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Developed countries including Japan are becoming aged societies, and they suffer 

from a chronic shortage of caregivers. In this decade, robotic caregiving has been 

attracting people's attention as a solution for the problem and they are expected to 

be deployed in the next decade. 

 

In this thesis, we investigate a robotic attendant system for caregiving. In this 

system, a robot follows a person and keeps him/her away from dangerous 

situations. In case the person is going to be involved in an accident (e.g., bumping 

into an obstacle and falling from a step), the robot prevents the accident by 

interacting with him/her (e.g., informing the person of the obstacle). However, if 

the robot interacts with the person every time it finds an accident risk,  it could be 

annoying for the person. To be socially accepted, the robotic attendant system has 

to avoid disturbing the person as long as he/she is in a safe situation so that it 

becomes comfortable for the person. To minimize the risk of accidents while 

maximizing the comfortableness of attendance, we focus on a person's awareness. 

By estimating the person's awareness of obstacles, the robot can assess the 

collision risk and interact with the person only when an accident is likely to 

happen. 

 

First, we present robust person tracking and identification methods. Attendant 

robots have to be able to follow a specific target person reliably. In case there are 

several persons, the robot may lose track of the target person due to occlusion. In 

such cases, it is required to identify the target person among surrounding persons 

(i.e., re-identification) to resume the tracking and continue to follow the target. We 

propose online learning-based person identification methods based on deep 

convolutional neural network-based appearance features and illumination 

invariant height and gait features. They can identify the target person robustly in 

severe illumination environments. We also propose a wearable device-based 

identification method. In this method, we let the target person hold a smartphone 

and identify him/her by matching the foot strike timings detected by the 

smartphone and the ones of surrounding persons detected by a laser range finder 

mounted on the robot. By combining the online learning-based and wearable 

device-based identification methods, we realize a robust and reliable person 

following system. 

 



 

Second, we propose a system to measure and analyze real persons' attending 

behavior. In this system, an observer carrying a 3D LIDAR follows persons to be 

measured while keeping them in the sensor view. It allows us to measure the 

behavior of the persons without area and time limitations. The system first 

constructs a 3D environmental map beforehand and then estimates the sensor 

pose and tracks surrounding people online. As a field test, we measured the 

behavior of professional caregivers attending an elderly with dementia in a 

hospital. A preliminary analysis of the attendant behavior reveals how they decide 

the positioning with respect to the elderly while paying attention to the 

surrounding environment to prevent accidents. 

 

Third, we propose methods to estimate a person's awareness of the surrounding 

environment. In the case of person-following robots, they cannot observe features 

which directly reflect the person's awareness (e.g., head orientation and gaze). We, 

thus, propose methods to estimate a person's awareness solely from the person's 

trajectory. As a proof-of-concept, we propose a model to estimate a person's 

awareness of an obstacle in a corridor. Then, we extend the model so that it can 

handle arbitrary obstacles and environmental structures with a deep 

convolutional network. 

 

Finally, we present a proposal for the system design of an attendant robot. The 

robot reliably follows a specific target person with the proposed person 

identification methods, and its behavior is designed based on the assessment of 

accident risks with awareness estimation for safe and comfortable attendance. It 

would be a step towards a socially acceptable robotic caregiving system. 
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Chapter 1

Introduction

1.1 Attendant Robots for Caregiving

Developed countries including Japan are becoming aged societies, and they suffer
from a chronic shortage of caregivers [1]. One of the important problems in such
countries is the increasing caregiving resource, and robotic caregiving has been at-
tracting people’s attention as a solution to the problem [2]. Several kinds of robotic
caregiving systems have been deployed in hospitals in the last decade.

One way for the robotic caregiving is physical support of elderly persons and
human caregivers. RT. WORKS developed a robotic walker RT. 2 which assists an
elderly person’s walking and prevent them from falling and stumbling with semi-
automatic brake control [3]. When the elderly gets on a slope or stumbles into an
obstacle, it applies a brake automatically to avoid the elderly from falling. Cyber-
dyne has developed a robotic suit to support human caregivers’ tasks, such as mov-
ing an elderly from a bed to a wheelchair and giving rehabilitation to the elderly
[4]. It enhances the caregiver’s power and reduces the effort for those tasks. Those
systems provide physical support for caregivers and elderly persons, and they are
practical and promised ways. However, even though such systems reduce the ef-
fort of caregivers, they require caregivers’ monitoring or operation. That is, they
essentially rely on human caregivers. Without largely increasing caregivers, they
cannot deal with the growing number of elderly persons. For this reason, we believe
that autonomous robotic systems, which do not require caregivers’ monitoring and
operation, are necessary to deal with the problem.

Paro and Palro, interaction robots respectively developed by AIST and Fuji soft-
ware, have been deployed in several hospitals to communicate with elderly persons

(A) Paro [5]. (B) Palro [6].

FIGURE 1.1: Interaction robots used for elderly care.
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prevent the bump 
if not aware

aware or not?

FIGURE 1.2: Robotic attendant based on awareness estimation.

with dementia [5, 6] (see Fig. 1.1). Through communication with them, elderly per-
sons suppress loneliness and could slow down the progression of dementia. Since
they do not need caregiver’s monitoring, they can be scalable to the growing aged
population. However, their applications are limited to the basic communication ser-
vices in indoors.

One of the most common demands from elderly persons under caregiving is
walking outdoors. However, for safety reasons, they are not allowed to freely go
out by themselves sometimes. In order to avoid the risk of accidents, such as falling
from a step and hitting by a car, they must be attended by a caregiver when they
go out. Even in indoor scenes, caregivers’ monitoring is required depending on the
level of dementia. However, the limitation of the numbers of caregivers makes it
hard to allow elderly persons to have enough time for walking. We believe that
walking freely outside as well as inside is essential to increase the quality of life, and
attendant robots would be one possible way to deal with this problem.

1.2 Research Goal

Our goal is to develop an attendant robot, which keeps elderly persons away from
dangerous situations while avoiding disturbing them. To achieve this, we focus on
person’s awareness. We consider that, by estimating a person’s awareness, we can
assess the risk of an accident (see Fig. 1.2). If a person is not aware of an obstacle,
there is a high risk that the person bumps into it. On the other hand, if she is aware
of the obstacle, she would avoid the obstacle by herself, and the risk is low. In
the former case, the robot should take an action, for instance, informing her of the
obstacle, to prevent the accident while it should not do it to avoid disturbing the
person in the latter case. We believe that such an attendant robot, which interacts
with persons only when it is necessary, is suitable for not only elderly caregiving,
but also other applications, such as observing children and watching people in home
and public environments.

