.9 13.0 13.0 12.3 13.2 12.8

10 11.4 11.4 13.4 12.9 12.8 13.0 12.4 12.6 11.7

15 11.2 11.2 13.4 12.5 12.6 12.2 12.0 12.7 11.4

20 11.4 11.3 13.3 12.1 12.5 12.7 11.9 12.5 11.2
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speaker targeting GtFDNN in Fig. 4.6. The WERs of almost all the speakers de-

creased linearly over the adaptation utterances. However, Speaker 1 showed unex-

pected behavior when the value of the horizontal axis was 2 to 5.

In addition, the proposed filterbank layer is a simple neural network module and

can be combined with other modules, e.g. CNNs (Convolutional Neural Networks),

Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM) [116].

In the next chapter, we extend the filterbank layer to the end-to-end attention-based

encoder decoder networks and investigate its noise adaptation.

Fig. 4.6 Relation between number of adaptation utterances and WERs per

speaker (Speaker 1 to Speaker 5). GtFDNN in Table 4.7 was used for error

analysis.
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Chapter 5

Rapid noise adaptation by neural

network based feature extraction

5.1 Introduction

Noise robust automatic speech recognition system is a widely studied problem for

practical use in a real-world environment. Many methods are proposed in the past

and Li, et al., summarized the noise robust techniques into five categories [117]: 1)

feature-domain vs. model-domain processing, 2) the use of prior knowledge about

the acoustic environment distortion, 3) the use of explicit environment-distortion

models, 4) deterministic vs. uncertainty processing, 5) the use of acoustic models

trained jointly with the same feature enhancement or model adaptation process used

in the testing stage. Zhang, et al., [118] summarized recent techniques based on deep

learning for robust automatic speech recognition.

Feature space approaches compensate the acoustic features as a pre-processing. Rel-

ative spectral processing (RASTA)- Perceptual Linear Predictive (PLP) [119], Power-

Normalized Cepstral Coefficients (PNCC) [120], and Gabor filterbank feature [121]

are widely used as noise-robust acoustic features. TempoRAL Pattern (TRAP) uses

narrow band spectrum with long temporal context as its input to take temporal tra-

jectory into account. Normalization of acoustic feature is also employed for noise

suppression. CMN, CMVN, and histogram equalization (HEQ) [122] normalize sta-

tistical moment(s) of the acoustic feature. Feature compensation approaches aim

at eliminating unnecessary noise information from noisy speech. These methods in-

clude Ideal Binary/Ratio Mask (IBM/IRM) [123], Spectral Subtraction (SS) [124]

and Wiener filter [125].
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Deep neural network is employed for noise robust automatic speech recognition.

Multi-condition training uses acoustic features of all conditions for training of one

DNN. This approach is simple but it brings competitive performance than other

DNN based approaches when a large amount of speech with various noise types are

available. Denoising auto-encoder aims at estimating clean speech signal given noisy

speech [126, 127] and it is also used for noise estimation [128]. The estimated noise

feature is used as an auxiliary feature. Noise aware training takes noisy speech and

the estimated noise information as its input [128, 129]. The estimation of clean speech

and the label classification are combined as a multi-task training [130, 131]. Modeling

of each separation/classification module based on the deep neural network and its

combination can lead to direct optimization of speech separation network based on

ASR loss [130]. Adversarial training is one promising approach and is studied to train

noise-independent feature extractor [132, 133].

In the previous chapter, we proposed the filterbank layer adaptation and showed its

effectiveness for speaker adaptation. Experimental results showed the filters’ shift to

match the characteristics of target evaluation speakers. In this chapter, we integrate

the filterbank layer with an end-to-end attention-based encoder decoder networks

framework and conduct noise adaptation. Our proposed method has relation to IBM

and IRM by regarding the change of filter gains as mask values for noise suppression.

Therefore, we mainly compare the filterbank adaptation with IBM/IRM.

This chapter is organized as follows: We first review earlier works on noise suppres-

sion in Section 5.2. We integrate the neural network filterbank with the end-to-end

architecture in Section 5.3. Experimental setup and results are described in Sec-

tion 5.4.

5.2 Earlier works on noise suppression

5.2.1 Ideal binary/ratio mask (IBM/IRM)

Ideal binary mask (IBM) and ideal ratio mask (IRM) are one of typical approaches

for noise suppression [123]. The IBM is defined as:

IBM(t, f) =

{
1 if SNR(t, f) > thr

0 otherwise

where thr is a threshold to decide mask or not, and SNR(t, f) is signal-to-noise ratio

(SNR) at f -th dimensional feature at frame t. The estimated mask is multiplied with
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the corresponding acoustic feature. Therefore, the (time-frame independent) IBM

can be regarded as a control of the gain parameters. In the experiment, our method

is compared with the IBM based noise suppression method and thr was set 0.0.

The IRM is defined as:

IRM(t, f) = 10 log10
|Xt,f |2

|Nt,f |2
,

where |Xt,f |2 and |Xt,f |2 are power spectra of clean speech and noise signal, and t

and f are time and frequency indices.

5.2.2 Spectral subtraction

Spectral subtraction (SS) estimates spectral feature of noise using silent frames

and subtracts the estimated noise spectral feature from the noise-overlapped spectral

feature to estimate the power spectrum of clean speech [124]. Let |Xt,f |2 be the

f -dimensional noise-overlapped power spectram at time frame t, and |Nf |2 be the

estimated power spectram of noise. Then, the estimated power spectram of clean

speech S is defined as:

|Ŝt,f |2 =

{
|Xt,f |2 − α|Nf |2 if |Xt,f |2 − α|Nt|2 ≥ 0.0

β|Xt,f |2 otherwise,

where α is a subtraction factor and β is a flooring factor. In the experiment, we set

α to 2.0 and β to 0.0, and applied SS targeting filterbank feature. We followed the

noise estimation method as:

|Nf |2 =
1

M

M∑
m=1

|Xt,f |2,

where M is the available frames and set to 30 in this experiment. In addition to

the spectral subtraction, many noise suppression methods are proposed including

Wiener filtering [134] and minimum mean square error short-term spectral amplitude

(MMSE-STSA) [135].

5.3 Filterbank learning within an end-to-end framework

Let x = (xt ∈ RF |t = 1, · · · , T ) be a T -frame utterance of F -dimensional power

spectra, and xt,f be an f -th dimensional power spectra at frame t. The power spectra
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are multiplied by the filter and summed across the frequency bin, and a following log-

compression gives the neural network based filterbank feature:

ht,n = log(
F∑

f=1

θn(f)xt,f ) for n = 1, · · · , N,

where N is the number of filters. A sequence of the neural network based filterbank

features is calculated by concatenating all frames of features.

ht = (ht,n|n = 1, · · · , N),

h = (ht|t = 1, · · · , T ).

In our preliminary experiment, we found it is important for convergence to normalize

feature at filterbank level. For this purpose, global mean (µ) and variance (σ2) are

calculated by using the training data, and used for feature normalization:

µ = (µn|n = 1, · · · , N), (5.1)

σ2 = (σ2
n|n = 1, · · · , N), (5.2)

ht,n ←
ht,n − µn√

σ2
n

.

The acoustic feature of test data is also normalized by the global mean and variance

in Eqs. (5.1) and (5.2). The normalization is also applied in the evaluation stage using

the same statistics.

The calculated neural network based filterbank feature is further fed into the en-

coder network. A decoder network generates posterior probability of a set of labels

L at decoding time step j as p(Lj) by taking a previous label Lj−1, a context vector

cj , and hidden states in the recurrent connection sj−1:

p(Lj) = Decoder(Lj−1, cj , sj−1).

The context vector c is obtained by multiplying an attention weight α to the hidden

vector e generated by the encoder network:

cj =
∑
t

αj,tet,

αj,t = Attention(αj−1,t, sj−1, e),

e = Encoder(h),

where t is time step for the encoder network [6].

During the training stage, the loss is backpropagated to the bottom of the net-

work, and the parameters of the filterbank layer are updated under the framework of
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backpropagation as a multi-condition training [136] with known noisy speech. During

the adaptation stage, the filterbank layer is adapted for specific noises (and speakers)

while other network parameters including the encoder network, decoder network, and

attention network are fixed. Update of the filterbank layer can work as noise suppres-

sion by changing the filter gains depending on the specific spectral pattern of each

noise. The same as in the speaker adaptation experiment, all parameters, i.e., gains,

center frequencies, and temporal decays, contribute to the noise adaptation.

5.4 Experimental work

5.4.1 Experimental setup

(i) Corpus

We used ASJ+JNAS [87] corpus (#.speaker: 133) and further added noises

from NOISEX-92 database [137] to a quarter of the speech of male speakers in

ASJ+JNAS while varying the signal-to-noise ratio (SNR). Noise types of speech,

car, F16, and Lynx (N1-N4) with 10 dB, 15 dB, and 20 dB SNRs are used to

deteriorate the speech. The duration of the generated data was 134.0 hours. We

conducted noise adaptation and noise-and-speaker joint adaptation. In the case

of noise adaptation, 10 speakers are assigned as the noise adaptation data, and

the other 13 speakers are assigned as the evaluation set. In total, the adaptation

data consists of 4,160 utterances (10 speakers × 52 utterances × 8 noise types)

and the test data consists of 2,080 utterances (13 speakers × 20 utterances ×
8 noise types). The speakers of training data, adaptation data, evaluation data

are selected exclusively as an open set. In the case of noise and speaker joint

adaptation, the adaptation data and the test data consist of 13 speakers which

were selected exclusively from the training data. As with the training data,

we added the noise of speech, car, F16, and Lynx as a closed set. We trained

the models as a multi-condition training. We also prepared an open set by

adding 4 noises: machine gun, STITEL, factory, and operation room (N5-N8).

As the evaluation data, we added the noises (N1-N8) to the clean speech at

various SNRs: 5, 10, 15, and 20dB. In total, the adaptation data consists of

3,120 utterances (13 speakers × 30 utterances × 8 noise types) and the test

data consists of 2,080 utterances (13 speakers × 20 utterances × 8 noise types).

The speakers of adaptation and test data are the same in the case of noise and
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speaker joint adaptation.

(ii) Network architecture

We trained joint CTC/attention-based encoder decoder networks [6] using

Chainer [113] and ESPnet [73]. We used a 6 layer bi-directional long short-term

memory (BLSTM) as the encoder network. The 2nd and 3rd bottom layers of

the encoder network sub-sample hidden vector by the factor of 2 [68]. Each

BLSTM layer has 320 cells in each direction, and is followed by a linear projec-

tion layer with 320 units to combine the forward and backward LSTM outputs.

The decoder network has a 1-layer LSTM with 300 cells. The number of labels

was set to 2,247 including Japanese Kanji/Hiragana/Katakana characters and

special tokens.

We trained an additional network for the prediction of IRM mask. The network

has 3 stacked bi-directional LSTM with projection layer followed by softmax

layer. Each LSTM and projection layer had 320 units. The IRM network was

trained to predict the IRM mask for each time and frequency bin. In the case

of IRM based ASR system, the Gammatone filterbank incorporated encoder

decoder networks trained as multi-condition training was further retrained by

using the masked noisy/clean speech.

In the case of spectral subtraction, the Gammaatone filterbank incorporated en-

coder decoder networks trained as multi-condition training was further retrained

by using the noise suppressed feature based on spectral subtraction.

5.4.2 Speaker-independent model

We first trained multiple speaker- and noise-independent models using multi-

condition training. Table 5.1 shows the CER of the baseline model which takes

the triangular filterbank feature. The results were summarized with regard to the

noise types and SNRs. In the case of baseline system, the average CER of known

noises was 11.5% and that of unknown noises was 52.1%. At the training stage of

Gammatone filterbank incorporated models, we took two-step training procedure

which first trains the encoder decoder network without filterbank layer followed by

full training of both the filterbank layer and the encoder decoder networks. The

results of two models correspond to fixed- and trained-Gammatone fitlerbank and

were shown in Table 5.2 and Table 5.3, respectively. The CER of the fixed model
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Table. 5.1 CER (%) of the baseline encoder decoder networks (Input acoustic

feature: triangular filterbank feature).

dB

5 10 15 20 Avg.

N1 20.5 11.9 11.2 10.4 13.5

N2 10.8 10.5 12.3 12.1 11.4

N3 20.4 12.9 12.0 10.5 14.0

N4 18.3 13.0 13.5 8.9 13.4

Avg. (Known noise) 17.5 12.1 12.2 10.5 13.1

N5 60.2 34.3 25.2 19.7 34.9

N6 129.7 73.3 40.1 17.0 65.0

N7 45.6 30.8 20.1 14.1 27.7

N8 97.6 67.4 33.5 21.2 54.9

Avg. (Unknown noise) 83.3 51.5 29.7 18.0 45.6

Avg. 50.4 31.8 21.0 14.2 29.3

Table. 5.2 CER (%) of the fixed Gammatone-filterbank-incorporated encoder

decoder networks (Input acoustic feature: power spectra).

dB

5 10 15 20 Avg.

N1 19.6 12.1 11.7 10.0 13.3

N2 11.0 9.7 12.1 11.5 11.1

N3 20.9 13.8 12.0 10.3 14.2

N4 18.5 13.1 13.1 9.7 13.6

Avg. (Known noise) 17.5 12.2 12.2 10.4 13.1

N5 70.3 47.9 23.8 18.2 40.0

N6 92.1 58.2 33.1 15.2 49.6

N7 47.4 37.1 18.8 12.2 28.9

N8 98.8 67.8 51.9 15.2 58.4

Avg. (Unknown noise) 77.2 52.7 31.9 15.2 44.2

Avg. 47.3 32.4 22.0 12.8 28.6
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Table. 5.3 CER (%) of the trained Gammatone-filterbank-incorporated encoder

decoder networks (Input acoustic feature: power spectra).

dB

5 10 15 20 Avg.

N1 18.3 10.7 9.6 9.3 12.0

N2 11.1 8.1 10.3 10.6 10.1

N3 18.1 12.8 9.9 8.9 12.4

N4 16.1 12.7 11.8 9.0 12.4

Avg. (Known noise) 15.9 11.1 10.4 9.5 11.7

N5 73.6 52.4 30.5 17.1 43.4

N6 107.5 59.0 41.3 15.6 55.9

N7 50.6 31.1 16.1 11.2 27.2

N8 141.9 119.4 54.5 14.7 82.6

Avg. (Unknown noise) 93.4 65.5 35.6 14.6 52.3

Avg. 54.7 38.3 23.0 12.0 32.0

averaged over the known noises was 13.1%, and it was 11.7% in the case of the

trained model. The trained model showed better performance than the fixed model

and the baseline model because the filterbank layer was optimized as a data-driven

filterbank targeting the known noises included in the training data. In contrast,

the CERs of the fixed model averaged over the unknown noises was 44.2%, and it

was 52.3% in the case of the trained model. We can see that the canonical filter

shape is useful for recognition of unknown noisy speech than the optimized filterbank

targeting different other noises. In actual use, the trained model should be used

because the training data are collected to cover speech in real conditions. In the case

of known noises, the average CER of the fixed model was 20.2% and it was decreased

to 17.9% on the trained model and obtained 11.3% relative improvement. In the

following adaptation experiment, we only report the results obtained by adapting

the trained model.