In this thesis, we propose a robotic attendant framework which consists of 1) a
person following capability based on robust person identification, 2) methods for
people behavior measurement and analysis, and 3) an awareness estimation model
for mobile robots.

To follow a person, robots have to reliably identify the person to be followed.
We propose several methods to identify a specific person using sensors mounted
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on the robot and a marker held by the person. We also propose a system for long-
term and wide-area people behavior measurement. With this system, we measured
professional caregivers’ behavior during attendance to elderly persons. The mea-
sured behavior data is useful to design socially acceptable robot behavior. Last but
not least, we construct a model to estimate a person’s awareness of the surrounding
environment from his/her motion. It allows robots to assess the risk of accidents
during attendance.

1.3 Related Work

1.3.1 Awareness Estimation

Driver’s awareness is an important feature in driver assistance. If a driver is not
aware of a pedestrian, there is a risk of severe accidents, and in that case, we can pre-
vent the accident by informing the driver of the pedestrian. Phan et al. [7] estimated
a car driver’s awareness of a pedestrian from driving signals, such as acceleration
pedal position, brake force, steering wheel angle, and vehicle speed. They trained an
HMM (Hidden Marcov Model) from the driving signals to estimate a driver’s aware-
ness of pedestrians. Bar et al. [8] trained a decision tree which assesses a driver’s
awareness of traffic objects, such as pedestrians, other cars, and traffic cones. They
observed the driver’s gaze and combined it with traffic objects information detected
by cameras and laser scanners to construct the decision tree. Chutorian et al. [9]
used a driver’s head pose instead of gaze information since detecting gaze is some-
times impractical in real driving situations. They proposed a method to estimate a
driver’s head pose from an image, and monitored the driver’s awareness by using
the estimated head pose.

Awareness estimation has also been researched in human-system interaction.
Stiefelhagen et al. [10] estimated the point, where a person is looking, from his/her
head pose to enhance the usability of computer interaction systems. Doshi et al. [11]
also estimated persons’ attention using head pose estimation to find distractive ob-
jects in a meeting room. These works used persons’ awareness to monitor persons’
state and tried to realize comfortable human-system interaction.

Although awareness estimation plays an important role in these researches, the
existing works are based on features which directly reflect a person’s awareness,
such as gaze, head pose, and user’s operation. However, in the case of person fol-
lowing robots, it is difficult to observe these features from a robot, because it cannot
see the person’s face from the behind of target persons, nor it receives no explicit
operation from the persons. We need to estimate a person’s awareness from features
which can be observed from a person following robot, such as person’s position and
velocity.

1.3.2 Social Interaction Robots

Human-robot social interaction is becoming an important research field in the robotics
community. There is an increasing demand for robotic services, such as reception-
ist and waiter, and these tasks require sophisticated interaction abilities of robots.
Service robots have to interact with people in “social” manners to realize natural
and comfortable services and be accepted by people [12]. Some works proposed
social interaction-based robot systems. Dewantara et al. [13] proposed a naviga-
tion robot framework based on an extended social force model, and they train the
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model parameters from the person’s position, velocity, and head orientation using
reinforcement learning.

These works proposed robotic systems under consideration of social interaction
with people. While these methods contribute to natural communication with people,
they consider only the robot-human relationship. In attending tasks, the surround-
ing environment changes as a person and a robot move, and we need to take the
person-environment interaction into account.

1.3.3 Person Following Robots

Person following tasks require several fundamental functions, such as person track-
ing and identification[14, 15], environment recognition [16], and path planning [17].
A lot of works have been done for such functions to realize reliable person follow-
ing robots. As a result, person following robots have reached at a practical level,
and some of them have already been in sales [18]. Some works proposed social
interaction-based person following robots, which do not just keep the distance to
the person constant but adjust the distance, for comfortable person following ser-
vices [19, 20]. In these works, depending on the positions of the target person and
surrounding people, the distance between the robot and the target person is decided
based on social force model. Oishi et al. [21] introduced a state machine to adapt a
robot’s attending position depending on the target person’s behavior. These works
show that, by deciding attending position under consideration of social interaction,
these methods achieve a certain degree of comfortableness in attending services.
However, as described in Sec. 1.1, attendant robots have to not only follow the tar-
get persons but also keep them away from dangerous situations. To our knowledge,
none of the existing works considered such a role, and we need to realize robots
which provide not only comfortable but also safety attendant services.

1.4 Contributions

The main contribution of this work is the introduction of a novel robotic atten-
dant system based on real human behavior analysis and awareness estimation. The
framework is built on the top of reliable person identification [22, 23, 24]. The devel-
opment of the identification methods is also a contribution of the thesis. The core of
this framework is the awareness estimation model. Different from existing methods,
our method depends only on a person’s trajectory, which can easily be obtained from
a mobile robot, so that it can be applied to real attendant services. In addition to that,
our model can represent complex person-to-person and person-to-environment re-
lationships, which are hard to model with traditional social models [25, 26], thanks
to the use of a deep convolutional neural network-based approach. Furthermore,
we propose a wide-area and long-term people behavior measurement system using
a 3D LIDAR. Based on an analysis of professional caregivers’ behavior measured by
this system, we also present a design of basic person following behavior for atten-
dant robots.

1.5 Thesis Organization

This thesis is organized as follows: We first describe the proposed people tracking
and identification methods, which are fundamental for reliable person following, in
Chapter 2 and 3, respectively. Chapter 4 explains a people behavior measurement
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system which is used to measure and analyze human behavior. The analysis result
of real professional caregivers’ behavior during attendance is also described in this
chapter. The awareness estimation model is proposed in Chapter 5. Chapter 6 con-
cludes the thesis and discusses an attendant robot system design.
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Chapter 2

People Tracking

2.1 Related Work on People Tracking

People tracking is a fundamental function for person following robots. To follow
a person, the robots have to be able to keep tracking the identity of the target per-
son. One of the most standard and established scheme for Multiple Object Tracking
(MOT) is so-called “tracking-by-detection” [27]. In this scheme, the system detects
all the objects to be tracked in the sensor view using a detector, and then associates
the detections over time to track the identity of each object.

As the starting point of the tracking process, the detector has a crucial impact on
the tracking result. To improve the detection accuracy, various sensors, such as RGB,
depth, stereo cameras [28, 15, 14], 2D, 3D LIDARs [29, 30], and their combinations
[31, 32] have been investigated.