5.4.3 Noise adaptation

Figures 5.1 and 5.2 show the CERs of noise adaptation targeting the known and

unknown noises, respectively. The models were adapted to specific noise type N1-N8

consisting of multiple 10 speakers. In the case of known noises, the average CER
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before adaptation was 17.9%, and it was improved to 15.2% when the filterbank layer

was adapted using 500 utterances. The CERs were decreased linearly over the increase

of the adaptation data size.

In the case of unknown noises, the average CER was 76.6% and it was improved

to 25.9% when the filterbank layer was adapted using 100 utterances. These results

indicate that our method can adapt to the unknown noisy speech by updating the

filterbank layer. However, further increase of the adaptation data did not achieve

performance improvement. The average CER of unknown noises was approximately

21.0%, and there is a room for further performance improvement compared with

the results of known noises in Figure 5.1. It is considered that the filterbank layer

can rapidly adapt to the noise characteristics that are easy to adapt. It also means

a lack of expressiveness in a scenario where the system can use a large number of

adaptation data. One simple approach for performance improvement is an increase

of free parameters at the adaptation stage.

Our research focus is the rapid adaptation of the filterbank layer. Therefore, we

further decrease the adaptation data size by making the adaptation data using one

single speaker, and adapt the filterbank layer to specific noise and speaker jointly.

Fig. 5.1 Adaptation to known noises.
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Fig. 5.2 Adaptation to unknown noises.

Table. 5.4 Adaptation of the filterbank layer using 10 utterances (CER %).

dB

5 10 15 20 Avg.

N1 14.3 7.2 6.4 5.0 8.2

N2 6.3 5.4 6.7 6.3 6.2

N3 14.7 7.1 5.9 5.5 8.3

N4 17.0 10.8 10.3 8.3 11.6

Avg. (Known noise) 13.1 7.6 7.3 6.3 8.6

N5 67.0 40.1 19.0 14.7 35.2

N6 99.4 44.4 20.1 11.1 43.7

N7 43.7 29.9 14.2 11.4 24.8

N8 101.9 77.2 42.5 12.3 58.5

Avg. (Unknown noise) 78.0 47.9 23.9 12.3 40.5

Avg. 45.5 27.8 15.6 9.3 24.6
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Table. 5.5 Adaptation of the filterbank layer using 20 utterances (CER %).

dB

5 10 15 20 Avg.

N1 10.9 3.8 3.5 3.4 5.4

N2 4.1 4.0 3.7 3.5 3.8

N3 11.1 6.9 3.1 3.8 6.2

N4 15.7 9.8 9.7 6.6 10.4

Avg. (Known noise) 10.4 6.1 5.0 4.3 6.5

N5 48.4 38.6 18.0 9.6 28.7

N6 70.9 32.8 11.2 7.7 30.7

N7 42.7 22.6 13.2 8.8 21.8

N8 47.0 26.9 13.6 8.7 24.0

Avg. (Unknown noise) 52.3 30.2 14.0 8.7 26.3

Avg. 31.4 18.2 9.5 6.5 16.4

Table. 5.6 Adaptation of the filterbank layer using 30 utterances (CER %).

dB

5 10 15 20 Avg.

N1 8.8 3.5 1.5 1.7 3.9

N2 2.3 1.1 1.8 2.1 1.8

N3 9.0 2.6 2.7 1.7 4.0

N4 13.2 8.9 8.2 5.8 9.0

Avg. (Known noise) 8.3 4.0 3.5 2.8 4.7

N5 36.6 23.3 17.1 9.0 21.5

N6 55.1 28.3 13.7 11.0 27.0

N7 37.6 25.7 13.2 10.0 21.6

N8 43.1 23.7 10.6 8.9 21.6

Avg. (Unknown noise) 43.1 25.2 13.7 9.7 22.9

Avg. 25.7 14.6 8.6 6.3 13.8
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5.4.4 Noise and speaker adaptation

In this section, the filterbank layer was adapted to specific noise and speaker jointly,

and compared with other noise suppression methods and model adaptation techniques.

We adapted the filterbank layer using 10, 20, or 30 utterances and the corresponding

results were shown in Table 5.4, 5.5, and 5.6. The average CER of the known noises

without adaptation was 11.7%, and it was decreased to 8.6% and achieved 26.5%

relative improvement by adapting the filterbank layer using the 10 adaptation utter-

ances. The average CER was further decreased to 4.7% by adapting the filterbank

layer using the 30 adaptation utterances. The average CER of the unknown noises

without adaptation was 52.3%, and it was decreased to 40.5% and achieved 22.6%

relative improvement by adapting the filterbank layer using the 10 adaptation utter-

ances. The average CER was further decreased to 22.9% by adapting the filterbank

layer using the 30 adaptation utterances. Our proposed method obtained significant

performance improvement without over-fitting problem even though available adap-

tation data was limited to 10 utterances, and the CERs were monotonically decreased

over the increase of adaptation data.

The above recognition performance was better than the ones in the Figure 5.1 and

Figure 5.2 even though the adaptation data size was limited. In this experiment,

the models were adapted to the specific noise and speaker jointly. Therefore, this

improvement was also brought by speaker adaptation but not only from the noise

adaptation. We further investigate the contribution of each factor in the next section.

5.4.5 Speaker-independent noise adaptation targeting filterbank layer

In the previous section, the filterbank layer was adapted towards specific noise con-

dition and speaker. To investigate the contribution of each factor, we made adaptation

data consisting of 12 speakers and also made test data using the excluded single open

speaker. For the evaluation, we made 13 folds of adaptation-evaluation data and

averaged the recognition performance over 13 speakers (which can be regarded as

speaker-independent noise adaptation). The results were shown in Table 5.7.

In the case of adaptation for known noises, the CERs showed almost the same

recognition performance as the model without adaptation (as in Table 5.3) indepen-

dently from the number of adaptation utterances. In other words, the adaptation
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Table. 5.7 CERs (%) of speaker-independent noise adaptation using 20 utterances.

dB

5 10 15 20 Avg.

N1 19.7 10.7 10.0 10.0 12.6

N2 10.3 9.0 10.3 10.2 9.9

N3 18.7 12.8 10.3 9.5 12.8

N4 18.1 12.0 12.1 8.0 12.5

Avg. (Known noise) 16.7 11.1 10.7 9.4 12.0

N5 47.2 29.0 13.1 11.1 25.1

N6 74.9 35.7 14.3 8.8 33.4

N7 40.4 26.8 14.3 10.2 22.9

N8 43.6 21.7 14.1 9.8 22.3

Avg. (Unknown noise) 51.5 28.3 13.9 10.0 25.9

Avg. 34.1 19.7 12.3 9.7 19.0

targeting known noises shown in Table 5.5 was trivial and the speaker adaptation

mainly contributed to the performance improvement.