The tracking part, which follows the detection part, also plays an important role
in the tracking system. For robust tracking, state estimation filters have been em-
ployed to predict people motion [33, 34] and combined with several data association
methods [35, 36, 37].

2.1.1 Vision-based People Detection

Vision-based human detection has been widely studied in the computer vision com-
munity over than two decades. Early works proposed simple template matching-
based methods to detect faces in images [38, 39]. To deal with facial expression and
illumination changes, the combination of machine learning-based detector and the
sliding window approach were proposed lately. One of the most successful method
for face detection is the one proposed by Viola and Jones [40]. In this method, they
trained a cascaded AdaBoost classifier on Haar-like features. The cascaded classifier
quickly rejects background regions while spending more computation on object-like
regions. This approach allows us to save the processing cost while keeping the de-
tection accuracy. Since the human face is well-structured, this kind of sliding win-
dow approaches work well, and the naive face detection problem is considered to
be solved nowadays. More recent works, thus, focus on further facial analysis prob-
lems, such as facial landmark detection [41] and expression recognition [42].

Since the human body has more variation on the appearance and the shape com-
pared to the face, vision-based human detection is still considered to be challenging
[43]. Classic people detection methods train cascaded classifiers on sophisticated ap-
pearance features to detect people. To model human body shape, HOG (Histogram
of Oriented Gradients) [44], ICF (Integral Channel Features) [45], and their varia-
tions (Checkerboards [46] and RotatedFilters [43]) are often exploited, and by using
a soft cascade classifier [47], which reuses the confidence of the rejection decision
of the previous cascade to improve the false negative rate, we can detect people in
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images efficiently and robustly. More recently, deep convolutional neural network-
based people detection methods were proposed. Some of them take the form of the
traditional sliding window approach [48, 49, 50] while the other ones take different
bottom-up approaches based on fully convolutional networks [51]. The most suc-
cessful ones are based on detection of body landmarks (e.g., head, chest, arms, and
legs) [52, 53]. In contrast to the sliding window approach which trains a binary clas-
sifier, they train a network which outputs a set of response maps corresponding to
each of body landmarks and detect people by aggregating the body landmark detec-
tion results. They can naturally deal with partial occlusion of body parts, and thus
have the advantage of detection of people in crowded scenes. One notable work
based on this approach is proposed by Cao et al. [54]. It estimates Part Affinity Fields
(PAFs), a set of 2D vector fields that encode the location and orientation of limbs,
and a following parsing step associates detected body part candidates on PAFs by
performing bipartite matching. It is also known as OpenPose architecture, and its
open source implementation has been widely used in many applications. Another
interesting idea is to introduce the end-to-end learning fashion to the people detec-
tion problem. Stewart et al. [55] put a recurrent LSTM (Long Short-Term Memory)
layer after a convolution network. The LSTM acts as a controller which decodes the
feature maps encoded by the CNN and outputs a sequence of detection bounding
boxes.

Although the great progress has made on visual people detection, it is still hard
and costly to detect people in images. In the last decade, affordable consumer RGB-D
and stereo cameras became available, and they have been widely applied to the peo-
ple detection purpose [28, 15]. Typically, human candidate objects are detected using
the Euclidean clustering technique, and then non-human objects are eliminated by
a machine learning-based classifier. Although they show a better false positive rate
than RGB cameras, the detection range is often limited (e.g., ∼ 5[m]).

2.1.2 LIDAR-based People Detection

LIDARs have been widely used for real-time people detection [29, 56, 30]. They
provide the distance to objects precisely, and the range information allows us to
easily separate foreground objects from the background using simple clustering al-
gorithms. Compared to vision sensors, they have the advantage of long-range and
wide-area object detection and outperform vision sensors in terms of the detection
accuracy and speed. In addition to that, they are useful for other tasks required for
mobile robots (e.g., mapping and localization), and thus, LIDARs have been a “de
facto” sensor for mobile robots.

2.1.3 People Tracking

In the “tracking-by-detection” scheme, the detection part is followed by a tracking
part which typically consists of two steps: filtering and data association.

The filtering step estimates the current person state (e.g., position and velocity)
from observations until the current frame and predicts the person state in the next
frames. Kalman filter [33] has been often used for this purpose. It is a kind of recur-
sive Bayesian filters, and it allows us to estimate a state, which may contain latent
variables like velocity, by recursive prediction and correction steps. The constant ve-
locity model is commonly exploited to predict people motion. Although this model
is very naive, it works well in the short-term. Several works proposed more sophis-
ticated non-linear motion models based on Social Force Model (SFM) and collision
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avoidance constraints, and combined them with non-linear filters, such as extended
Kalman filter [34].

The data association step associates tracks and observations at a frame based
on the distances between them. The Nearest Neighbor (NN) association is the sim-
plest method which associates observations with the closest tracks. An extension
of the NN association, Global Nearest Neighbor association, finds the association
which minimizes the sum of the distances between the track-observation pairs us-
ing a combinatorial optimization algorithm, like Hungarian algorithm [57]. While
these nearest neighbor methods consider only hard (one-by-one) associations, fur-
ther methods, such as JPDAF (Joint Probabilistic Data Association Filter) [36] and
MHT (Multiple Hypothesis Tracking) [37], consider multiple association hypotheses
for each track. JPADF considers all possible combinations of track-observation asso-
ciations and update the target states based on the joint data association probabilities.
MHT keeps association hypothesis over frames, and it allows us to postpone to make
data association decisions until data association ambiguities are resolved. Since they
consider all possible assignments of measurements, they suffer from combinatorial
complexity. Thus, some techniques to reduce the computational complexity, such as
gating and hypothesis pruning are required.

Although the advanced data association methods with sophisticated motion mod-
els may improve the tracking accuracy, the choice of data association method mat-
ters less. For practical applications like service robots with limited computational
resources, well-tuned simple data association methods can be a better choice than
the complex tracking methods [58].

2.2 Proposed System

We propose two people tracking methods. One relies solely on a monocular cam-
era (Sec. 2.2.1) while the other one combines a 2D LRF and a monocular camera
(Sec. 2.2.2). We can choose either of them depending on the equipment on the robot
and the use case. Both the methods take the form of the standard people track-
ing scheme based on Kalman filter with the constant velocity model and the global
nearest neighbor data association. Although there are advanced tracking methods
in the literature, it is unavoidable that tracking methods suffer from occlusion of
people. Thus, we decided to keep the tracking methods relatively simple and build
a re-identification mechanism on the top of the tracking module to achieve a reliable
person following capability.