In the case of unknown noises, the average CER of Table 5.7 was comparable to

the ones in Table 5.5, and we can see that the noise was the main contribution factor.

In the experiment, the number of speakers of adaptation data was 12. Therefore, it

is also considered that the model learned 12-speaker-specific filter shapes and it was

not a canonical filters for unknown speakers.

5.4.6 Comparison with earlier works

Oracle IBM

Table 5.8 shows the CERs obtained by IBM-based noise suppression assuming oracle

condition. The Gammatone filterbank incorporated DNN was trained by taking the

masked feature. In the case of IBM-based systems, we masked time- and frequency-

regions where the corresponding SNR bin was less than 0.

In the case of known noises, the improvement of our system, i.e. Table 5.4), were

significant while the improvement of the IBM-based system was limited. This is

because of the ability of the filterbank layer to adapt to noise and speaker jointly while

*1 N5-N8 are known for IBM because of availability of clean speech.
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Table. 5.8 CER (%) of ASR system with oracle IBM.

dB

5 10 15 20 Avg.

N1 13.1 9.3 10.6 10.1 10.8

N2 9.2 9.0 10.6 9.4 9.6

N3 11.8 9.1 11.3 8.6 10.2

N4 10.8 10.1 11.8 9.7 10.6

Avg. (Known noise) 11.2 9.4 11.1 9.5 10.3

N5 10.7 11.6 8.9 10.0 10.3

N6 11.6 11.0 9.2 7.9 9.9

N7 11.2 9.2 9.5 8.0 9.5

N8 11.9 10.3 10.0 9.8 10.5

Avg. (Unknown noise) *1 11.3 10.5 9.4 8.9 10.1

Avg. 11.3 10.0 10.2 9.2 10.2

IBM thr = -5 dB (known) 13.1 10.6 11.0 10.2 11.2

IBM thr = -5 dB (unknown) 32.1 22.5 15.1 10.7 20.1

IBM thr = 5 dB (known) 11.7 9.9 10.4 9.3 10.3

IBM thr = 5 dB (unknown) 12.8 10.5 9.3 9.1 10.4

the IBM only focuses on the noise suppression. The CERs of unknown noises were

better than the result of filterbank adaptation especially in low SNR setup. However,

it should be noted that the performance is oracle result due to the requirement of

corresponding clean speech.

IRM

Table 5.9 shows the performance of the IRM based system. The average CER of

known noises was 11.6% and it was worse than the result of filterbank adaptation,

i.e. the CER of adapted model using 10 utterances was 8.6% as shown in Table 5.4

and was similar to the model without adaptation as shown in Table 5.3.

In the case of unknown noises, the average CER was 38.6% and it was better

than the result of baseline system, 52.3%, reported in Table 5.3. Comparison with

the results of joint adaptation indicates that more than 20 utterances are required

to outperform the result of IRM based system. It is considered that the use of

ground truth transcription brings rich information and it leads to the best performance
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Table. 5.9 Gammatone filterbank incorporated encoder decoder networks re-

trained by masked feature based on IRM (CER %).

dB

5 10 15 20 Avg.

N1 18.0 10.6 9.7 10.0 12.1

N2 10.0 8.4 10.5 9.8 9.7

N3 17.9 11.9 10.3 9.7 12.5

N4 15.6 12.2 12.1 9.3 12.3

Avg. (Known noise) 15.4 10.8 10.6 9.7 11.6

N5 50.6 42.0 22.8 17.3 33.2

N6 84.1 54.7 26.0 10.9 43.9

N7 47.1 32.0 18.3 13.6 27.8

N8 88.9 62.1 34.6 12.5 49.5

Avg. (Unknown noise) 67.7 47.7 25.4 13.6 38.6

Avg. 41.5 29.2 18.0 11.7 25.1

compared with IRM. The existence of intersection point indicates the necessity of

detailed application scenario for the following adaptation/suppression strategies.

SS

Table 5.10 shows the result of spectral subtraction (SS). In the case of known noises,

the average CER was 12.2% and it did not show performance improvement compared

with the model before retraining based on SS (11.7% in Table 5.3). In other words,

the multi-condition training ans SS do not provide complimentary function and the

multi-condition training can handle the diversity of noises included in the training

data (in comparison with SS). In the case of unknown noises, the average CER was

25.9%. Comparison with the filterbank adaptation in Table 5.6 indicates that more

than 30 utterances are required to outperform the result of SS.

5.5 Summary

Table 5.11 summarizes the CERs of proposed method and other comparison meth-

ods. In the case of known noises, the proposed method showed the best performance

because the filterbank was optimized targeting unknown speaker in the evaluation

data. The SS showed competitive performance in the case of unknown noises while it
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Table. 5.10 CERs(%) of ASR system with spectral subtraction.

dB

5 10 15 20 Avg.

N1 20.8 10.7 11.2 8.9 12.9

N2 11.0 8.7 10.6 9.8 10.0

N3 20.7 12.0 10.5 8.9 13.0

N4 18.3 13.3 11.2 8.6 12.9

Avg. (Known noise) 17.7 11.2 10.9 9.0 12.2

N5 54.2 37.6 18.4 10.8 30.2

N6 53.2 26.1 11.4 9.9 25.2

N7 45.6 41.6 16.3 9.5 28.2

N8 35.3 20.6 13.7 9.9 19.9

Avg. (Unknown noise) 47.1 31.5 14.9 10.0 25.9

Avg. 32.4 21.3 12.9 9.5 19.0

Table. 5.11 Average CERs of the baseline model (base), proposed model (GtF),

and other method (IRM/SS). CERs are averaged over known noises and unknown

noises, respectively.

known
noise

Table 5.10 Table 5.3 Table 5.9 Table 5.4 Table 5.5 Table 5.6

SS base IRM GtF10 GtF20 GtF30

12.2 11.7 11.6 8.6 6.5 4.7

unknown
noise

Table 5.3 Table 5.4 Table 5.9 Table 5.5 Table 5.10 Table 5.6

base GtF10 IRM GtF20 SS GtF30

52.3 40.5 38.6 26.3 25.9 22.9

was worse than the baseline system in the case of known noises. In addition, it should

be noted that the proposed method requires ground-truth transcription for supervised

adaptation. These results indicate each method has difference characteristics, and we

developers need to consider strategies depending on the available data size, incoming

known/unknown noise types, and availability of transcription.
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Chapter 6

Conclusions

In this thesis, we proposed rapid adaptation methods based on addition of speaker

class information and re-estimation of filterbank layer parameters.

6.1 Rapid speaker class adaptation using speaker information

Chapter 3 described the rapid adaptation based on the auxiliary feature.

We extended cluster dependent acoustic modeling mainly targeting GMM-HMM

hybrid system to DNN-HMM hybrid system. A set of likelihoods defined between the

input speech and the multiple clusters were defined as the speaker class information,

and these features were fed into the DNN as the auxiliary feature aim to adapt rapidly.

For this purpose, we restricted the available time period for estimation of speaker class

to the first 50 frames, i.e., 500 ms, of an utterance. In the experiment of DNN-HMM

system, all methods, speaker-class dependent CMVN and addition of speaker-class

information, showed better performance than the baseline class-independent DNN-

HMM system. Even when the available frames of an utterance used for the estimation

speaker information was 0.5 second, the WER was decreased from 11.2% to 10.4%

and the relative error reduction rate of 7.0% was obtained. When we evaluated

the system using only the first words of the test set, the WER was decreased from

11.0% to 9.7% and the relative error reduction rate of 12.0% was obtained. These

results demonstrated that speaker class, which was estimated from only the first 50

frames in the utterance, provided an important information to suppress the diversity

of speakers, and it is applicable to the recognition of short time utterances consists

of 0.5∼ second, i.e., speech retrieval, speech assistance, and speech command input.

One future direction is a combinational usage of i-vector for the recognition of longer
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utterance. Since the speaker class information and i-vector extract speaker charac-

teristics in different ways, it is considered to provide complementary information.

Samarakoon, et al., [16] proposed the factorized hidden layer (FHL) which makes a

final weight matrix by interpolating bases based on i-vector. The speaker class in-

formation is also applicable to FHL. In addition, comparison with i-vector provides

important information to know the upper bound of the speaker class information.

6.2 Rapid speaker adaptation by neural network based

feature extraction

Chapter 4 described the filterbank incorporated DNN which had a filterbank layer

at the bottom of the DNN, and evaluated its effectiveness for speaker adaptation.

Compared with the baseline DNN, which uses log mel-scale triangular filterbank fea-

tures as its input, the proposed method can discriminatively learn data-driven filter

shapes. We conducted gender adaptation from male to female speakers and dis-

cussed the relation between the physical characteristics of the vocal tract length and

an optimal filterbank shape from an engineering viewpoint. Experiments on gender

adaptation showed that the optimization of the filterbank layer caused the shift of

center frequencies to discriminatively perform frequency warping which corresponds

to the VTLN function. Next, we conducted speaker adaptation by re-estimating the

optimal filterbank shape for specific target speakers. By adapting the filterbank layer

of GFDNN (Gaussian filterbank incorporated DNN) using 5 utterances, WER was

improved from 12.5% to 12.0%, and a word error reduction rate (WERR) of 4.0%

was obtained. By adapting the filterbank layer of GtFDNN (Gammatone filterbank

incorporated DNN) using 15 utterances, WER was improved from 12.1% to 11.2%,

and a word error reduction rate (WERR) of 7.4% was obtained. This WERR was

better than the unadapted GtFDNN at a significance level of 0.005 under a statistical

sign test. These results showed that the adjustment of the filter shapes can handle

the diversity of speakers. The recognition performance of our proposed model was

better than the other adaptation methods, although the baseline DNN with LHUC

and ExpFDNN also showed performance improvements when more than 15 or 10

utterances were available for each method.

One future direction is an adaptation to child speakers and elder speakers. An aver-

age vocal tract length of child speakers is approximately 9.0 cm [139] and is different
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from the ones of adult speakers. We considered it is applicable to the recognition of

child speech although there are other factors which degrade recognition performance,

e.g., speaking style and vocabulary. Another direction is a change of filter types.

Kleinschmidt [140] and Chang, et al., [141] used 2-dimensional Gabor feature as its

input to the DNN. Insertion of the parameterized 2-dimensional Gabor filterbank and

its data-driven optimization is a simple extension of our method.

6.3 Rapid noise adaptation by neural network based feature

extraction

Chapter 5 extended the filterbank layer to the end-to-end attention-based encoder

decoder networks and showed its effectiveness compared with the model which takes

triangular filterbank feature as its input. We also conducted noise adaptation and

joint noise and speaker adaptation by updating parameters of the filterbank layer.

Experimental results on noise adaptation showed that the update of filterbank layer

could adapt to noisy speech for both known noises and unknown noises. In the case

of noise-and-speaker joint adaptation, the CER was decreased from 13.1% to 8.6%

by adapting the filterbank layer using 10 utterances and achieved 34.4% relative im-

provement on average targeting the known noises. In the case of adaptation for the

unknown noises, the average CER was decreased from 52.3% to 40.5% and achieved

22.6% relative improvement. Comparison with other noise suppression methods indi-

cates that the necessity of strategic system design.

Flexible adaptation strategies that can consider (known/unknown) noise types,

speaker characteristics, and data size are also an important future direction. Kle-

jch, et. al., [138] proposed a meta-learning based adaptation targeting DNN- and

TDNN (time delay neural network [142])-based acoustic model. We believe that

meta-learning based adaptation of the end-to-end attention based encoder decoder

networks can further reduce the burden of hyper-parameter tuning. The proposed

filterbank layer takes power spectra is its input. Future work includes filterbank

learning from raw waveform and its adaptation.
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processing for deep neural networks. In Proc. Interspeech, pp. 109–113, 2013.

[10] Frank Seide, Gang Li, Xie Chen, and Dong Yu. Feature engineering in context-

dependent deep neural networks for conversational speech transcription. In

Automatic Speech Recognition and Understanding (ASRU), pp. 24–29. IEEE,

2011.
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[36] Markus Kitza, Ralf Schlüter, and Hermann Ney. Comparison of BLSTM-layer-

specific affine transformations for speaker adaptation. pp. 877–881, 2018.

[37] Dong Yu, Frank Seide, Gang Li, and Li Deng. Exploiting sparseness in deep

neural networks for large vocabulary speech recognition. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4409–

4412. IEEE, 2012.

[38] Puming Zhan and AlexWaibel. Vocal tract length normalization for large vocab-



94 Bibliography

ulary continuous speech recognition. Technical report, CARNEGIE-MELLON

UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 1997.

[39] Mark JF Gales and Philip C Woodland. Mean and variance adaptation within

the MLLR framework. Computer Speech & Language, Vol. 10, No. 4, pp. 249–

264, 1996.

[40] Steven B Davis and Paul Mermelstein. Comparison of parametric representa-

tions for monosyllabic word recognition in continuously spoken sentences. In

Readings in speech recognition, pp. 65–74. Elsevier, 1990.

[41] Hynek Hermansky. Perceptual linear predictive (PLP) analysis of speech. the

Journal of the Acoustical Society of America, Vol. 87, No. 4, pp. 1738–1752,

1990.

[42] Chanwoo Kim and Richard M Stern. Power-normalized cepstral coefficients

(PNCC) for robust speech recognition. In IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 4101–4104. IEEE, 2012.

[43] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw,

Xunying Liu, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, et al. The

HTK book. Cambridge university engineering department, Vol. 3, p. 175, 2002.

[44] Kai-Fu Lee. Context-dependent phonetic hidden markov models for speaker-

independent continuous speech recognition. In Readings in speech recognition,

pp. 347–365. Elsevier, 1990.

[45] Steve J Young, Julian J Odell, and Philip C Woodland. Tree-based state tying

for high accuracy acoustic modelling. In Proceedings of the workshop on Human

Language Technology, pp. 307–312. Association for Computational Linguistics,

1994.

[46] Seiichi Nakagawa, Kengo Hanai, Kazumasa Yamamoto, and Nobuaki Mine-

matsu. Comparison of syllable-based HMMs and triphone-based HMMs in

Japanese speech recognition. In Proc. International Workshop on Automatic

Speech Recognition and Understanding (ASRU), pp. 393–396, 1999.

[47] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximiza-

tion technique occurring in the statistical analysis of probabilistic functions of

Markov chains. The annals of mathematical statistics, Vol. 41, No. 1, pp. 164–

171, 1970.