2.2.1 Monocular Vision-based People Tracking

Here, we propose a people tracking method which relies solely on a monocular cam-
era. As the starting point of the people tracking process, we use OpenPose, a deep
convolutional neural network-based human detector [59]. It provides the position
of each joint of persons in the image space. We utilize an implementation of Open-
Pose which is sped up with mobilenet architecture [60] with depth-wise separable
convolution filters 1. Then, inspired by [61] and [62], we track persons in the robot
coordinate space based on the detected joint positions. Tracking persons in the real
space could be more robust than tracking in the image space, since we can take ad-
vantage of motion assumptions where the persons are actually moving [61]. In ad-
dition to that, person positions in the robot space are very useful for service robots

1https://github.com/ildoonet/tf-pose-estimation

https://github.com/ildoonet/tf-pose-estimation
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FIGURE 2.1: The proposed tracking method takes advantage of the ground plane infor-
mation.

to interact with them. For instance, with the estimated position in the robot space,
we can easily control the robot so that it keeps the distance to the person constant
while avoiding other persons in a following task.

Fig. 2.1 illustrates the proposed tracking method. We assume that the camera
pose with respect to the ground plane is calibrated beforehand. By projecting a de-
tected ankle position onto the ground plane, we can estimate the person position
in the robot space. However, while a person is walking, the ankle position varies
due to the walking motion, and it would affect the position estimation. We, thus,
simultaneously estimate the height of the person in addition to the position based
on neck and ankle detections using Unscented Kalman Filter (UKF) [63] to make the
estimation robust. Once the real height of the person is estimated, by comparing it
with the height in the image space, we can estimate the distance to the person. It
would contribute to the estimation accuracy when the ankle position varies largely
(i.e., when the person is walking). Furthermore, if the real height is available, we
can update the UKF with only a neck detection when the ankle is not visible to the
camera.

State Estimation

We define the state space to be estimated as xt = [pt, vt, ht]T, which consists of the
position, velocity, and height of a person in the robot space. With UKF, we estimate
the state from observations of neck and ankle positions in the image space ẑt =
[pneck

t , pankle
t ]T.

Assuming the constant velocity model, the system function f to update the state
is defined by:

f (xt) = xt+1 = [pt + ∆t · vt, vt, ht]
T, (2.1)

where ∆t is the duration between t + 1 and t. The observation function h is defined
by:

h(xt) = zt = [Proj(pt + [0, 0, ht]
T), Proj(pt)]

T, (2.2)
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(A) In the robot space. (B) In the image space.

FIGURE 2.2: A tracking result. The ellipses on the right image show the expected neck
and ankle positions distribution calculated from the person position in the robot space.

Note that the laser is used for only validation.

where the function Proj is the pinhole camera projection function. When only a neck
position is observed, we use the observation function without the ankle observation
term to update the state:

h′(xt) = z′t = [Proj(pt + [0, 0, ht]
T)]T. (2.3)

Data Association

To associate track instances and joint detections at a frame, we first calculate the
expected observation distribution (neck and ankle positions distribution) of each
track using the Unscented Transform [63]:

µz
t , σz

t = UT(µxt
t , σxt

t , h). (2.4)

µz
t and σz

t are the expected observation distribution, µxt
t and σxt

t are the distribution
of the state xt, h is the observation function, and the function UT is the Unscented
Transform function.

Then, we define the distance between a track and an observation as:

Dist(tracki, obsj) =

{
∞, if DM(µz

t , σz
t , ẑt) > thgate

−N (µz
t , σz

t , ẑt), otherwise
, (2.5)

where DM is the Mahalanobis distance function, and thgate is the threshold for gat-
ing. Based on this distance function, we associate tracks and detections using the
global nearest neighbor association [35]. Note that in the data association algorithm,
a constant is added to the calculated distances to make them positive.

Fig. 2.2 shows a tracking result. The blue sphere in Fig. 2.2 (a) shows the es-
timated person position in the robot space, and the green ellipses in Fig. 2.2 (b)
indicate the neck and ankle positions distribution calculated from the person state
in the robot space.
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FIGURE 2.3: A mobile robot equipped with a Nvidia Jetson TX2 development board.
An embedded camera module is bundled with the development board. An LRF is also

mounted on the robot for the validation of the tracking system.

Evaluation

To evaluate the accuracy of the proposed tracking method, we recorded an image
sequence with the robot shown in Fig. 2.3. A Jetson TX2 development board with
an embedded monocular camera module is mounted on the robot. The camera pose
with respect to the ground plane is calibrated by observing a chessboard pattern put
on the ground. For evaluation, a laser range finder is also mounted on the robot, and
we estimate the person position with the proposed method and a laser-based people
tracking method [23]. We consider the laser-based result as the ground truth in this
evaluation.

Fig. 2.4 (a) shows the trajectories estimated by the proposed and the laser-based
methods. To show the effect of the UKF-based tracking, the result without the UKF
(projecting the ankle position onto the ground plane directly) is also shown in the fig-
ure. We can see that the trajectory estimated by the proposed method well matches
with the one estimated by the laser-based one. On the other hand, without the UKF,
the error gets larger when the person is distant from the camera (around 7 ∼ 9 [m])
due to the calibration error on the camera pose with respect to the ground. With
the proposed UKF-based method, the estimation in the distant place gets improved
thanks to the height information which allows us to estimate the distance to the per-
son without the ground plane.

Fig. 2.4 (b) shows the plot of the localization error versus the distance between
the camera and the person. We can see that, with the UKF, the estimation in the
distant place is significantly improved, and the error is smaller than 0.15 [m] in the
range between 3 ∼ 9 [m]. We consider that this accuracy is enough to perform the
basic following behavior of person following robots (e.g., keeping the distance to the
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(A) Estimated trajectories

(B) Localization error vs distance

FIGURE 2.4: The tracking accuracy evaluation result.

person constant).

2.2.2 LRF-based People Tracking

People Detection

Multiple layered LRFs are sometimes used for human detection [64]. Typically these
sensors are put at the height of torsos and legs, and then both detection results are
combined. They assume that the torso of a person is always detected, and if one or
two legs are found under a torso, the torso is judged as a true positive. By combin-
ing detection results of multiple layered LRFs, we can reduce the number of false
positives.

Torsos and legs are typically detected as a segment separated from background
by finding gaps in range data [65, 56]. However, in populated environments, torsos
and legs are not always separated from background or another torso/leg. They are
also often partially occluded by another objects. Our method first detects gaps of
range data for clustering (see Fig. 2.5(a)), and then finds break points of merged
torsos/legs in range data using two threshold values ∆w and ∆d (see Fig. 2.5(b)).
For a point in a cluster, if two points separated from the point by ∆w on both sides
are closer by ∆d to the robot than the point, the point is treated as a break point,
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FIGURE 2.5: Torso and leg detection procedure.