[48] Lawrence R Rabiner. A tutorial on hidden Markov models and selected ap-

plications in speech recognition. Proceedings of the IEEE, Vol. 77, No. 2, pp.

257–286, 1989.



95

[49] Andrew Viterbi. Error bounds for convolutional codes and an asymptotically op-

timum decoding algorithm. IEEE transactions on Information Theory, Vol. 13,

No. 2, pp. 260–269, 1967.

[50] Reinhard Kneser and Hermann Ney. Improved backing-off for M-gram language

modeling. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Vol. 1, p. 181e4, 1995.

[51] Ian H Witten and Timothy C Bell. The zero-frequency problem: Estimating the

probabilities of novel events in adaptive text compression. IEEE Transactions

on information theory, Vol. 37, No. 4, pp. 1085–1094, 1991.

[52] Paul Placeway, Richard Schwartz, Pascale Fung, and Long Nguyen. The es-

timation of powerful language models from small and large corpora. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

Vol. 2, pp. 33–36. IEEE, 1993.

[53] Slava Katz. Estimation of probabilities from sparse data for the language model

component of a speech recognizer. IEEE Transactions on acoustics, speech, and

signal processing, Vol. 35, No. 3, pp. 400–401, 1987.

[54] Joerg Ueberla. Analysing a simple language model· some general conclusions for

language models for speech recognition. Computer Speech & Language, Vol. 8,

No. 2, pp. 153–176, 1994.

[55] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial

intelligence and statistics, pp. 315–323, 2011.
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ing of end-to-end attention models for speech recognition. arXiv preprint

arXiv:1805.03294, 2018.

[72] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and

spell: A neural network for large vocabulary conversational speech recognition.

In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 4960–4964. IEEE, 2016.



97

[73] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba,

Yuya Unno, Nelson Enrique Yolta Soplin, Jahn Heymann, Matthew Wiesner,

Nanxin Chen, Adithya Renduchintala, and Tsubasa Ochiai. ESPnet: end-to-end

speech processing toolkit. arXiv preprint arXiv:1804.00015, 2018.

[74] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhu-

ber. Connectionist temporal classification: labelling unsegmented sequence data

with recurrent neural networks. In Proceedings of the 23rd international con-

ference on Machine learning, pp. 369–376. ACM, 2006.

[75] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with

recurrent neural networks. In International Conference on Machine Learning,

pp. 1764–1772, 2014.

[76] Alex Graves. Sequence transduction with recurrent neural networks. arXiv

preprint arXiv:1211.3711, 2012.

[77] Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence

sequence-to-sequence model for speech recognition. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5884–5888.

IEEE, 2018.

[78] Yajie Miao, Mohammad Gowayyed, and Florian Metze. EESEN: End-to-end

speech recognition using deep RNN models and WFST-based decoding. In

IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),

pp. 167–174. IEEE, 2015.

[79] Olli Viikki, David Bye, and Kari Laurila. A recursive feature vector normal-

ization approach for robust speech recognition in noise. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 2, pp.

733–736. IEEE, 1998.

[80] Takahiro Shinozaki, Yu Kubota, and Sadaoki Furui. Unsupervised acoustic

model adaptation based on ensemble methods. IEEE Journal of Selected Topics

in Signal Processing, Vol. 4, No. 6, pp. 1007–1015, 2010.

[81] Tian Tan, Yanmin Qian, Maofan Yin, Yimeng Zhuang, and Kai Yu. Cluster

adaptive training for deep neural network. In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 4325–4329. IEEE,

2015.

[82] Tetsuo Kosaka, Kazuki Konno, and Masaharu Kato. Deep neural network-based

speech recognition with combination of speaker-class models. In Asia-Pacific

Signal and Information Processing Association Annual Summit and Conference



98 Bibliography

(APSIPA), pp. 1203–1206. IEEE, 2015.

[83] Daisuke Enami, Faqiang Zhu, Kazumasa Yamamoto, and Seiichi Nakagawa.

Soft-clustering technique for training data in age-and gender-independent speech

recognition. In Asia-Pacific Signal and Information Processing Association An-

nual Summit and Conference (APSIPA), pp. 1–4. IEEE, 2012.

[84] Pere Pujol, Dusan Macho, and Climent Nadeu. On real-time mean-and-variance

normalization of speech recognition features. In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Vol. 1, pp. I–I. IEEE,

2006.

[85] Alberto Yoshihiro Nakano, Seiichi Nakagawa, and Kazumasa Yamamoto. Dis-

tant speech recognition using a microphone array network. IEICE transactions

on information and systems, Vol. 93, No. 9, pp. 2451–2462, 2010.

[86] ASJ-JIPDEC. http://research.nii.ac.jp/src/en/ASJ-JIPDEC.html.

[87] Katunobu Itou, Mikio Yamamoto, Kazuya Takeda, Toshiyuki Takezawa, Tat-

suo Matsuoka, Tetsunori Kobayashi, Kiyohiro Shikano, and Shuichi Itahashi.

JNAS: Japanese speech corpus for large vocabulary continuous speech recogni-

tion research. Journal of the Acoustical Society of Japan (E), Vol. 20, No. 3,

pp. 199–206, 1999.

[88] Japanese newspaper article sentences read speech corpus of the aged (S-JNAS).

http://research.nii.ac.jp/src/en/S-JNAS.html.

[89] CIAIR video game command voice (CIAIR-VCV).

http://research.nii.ac.jp/src/en/CIAIR-VCV.html.

[90] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth international

conference on artificial intelligence and statistics, pp. 249–256, 2010.

[91] The mainichi newspapers. http://www.nichigai.co.jp/sales/mainichi/mainichi-

series.html.

[92] Yasuhisa Fujii, Kazumasa Yamamoto, and Seiichi Nakagawa. Large vocabulary

speech recognition system: SPOJUS++. In Proc. International Conference on

multimedia system & signal processing (MUSP), pp. 110–118. Citeseer, 2011.

[93] Yong Zhao, Jinyu Li, Jian Xue, and Yifan Gong. Investigating online low-

footprint speaker adaptation using generalized linear regression and click-

through data. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 4310–4314. IEEE, 2015.

[94] Dong Yu, Kaisheng Yao, Hang Su, Gang Li, and Frank Seide. KL-divergence reg-



99

ularized deep neural network adaptation for improved large vocabulary speech

recognition. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 7893–7897. IEEE, 2013.

[95] Daisuke Saito, Nobuaki Minematsu, and Keikichi Hirose. Rotational properties

of vocal tract length difference in cepstral space. Journal of Research Institute

of Signal Processing, Vol. 15, No. 5, pp. 363–374, 2011.

[96] Duc Hoang Ha Nguyen, Xiong Xiao, Eng Siong Chng, and Haizhou Li. Feature

adaptation using linear spectro-temporal transform for robust speech recogni-

tion. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

Vol. 24, No. 6, pp. 1006–1019, 2016.

[97] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald

Penn, and Dong Yu. Convolutional neural networks for speech recognition.

IEEE/ACM Transactions on audio, speech, and language processing, Vol. 22,

No. 10, pp. 1533–1545, 2014.

[98] Keisuke Kameyama, Kenzo Mori, and Yukio Kosugi. A neural network incor-

porating adaptive Gabor filters for image texture classification. In Proceedings

of the international conference on neural networks, pp. 1523–1528, 1997.

[99] Alain Biem, Shigeru Katagiri, Erik McDermott, and Biing-Hwang Juang.

An application of discriminative feature extraction to filter-bank-based speech

recognition. IEEE Transactions on Speech and Audio Processing, Vol. 9, No. 2,

pp. 96–110, 2001.

[100] RD Patterson, Ian Nimmo-Smith, John Holdsworth, and Peter Rice. An efficient

auditory filterbank based on the Gammatone function. In a meeting of the IOC

Speech Group on Auditory Modelling at RSRE, Vol. 2, 1987.

[101] Aniruddha Adiga, Mathew Magimai, and Chandra Sekhar Seelamantula. Gam-

matone wavelet cepstral coefficients for robust speech recognition. In TENCON

2013-2013 IEEE Region 10 Conference (31194), pp. 1–4. IEEE, 2013.

[102] Jun Qi, Dong Wang, Yi Jiang, and Runsheng Liu. Auditory features based on

gammatone filters for robust speech recognition. In IEEE international sympo-

sium on Circuits and Systems (ISCAS), pp. 305–308. IEEE, 2013.

[103] Vikramjit Mitra, Wen Wang, Horacio Franco, Yun Lei, Chris Bartels, and Mar-

tin Graciarena. Evaluating robust features on deep neural networks for speech

recognition in noisy and channel mismatched conditions. In Proc. Interspeech,

2014.

[104] Hector NB Pinheiro, Fernando MP Neto, Adriano LI Oliveira, Tsang Ing Ren,



100 Bibliography
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Appendix A

Evaluation of filterbank layer on a

small-size corpus

A.1 Introduction

In the Section 4, we reported the evaluation of neural network based filterbank layer

using a middle size corpus, CSJ. We also conducted the evaluation on ASJ+JNAS cor-

pus in addition to the CSJ corpus. We report the experimental results on ASJ+JNAS

as an appendix.

A.2 Experimental work

A.2.1 Experimental setup

We used the ASJ+JNAS corpus [86, 87] for the validation. Details of the corpus are

summarized in Table A.1. The corpus consists of 33 hours of male speakers’ speech

(Speakers-Male; SM) and 44 hours of female speakers’ speech (Speakers-Female; SF).

The numbers of speakers for SM and SF were 133 and 164, respectively. For the

evaluation as the speaker independent model, we used an IPA 100 test-set [143] con-

sisting of 100 utterances uttered by 23 male speakers and 100 utterances uttered by 23

female speakers. For the evaluation of speaker adaptation, 13 sentences per speaker

were chosen from ASJ+JNAS whose speakers were not included in the training data.

We used 23 male speakers, the same as the IPA 100 test-set, and all 13 sentences

were split into adaptation and test data. We assigned three (or five) utterances for

the adaptation data, and eight utterances for the test data. In total, the adaptation
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data consists of 115 (or 69) utterances (5 or 3 utterances × 23 speakers), and the test

data consists of 184 utterances (8 utterances × 23 speakers ≈ 0.34 hours).

The architecture of networks are almost same as the experimental setup on CSJ.

Please refer to Chapter 4.5 for the detailed setup.

GMM-HMM

To obtain the target labels for DNNs, GMM-HMMs are trained using SM, SF,

and SM plus SF (mixed). The models are trained on standard MFCC features.

The senones of SM, SF, and SM plus SF are set to 3234. The corresponding

GMM-HMMs are used for forced alignment.

Baseline DNN (Triangle filterbank)

As a baseline system, we trained a fully connected DNN which has four hidden

layers with 1,024 rectified linear units [55, 56]. Its input is 11 consecutive frames

of 40-dimensional log mel-scale triangle-shape filterbank features extracted using

the Hidden Markov Model Toolkit (HTK) [43]. The features are normalized to

zero mean and unit variance.

Gaussian filterbank incorporated DNN (GFDNN)

The Gaussian filterbank layer was inserted to the bottom of the baseline DNN. Its

input was 11 consecutive frames of 256-dimensional power spectra. The number

of filters was set to 40, which is the same as the baseline system. The initial values

of the gain parameter were set to 1.0. The center frequencies were spaced equally

along the mel-scale. The bandwidths were set so that the two-sigma range equals

the corresponding bandwidth of the mel-scale filterbank.

Gammatone filterbank incorporated DNN (GtFDNN)

The Gammatone filterbank layer was inserted to the bottom of the baseline DNN.

The other setup was the same as GFDNN.

Learning hidden unit contribution (LHUC)

To adapt the models, we re-scaled the hidden units using LHUC. In the exper-

Table. A.1 Details of ASJ+JNAS corpus.

Gender Male (SM) Female (SF)

Train
Speakers 133 164

Data 33 hours 44 hours

Test
Speakers 23 23

Data 0.2 hours 0.2 hours
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iment, the hidden units of the third layer were adapted which showed the best

performance in the preliminary experiment. I.e., the 1,024 parameters were up-

dated at the adaptation stage.

Singular value decomposition (SVD)

SVD was applied on the 4th fully connected layer and kept top 300 singular values,

As a language model, a tri-gram word-based language model was trained on the

Mainichi newspaper corpus (11,533,739 words, vocabulary of 20,000 words) [91]. As a

decoder, we used the SPOJUS++ (SPOken Japanese Understanding System) WFST

version [92].

A.2.2 ASJ+JNAS results

Speaker independent model

Table A.2 shows the WERs of the speaker-independent models. The baseline gender

dependent DNN, which takes triangular filterbanks, achieved a WER of 4.9% for

SM and 5.0% for SF speakers. The average WER was 5.0%. When we focus on

the baseline models and the fixed (untrained) models, the latter outperformed the

baseline models in all cases, even though the filter shape was the only difference

between the two models. This difference changes the coverage of the frequency bin.

The Gaussian and Gammatone filters focus on all the frequency bins while the baseline

triangular filter zeroes out the frequency bins outside a certain bin distance. These

results comparing fixed and baseline model showed the importance of refined acoustic

features. Mitra, et al., also investigated the effectiveness of robust features for DNN

Table. A.2 WERs (%) of the baseline DNN and the filterbank-incorporated

DNNs (matched condition). OOVs of SM and SF are 0.5% and 0.5%. Perplexities

of SM and SF are both 125.7.

System
WER [%]

SM SF Ave. SM+SF

Baseline (Triangle) 4.9 5.0 5.0 5.0

GFDNN (fixed) 4.3 4.8 4.5 4.1

GFDNN (trained) 4.1 4.7 4.4 4.1

GtFDNN (fixed) 4.8 4.5 4.7 4.0

GtFDNN (trained) 4.7 4.1 4.4 4.0

ExpFDNN 5.1 5.1 5.1 4.1
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including (non data-driven) Gammatone filterbank feature [103]. The performance

improvement of the fixed models correspond with their results.

In the case of gender dependent models, the average WERs of the trained GFDNN

and GtFDNN were 4.4%. These systems outperformed the baseline DNN of 5.0%.

In addition, the optimization of the filter shapes improved the recognition perfor-

mance. These results indicate that the discriminatively trained filterbank layer im-

proved recognition performance. The GFDNN and GtFDNN showed consistent im-

provement. The Gammatone filter is widely used as an auditory filter. However,

the difference between filter types did not show any performance improvement. In

the case of gender independent models (SM+SF), the trained models did not show

performance improvement. We considered that the difference of optimal center fre-

quencies between male and female speakers made it difficult to learn universal center

frequencies for both male and female speakers. In the following experiment, we only

present the results of the trained models.