(A) usual (B) partially-occluded (C) merged

FIGURE 2.6: Detected torso candidates. Each green circle indicates the position of a torso
candidate.

and the cluster is split at that point. We then apply a size filtering to all the clusters
to detect torso/leg candidates. Fig. 2.6 shows examples of detected candidates for
torso.

The detected candidates are classified into torso/leg and other objects using Ar-
ras’s method [29] and Zainudin’s method [56], respectively. Features which repre-
sent the shape of the clusters are extracted, and then the classification is performed
by machine learning method, such as SVM [66] and Adaboost [67].

People Tracking

We adopt a simple procedure for temporal data association of detected persons,
based on Kalman filter with a constant velocity model and a nearest neighbor (NN)
data association. This works well in the majority of tracking cases. If a person is
occluded by another person for several seconds, however, it often fails to track the
person due to an incorrect data association. We thus take occlusions of persons into
account in data association as follows.

We model each person by a circle located at the position predicted by the Kalman
filter, and test whether it is occluded or not. We first predict the range data which
should be obtained from the circle, and then the predicted range data for the circle
are compared with the actual observed range data. If more than a half of the actual
range data are closer to the robot than the predicted range data, the person is consid-
ered as occluded. The occluded persons are not associated with the detected persons
to prevent incorrect data association.
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FIGURE 2.7: Detecting the person region. The green circles indicates the person position
obtained by the LRF-based tracking. The red transparent regions are the ROI calculated
from the person position. The green transparent regions are the detected person regions.

Finding People Regions on the Image

A person region on an image is required to extract features for person identification.
We first calculate a Region of Interest (ROI) from a person position obtained by the
LRF-based tracking, and then detect the upper body of the person from the ROI
using the cascaded HOG classifier [68]. To calculate the ROI, we model the person
as a cylinder located at the person position and project the cylinder into the image
(see Fig. 2.7). The detected regions are used for extracting the person features.
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Chapter 3

Person Identification

Person identification is one of the fundamental functions for attendant robots. Robots
have to keep following and watching the target person during attendance. If they
lose the track of the target person, they have to find and re-identify the target to
continue the service. In this chapter, we propose three person identification meth-
ods for person following robots. We consider a non-cooperative scenario, where we
can use only devices on the robot, and a cooperative scenario, where we can let the
target hold a device (e.g., smartphone) and use the signal obtained by the device to
identify the target. Depending on the use case, we can choose one of them to realize
a robust person following service.

In Sec. 3.1, we propose an identification method based on appearance features
improved by a deep convolution network approach. In Sec. 3.2, by combining range
and vision data, illumination independent gait and height features are introduced.
They are be incorporated with appearance features to reliably identify the target
under severe illumination conditions. Sec. 3.3 describes a method based on the
matching of foot strike timings obtained by LRFs on the robot and a smartphone
held by the target.

3.1 Person Identification based on Convolutional Channel Fea-
tures

3.1.1 Related Work on Appearance Feature-based Person Identification

In cases of mobile robots, the most standard feature for person identification is the
appearance, since it is descriminative and easy to obtain. Many appearance features
are used in image-based identification, for example HSV, Lab and XYZ color space
histogram [69, 70], Haar-like [28], HOG [71], LBP [71] and SIFT [14] features. It has
been proven that the combination of such appearance features and online learning
methods works very well for the person following task [72, 28, 71]. Online learning
methods allow us to adapt the person model to a specific target person. For instance,
when there are persons wearing similar shirts and non-similar trousers, online learn-
ing methods can focus on the discriminative part, trousers in this case, to re-identify
the target person robustly. However, the most of existing methods for mobile robots
use naive hand-crafted appearance features, such as Haar-like features [28], Local Bi-
nary Patterns (LBP) [72], edge features [71] on color and depth images. They are not
dedicated features for person re-identification, and they may not be discriminative
when persons are wearing similar clothes.

Recently, deep neural networks have been successfully applied to various vi-
sion applications. Person re-identification is one of such applications, and Con-
volutional Neural Network (CNN) based methods outperform traditional systems
[73, 74]. However, a few works [75] applied such CNN-based methods to mobile
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FIGURE 3.1: The proposed person tracking and identification framework with a monoc-
ular camera.

robots due to the limitation of computation resource on mobile robots. On a mobile
robot, it is not always feasible to use a high performance GPU, and thus, it is hard to
directly apply such CNN-based methods to person following robots. Moreover, in
person following tasks, it is important to adapt the person model to the target per-
son online. Without an online learning approach, it is sometimes hard to distinguish
persons wearing similar clothes even with a deep neural network. Although there
are methods to update neural networks online [76], those methods are very costly,
and it is not feasible to run it on a mobile robot.

Yang et al. proposed Convolutional Channel Features (CCF) [77]. In this tech-
nique, they take the first a few convolution layers from a trained deep CNN, and use
the set of convolution layers as a feature extractor. By training light-weight mod-
els, such as SVM and boosting, with the deep feature representation, they adapt
the framework to several tasks without expensive tuning of the network. Following
their work, in this work, we introduce CCF to person identification for mobile robots
to take advantage of deep representation while keeping the processing cost low.

3.1.2 Proposed System

Here, we propose a person identification method based on Convolutional Channel
Features. By combining the identification method with the monocular vision-based
tracking method described in Sec 2.2.1, we realize a person following framework
which relies solely on a monocular camera (see Fig. 3.1).

In this framework, we first detect persons with OpenPose, a deep neural network-
based skeleton detector [59], and the detected people are tracked by the vision-based
people tracker in Sec. 2.2.1. Then, a person identification method based on the com-
bination of Convolutional Channel Features [77] and Online boosting [78] runs on
the top of the tracking module. It attentively learns the appearance of a specific
target person based on the deep neural network-based discriminative features. If
the robot loses the track of the target person, it re-identify the target person among
surrounding persons with the online learned appearance model. The entire system
is designed so that it can be run on an affordable embedded computer with a GPU
(NVIDIA Jetson TX2) in real-time. The use of this common computing board allows
us to easily reproduce and reuse the system on a new mobile robot platform.
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FIGURE 3.2: Convolutional Channel Features-based person identification framework.
We take the first two layers of a network for person re-identification and use them to

extract features for online person identification.