Gender adaptation

In this section, we evaluated gender adaptation from SM to SF, and confirmed the

presence of the filters’ shift for the alleviation of the vocal tract lengths. Table A.3

shows the WERs of gender adaptation. The first column is the duration of female

speech data for adaptation. The row of 0 utterance is the WERs of the model without

adaptation. The WERs of SM specific GFDNN and GtFDNN were worse at 41.6%

and 33.6%, due to the gender mismatched condition. For the evaluations of 10 and 20

utterances, 60 utterances in Table A.3 were split into six or three folds, and averaged

Table. A.3 WERs (%) of the gender adaptation from SM to SF speakers. Bold

is the best performance among models.

Adaptation
data # speakers

GFDNN GtFDNN ExpFDNN

filterbank filterbank fDLR LHUC SVD filterbank

0.0 h 0 41.6 33.6 33.6 33.6 31.3 44.1

0.02 h 10 14.8 19.1 13.9 11.5 21.2 26.0

0.03 h 20 19.5 14.2 13.2 10.1 18.4 23.0

0.1 h 60 11.0 10.4 11.2 8.2 9.8 9.6

1.0 h 164 6.4 7.1 5.7 6.9 5.6 5.7

10.0 h 164 4.7 5.0 6.1 5.5 4.8 4.8

30.0 h 164 4.3 5.7 6.1 5.4 4.8 4.5
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Table. A.4 Shift of center frequencies [Hz] caused by gender adaptation from

SM to SF using 10 hours of training data. SM → SF shows the center frequencies

of un-adapted and adapted models. SF column shows the center frequencies of

SF-specific model trained using SF speech data.

SM → SF SF

n
Before

Adaptation
After

Adaptation Difference -

6 312.0 336.0 24.0 (7.7%) 306.0

7 375.0 392.0 17.0 (4.5%) 365.0

8 438.0 457.0 19.0 (4.3%) 433.0

9 529.0 549.0 20.0 (3.8%) 515.0

10 595.0 617.0 22.0 (3.7%) 578.0

11 695.0 712.0 17.0 (2.4%) 681.0

12 780.0 799.0 19.0 (2.4%) 783.0

13 872.0 889.0 17.0 (1.9%) 875.0

14 964.0 982.0 18.0 (1.9%) 963.0

15 1060.0 1070.0 10.0 (0.9%) 1054.0

to alleviate any selection bias. By adapting the filterbank of GtFDNN using 0.02

hour of adaptation data, the WER improved from 33.6% to 19.1%. We can see

that the adjustment of the filterbank layer can deal with the mismatch caused by

the vocal tract length. However, against our expectation, GtFDNN model based

on LHUC adaptation obtained the best performance under low-resource adaptation

data scenario. The WERs of GFDNN were further improved by increasing the size

of adaptation data. As presented in Table A.2, the WER of SF-dependent GFDNN

trained by 44 hours of data was 4.7%. This result was identical to the adapted

GFDNN, which was adapted using 10 hours of speech data.

By adapting GFDNN from SM to SF, we considered that a frequency shift of the

filters is caused by the differences of the vocal tract lengths. Table A.4 shows the

relation among the center frequencies of SM-dependent GFDNN, adapted GFDNN

from SM to SF using 10 hours of training data, and SF-dependent GFDNN. Theoret-

ically, an ideal frequency shift is approximately 9.7%, as described in Section 4.4.2.

Assuming that the standard deviation of the male vocal tract length is 1.0 cm, the

SM-dependent DNN might learn speech ranging from 16.0 to 18.0 cm of the vocal

tract length. The SM-dependent DNN with a 6.0% shift of the center frequencies may

be adapted to the female speech by additionally assuming that the standard deviation
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of female vocal tract length is 0.5 cm. The column of difference shows the actual shift

was approximately 0.9% to 7.7%, which resembles the theoretical value. We can see

that the optimization of the filterbank layer caused a shift of center frequencies to

discriminatively perform frequency warping. This characteristic corresponds to the

VTLN function.

The last column of Table A.4 shows the center frequencies of the SF-dependent

GFDNN. When we focused on the SM- and SF-dependent GFDNN, relations between

the two models cannot be observed in the experiment. Instead, the learned center

frequencies based on SF speakers showed lower frequencies than those of the SM

speakers because the optimal position of the filters in the training stage depends of

the condition of the following DNN. However, in the adaptation stage, the filterbank

layer was updated, and the parameters of the following DNN were fixed. In this

situation, the filterbank layer could be handled independently of the following DNN

to perform frequency warping.

Figure A.1 shows the change of gain parameters of the SM-specific model and

the SF-adapted model (from the SM-specific model). To emphasize the conspicu-

ous change of gains, we plotted their relative changes by computing (gains of SF −
gains of SM)/gains of SM . We also plotted the average log mel-scale triangular fil-

terbank features of the SM-speakers and SF-speakers. Intuitively, the relative change

of gain takes a negative value when the filterbank feature of the SF-speakers takes

a higher amplitude value than that of the SM-speakers (channels 31-40), and vice

versa (channels 1-3). The difference of the filterbank features partially satisfies this

assumption but not completely. The variances of the filterbank features are relatively

large enough to overlap the SM- and SF-speakers. Therefore, it is considered that

the optimization of the gain parameters is a secondarily important factor in gender

adaptation. In contrast to the above two parameters, no discrimination of the change

of bandwidth parameters was observed.

Speaker adaptation

In this section, we evaluated speaker adaptation using the SM-dependent models

depicted in Table A.2. Table A.5 shows the speaker adaptation results. The row

of 0 utterance shows the WERs, which were recognized using the model without

speaker adaptation. These WERs were worse than the result of Table A.2 because

of its worse out of vocabulary ratio (OOV) and larger perplexity. By adapting the

filterbank layer of GtFDNN using five utterances, the WER improved from 8.9% to
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Fig. A.1 Changes of gain parameters from SM-specific model (SM) to SF-

adapted model and averaged log mel-scale filterbank features of SM- and SF-

speakers.

Table. A.5 WERs (%) of speaker adaptation. (OOV: 2.3%, Perplexity: 161.4,

Corpus: SM).

#utt.
GFDNN GtFDNN DNN ExpFDNN

filterbank filterbank fDLR LHUC SVD filterbank

0 9.1 8.9 10.0 10.0 10.0 9.5

3 9.0 8.5 9.1 13.5 9.7 8.6

5 8.7 8.2 9.7 13.3 9.6 8.4

8.2%, and a word error reduction rate (WERR) of 7.9% was obtained. This WERR is

better than the unadapted GtFDNN at a significance level of 0.012 under a statistical

sign test. The performance improvement was also observed in the experiment of

GFDNN. These results showed that the adjustment of filter shapes can handle the

diversity of speakers. The adaptation of filterbank layer in GtFDNN showed the best

performance for all adaptation conditions while other methods, ExpFDNN, fDLR,

LHUC and SVD, also showed performance improvement. Table A.6 shows the WER

of GtFDNN with comparative adaptation methods. There was no significance among
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Table. A.6 WERs (%) of speaker adaptation. (OOV: 2.3%, Perplexity: 161.4,

Corpus: SM).

#utt.
GtFDNN

filterbank fDLR LHUC SVD

0 8.9 8.9 8.9 9.2

3 8.5 8.6 8.6 8.9

5 8.2 8.4 8.3 8.5

them, however, adaptation of filterbank showed the best performance.