3.1.3 Convolutional Channel Features

To take advantage of deep CNN-based feature representation, we employ Convolu-
tional Channel Features (CCF) [77] instead of traditional appearance features which
have been used for mobile robots, such as color histograms [23], haar-like [29], and
edge features [71]. CCF consists of a few convolutional layers taken from a trained
deep CNN. It takes an input image and yields a set of response maps (i.e. feature
maps) which are optimized for a specific task, such as person detection and classifi-
cation.

In this work, we train Ahmed’s network for person re-identification [73] as the
base of CCF, and use the first two convolution filters of the network to extract ap-
pearance features for online person identification (see Fig.3.2). Ahmed’s network
takes a pair of person images and then applies convolution filters to extract feature
maps for each input image. The extracted feature maps are compared together by
taking the difference between each pixel in a feature map and the neighbor pixels of
the corresponding pixel in the other map. Then, it applies convolution filters again
to the differences map, and through a linear layer, the network judges whether the
input images are the same person or not. The numbers of filters in the first and sec-
ond convolution filters are 20 and 25, and thus, they yield 25 feature maps. Since it
may be costly for mobile systems to directly use this network, we also trained a tiny
version of the network, where the numbers of convolution filters in both the first
and the second layers are 10. We trained both the networks with a dataset consist-
ing of CUHK01 [79] and CUHK03 [80]. The total number of identities in the dataset
is about 2300, and the number of images is about 17000. We used nine tenths of
the dataset for training and the rest for testing and confirmed that both the networks
show over 98% of identification accuracy on the test set. In the rest of this section, the
CCFs taken from the original and the tiny version networks are denoted as CCF25
and CCF10, respectively.
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FIGURE 3.4: An example of features selected by online boosting. The discriminative
regions, the upper body regions in this case, are automatically selected.

Fig. 3.3 shows example feature maps extracted by CCF10. We can see that each
filter shows strong responses for different color properties. For instance, filter 2
shows higher values on darker and blue regions, while filter 8 strongly responds
orange regions. We can obtain diverse feature representation using CCF without
hand-crafting, and such features would contribute to identification performances.

3.1.4 Online Boosting-based Person Classifier

With the offline trained CCF, we extract feature maps from person images, and then
train a target person classifier online. Following Luber’s work [28], we employ on-
line boosting [78] to construct the classifier. Online boosting constructs an ensemble
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(A) Sequence 1 (53 sec) (B) Sequence 2 (60 sec)

(C) Sequence 3 (133 sec) (D) Sequence 4 (175 sec)

(E) Sequence 5 (122 sec) (F) Sequence 6 (58 sec)

FIGURE 3.5: Snapshots of the dataset for person identification evaluation in person fol-
lowing tasks. The dataset consists of RGB images and LRF data recorded from a mobile
robot. The robot was manually controlled and following a person in indoor and outdoor

environments.

of weak classifiers and uses it as a strong classifier. In this work, each weak classifier
takes the sum of pixel values in a random rectangle region on a feature map and clas-
sifies images into the target and other persons using a naive Bayes classifier. Since
online boosting selects the weak classifiers with the best classification accuracy, dis-
criminative regions are automatically chosen for identification. We use online boost-
ing with 10 weak classifier selectors, and each selector contains 15 weak classifiers.
Thus, the total number of weak classifiers is 150, and 10 of them are selected to con-
struct an ensemble. Fig. 3.4 shows an example of the features selected by online
boosting. We can see that online boosting automatically selects the discriminative
regions, the upper body regions in this case, to construct a classifier ensemble.

3.1.5 Evaluation

Person Identification Evaluation

To evaluate the proposed person identification framework, we created a dataset con-
sisting of a set of RGB image sequences taken from a mobile robot (shown in Fig.
3.1). For validation, we also recorded LRF data in addition to the images in this
dataset. Fig. 3.5 shows snapshots of the dataset. We controlled the robot manu-
ally and made it follow a target person in indoor and outdoor environments. We
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TABLE 3.1: Person identification evaluation result. Bold indicates best results.

Duration [sec]
Sensors LRF + Camera Camera
Features Haar Lab [28] * CCF10 [24] CCF25 [24] CCF10 (Proposed)

Seq. 1

CT 38.78 (73.23%) 40.84 (77.11%) 37.96 (71.69%) 38.85 (73.36%)
CL 6.62 (12.49%) 6.78 (12.80%) 7.37 (13.92%) 6.21 (11.72%)
WT 3.91 (7.38%) 3.75 (7.08%) 3.16 (5.96%) 4.32 (8.17%)
WL 3.65 (6.90%) 1.59 (3.01%) 4.47 (8.44%) 3.58 (6.76%)

Seq. 2

CT 43.76 (73.78%) 43.86 (73.95%) 43.87 (73.97%) 35.83 (60.40%)
CL 11.28 (19.02%) 10.76 (18.14%) 10.90 (18.37%) 9.58 (16.15%)
WT 2.52 (4.24%) 3.04 (5.12%) 2.90 (4.89%) 4.22 (7.11%)
WL 1.76 (2.96%) 1.65 (2.79%) 1.64 (2.77%) 9.68 (16.33%)

Seq. 3

CT 48.08 (36.11%) 106.31 (79.84%) 88.60 (66.55%) 100.85 (75.75%)
CL 7.67 (5.76%) 20.18 (15.16%) 19.67 (14.77%) 19.60 (14.72%)
WT 46.45 (34.89%) 3.94 (2.96%) 6.47 (4.86%) 4.52 (3.40%)
WL 30.94 (23.24%) 2.71 (2.04%) 18.40 (13.82%) 8.17 (6.13%)

Seq. 4

CT 37.89 (21.56%) 141.19 (80.33%) 85.60 (48.70%) 143.45 (81.56%)
CL 24.83 (14.13%) 23.18 (13.19%) 21.57 (12.27%) 21.95 (12.48%)
WT 12.08 (6.88%) 5.83 (3.32%) 6.30 (3.58%) 7.06 (4.02%)
WL 100.95 (57.44%) 5.56 (3.16%) 62.29 (35.44%) 3.42 (1.95%)

Seq. 5

CT 98.33 (80.38%) 98.75 (80.73%) 98.89 (80.84%) 98.59 (80.59%)
CL 16.66 (13.62%) 18.39 (15.03%) 18.36 (15.00%) 16.19 (13.24%)
WT 5.12 (4.19%) 3.32 (2.71%) 3.38 (2.76%) 5.52 (4.51%)
WL 2.22 (1.81%) 1.88 (1.53%) 1.70 (1.39%) 2.04 (1.67%)

Seq. 6

CT 33.10 (59.67%) 41.90 (75.55%) 43.67 (78.74%) 41.66 (75.11%)
CL 2.68 (4.84%) 9.01 (16.24%) 9.01 (16.24%) 7.27 (13.11%)
WT 16.80 (30.28%) 0.06 (0.11%) 0.06 (0.11%) 1.80 (3.24%)
WL 2.88 (5.20%) 4.49 (8.10%) 2.73 (4.91%) 4.73 (8.53%)

Total

CT 299.94 (50.08%) 472.86 (78.94%) 398.60 (66.55%) 459.23 (76.65%)
CL 69.75 (11.64%) 88.29 (14.74%) 86.87 (14.50%) 80.80 (13.49%)
WT 86.89 (14.51%) 19.94 (3.33%) 22.26 (3.72%) 27.44 (4.58%)
WL 142.40 (23.77%) 17.89 (2.99%) 91.24 (15.23%) 31.62 (5.28%)

CT(Correctly Tracked), CL(Correctly Lost), WT(Wrongly Tracked), WL(Wrongly Lost)
* [28] without depth images.

collected six sequences, and two of them are recorded in indoor, and the rest are
recorded in outdoor environments. In each sequence, a target person to be followed
stands in front of the robot for the first seconds so that the robot can learn the ap-
pearance of the person, and then he/she starts walking. During the recording, the
target person is often occluded by other persons so he/she becomes invisible from
the robot, and the robot loses track of him/her.

We evaluate the proposed monocular person identification framework with CCF10
on this dataset. To compare the proposed vision-based tracking method with the
laser-based method, we also run the laser-based system with CCF10 and CCF25-
based identification. On the laser-based system, the combination of Haar-like fea-
tures on intensity images and Lab color histograms is also evaluated. This is almost
identical to [28] except that it does not use Haar-like features on depth images.
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TABLE 3.2: Processing time for each person image

method time [msec]
Haar & Lab 1.2

feature extraction CCF10 4.2
CCF25 6.0

classifier update all 0.1

FIGURE 3.6: The scene where the proposed system failed to detect the target person.

Table 3.1 shows a summary of identification results. To assess the identifica-
tion performance, we categorize identification results in four states. CT (Correctly
Tracked) means that the target was visible from the robot and correctly identified.
CL (Correctly Lost) means that the target was invisible from the robot due to occlu-
sion, and the system correctly judged that he/she is not in the view. WT (Wrongly
Tracked) means the robot identified a wrong person as the target while the target
was invisible, and WL (Wrongly Lost) means the robot judged that the target is not
visible, although he/she was actually visible from the robot.

CCF-based methods outperform the traditional appearance feature-based method
thanks to the robust deep feature representation. Even in sequences where clothes
of the target and others are similar, they correctly identified the target while the tra-
ditional one identified wrong persons as the target.

On the laser-based system, CCF10 and CCF25 show comparable results. How-
ever, in a few sequences, CCF25 failed to keep identifying the target person. For
instance, it identified a wrong person as the target in sequence 3 and failed to re-
identify the target after occlusion in sequence 4. We consider that this is due to the
limitation of the feature selection of online boosting. Online boosting selects the best
classifiers among a limited number of weak classifiers. When the feature space is
vast, the set of weak classifiers cannot cover enough feature space, and thus, on-
line boosting would fail to select discriminative features. The performance of CCF25
could be improved by increasing the number of weak classifiers. However, it in-
creases the processing cost, and it may lead to over-fitting. Although the feature
space of CCF10 is smaller than CCF25, the “average effectiveness" of CCF10 features
could be better than CCF25 since it was optimized to identify persons with fewer
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FIGURE 3.7: Target person localization evaluation result on the dataset [75].

filters. As a result, CCF10 shows a better result than CCF25 in this case.
The result of the monocular vision-based system with CCF10 is comparable but

a bit worse than the result of the laser-based system because the vision-based system
failed to detect the target person when he was very distant from the robot (see Fig.
3.6). This result suggests that the laser-based system has the advantage of detecting
and tracking persons in a long distance. However, once the robot got close to the
target person, it correctly detected and re-identified him, and the tracking was re-
sumed properly. As shown in Sec. 2.2.1, the vision-based method can track persons
up to 10 [m] depending on the camera characteristics, and we consider that, during
a following task, the distance between the target person and the robot would not get
so long. Furthermore, a target person search approach like [81] could be helpful to
search for the target when the robot loses the track of him/her and compensate for
the drawback of the vision-based person detection.

Note that, we also tested the original Ahmed’s network on this dataset, however,
the results were very poor. In each sequence, we compared every person image with
the target person images of the first ten seconds using the network, and classified
the image into the target and others by majority-voting. However, it worked on
only easy situations (Sequence 1 and 2), and in the rest of sequences, it classified all
similar persons as the target (Sequence 3, 4, and 6) or classified the target as other
persons (Sequence 5). The result suggests that, even with the deep feature repre-
sentation, we cannot obtain a good identification result without the online learning
approach. In addition to that, it took about 1 sec for each frame and was far from
real-time performance.

Table 3.2 shows the average processing time of the feature extraction and the per-
son classifier update on a computer with Core i7-6700K (without GPU). While the
traditional feature extraction method takes 1.2 msec for each person image, CCF10
and CCF25 take 4.2 msec, and 6.0 msec, respectively. Although the CCFs are more
costly than the traditional one, they are still able to run in real-time. Since the pro-
cessing time of updating the person classifier depends on only the number of weak
classifiers, every method takes the same time for updating (0.1 msec per person im-
age).

Person Identification Evaluation on a Public Dataset

We evaluated the proposed monocular vision-based framework on a public dataset
for person following robots [75]. This dataset consists of 11 sequences acquired with
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(A) “lab_and_seminar” (B) “sidewalk”

FIGURE 3.8: Failed scenes. The target person was too close to the camera, and the system
failed to detect him.

(A) With all the sequences. (B) Without the sequences shown in Fig. 3.8.

FIGURE 3.9: Target localization precision vs location error threshold.

a stereo camera mounted on a mobile robot. At the beginning of each sequence,
a person is standing in front of the robot, and the system to be evaluated learns
the appearance of the person and keeps tracking him. The dataset contains severe
situations for person identification (e.g., clothes and illumination changes), and the
system has to deal with such situations. Since our proposed method is designed for
monocular cameras, we use only the left images of the stereo image sequences to test
the proposed method.

In this dataset, person identification methods are evaluated in terms of the target
localization accuracy. If the distance between the center positions of the estimated
and the ground truth person regions is smaller than a threshold, we judge that the
system succeeded to identify the person at that frame.

We compare the proposed method with other methods reported in [75]. OAB
[82] and ASE [83] are object tracking algorithms for monocular cameras, while SOAB
[72], DS-KCF [84] are tracking algorithms for stereo cameras. There is also a convolu-
tional neural network-based tracking algorithm for stereo images and its variations
[75]. CNN_v1 directly receives RGB-D images while CNN_v2 has two streams for
each of RGB and depth images and fuse them later. CNN_v3 is network for regular
RGB images. All the networks output the similarity of an input image region to the
target person.

Fig. 3.7 shows the evaluation result. Following the evaluation procedure in [75],
we set the location error threshold to 50 pixels. The proposed method successfully
keeps tracking the target persons in all the sequences, and thanks to the good accu-
racy of the OpenPose skeleton detector, the proposed method outperforms the others
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(A) (B)

(C) (D)

(E) (F)

FIGURE 3.10: The person following experiment. The left images are the snapshots of the
experiment, and the right images are the tracking identification results. The red triangles

in the right images indicate the person identified as the target.

in this evaluation. Although the proposed method fails to detect the target person
in two sequences (“lab_and_seminar” and “sidewalk” sequences) when he gets too
close to the camera (see Fig. 3.8), once he moves away from the camera, the system
correctly detects and re-identifies the target, and the tracking gets recovered. As a
result, the proposed method keeps tracking the target person in the entire sequences.
Fig. 3.9 (a) shows the plot of the localization precision versus the localization error
threshold. Thanks to the good localization accuracy, the proposed method shows
much higher precision under lower error thresholds. However, since it fails to track
the target when the target is too close to the camera, the precision under large thresh-
olds is worse than the other state-of-the-art method (CNN_v1). Fig. 3.9 (b) shows
the evaluation result where the two sequences shown in Fig. 3.8 are excluded. Un-
der this setting, with the proposed method, the precision under smaller thresholds
outperforms the others, and the result under larger thresholds is also comparable
with the state-of-the-art method. It is worth mentioning that the proposed method
uses only monocular images, while SOAB, SD-KCF, CNN_v1, and CNN_v2 use stereo
images.

This result and the result in Sec. 3.1.5 suggest that a drawback of the vision-based
method is the detection of too close and too distant persons. However, we consider
that we can improve the detection rate of close persons by using a wide view angle
camera, and we can employ a target person search approach [81] to re-identify a
distant person.

3.1.6 Person Following Experiment

To demonstrate that the proposed method can be applied to real robots, we con-
ducted a person following experiment. We implemented a simple robot controller
for person following; the robot moves toward the target person, and when the robot
loses track of the target, it stops and waits until the person re-appears. We used
the mobile robot shown in Fig. 2.3 equipped with a Jetson TX2. All the modules
including the person detection, tracking, identification, and robot controller run on
this board, thus, we did not use any other computers in this experiment.



3.1. Person Identification based on Convolutional Channel Features 27

FIGURE 3.11: Features selected by online boosting during the person following experi-
ment.

Fig. 3.10 shows snapshots of the experiment. At the beginning of the experiment,
the robot learned the appearance of the target person and started following him
(Fig. 3.10 (a)). During the experiment, the target person was occluded by the other
person several times, and the robot lost the track of the target (Fig. 3.10 (b)(c)).
However, once he re-appeared in the camera view, the robot correctly re-identified
him with the online learned appearance model, and kept following him (Fig. 3.10
(d)). Although there was a significant illumination change when the target moved
out from the room (Fig. 3.10 (e)(f)), the appearance model was updated adeptly, and
as a result, the robot successfully followed the target person.

Fig. 3.11 shows the features selected by online boosting during the experiment.
We can see that the classifier focused on the trousers region to robustly identify the
target in this case.
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3.2 Person Identification using Color, Height, and Gait Fea-
tures

3.2.1 Related Work on Soft-Biometric Features for Person Identification

Many appearance features are used in image-based identification, for example HSV,
Lab and XYZ color space histogram [69, 70], Haar-like [28], HOG [71], LBP [71], SIFT
[14], and deep learning-based [77] features. Those features are, however, not appli-
cable to severe illumination environments such as a strong backlight or darkness,
where colors and edges are not reliably obtained (see Fig. 3.12, for example). It is
therefore necessary to combine other features, including those from other sensors,
for more robust identification.

Person identification using gait analysis has recently become popular [85, 86, 87].
These works extract and use frequency components from silhouette images of a
walking person for identification. Since they assume a static background, these
methods cannot be directly applied to mobile robots. Little has been proposed for
gait analysis using range data [88, 89, 90]. Cifuentes et al. [88] measured the gait
features, such as leg distance and leg orientation, from a mobile robot to realize a
smooth human-robot interaction. The relative position between the robot and the
person is, however, very limited for avoiding that legs are occluded by the opposite
leg. Nakamura et al. [89] and Song et al. [90] put several LRFs on the ground and
extracted the gait feature from these data. Since a mobile robot has a single view-
point, a leg is often occluded by the other leg; the measured gait may be degraded
due to this occlusion.

Height features are used for well calibrated and fixed cameras [91]. Since the
height of a person is fixed and specific to the person, it is suitable for person identifi-
cation. In the case of mobile robots, however, it is difficult to measure the height of a
person using only one camera because the distance to the person can change largely.
In order to use the height feature for mobile robots, another sensor which provides
the distance is necessary.

(A) outdoor. (B) indoor.

FIGURE 3.12: Extremely severe illumination environments which mobile robots may
face.
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FIGURE 3.13: Person tracking and identification system.

3.2.2 Proposed System

Here, we propose a method of robustly identifying a specific person using LRFs and
cameras. In order to ensure the redundancy of features in identification, we intro-
duce two illumination-independent features, height and gait, in addition to appear-
ance features. We combine these features to realize a robust person identification
even in severe illumination environments.

Fig. 3.13 shows an overview of the proposed system. The method first tracks
people in range data obtained from LRFs by using the method described in Sec.
2.2.2, and then identifies a specific person. The color feature is extracted from images
while the gait feature is extracted from range data. The height feature is obtained by
combining images and range data. The proposed method combines these features
in order to identify the person in any environmental conditions.

3.2.3 Person Identification Framework

Here, we briefly describe our person identification framework and a joint feature
approach. To identify the person, we employ the color, the height, and the gait
feature as it will be explained in detail in Sec. 3.2.4 and 3.2.5. Those features are
merged into a joint feature and learned by online boosting [78].

Person Identification with Online Boosting

Online boosting is one of the online learning methods which constructs an ensemble
of weak classifiers and uses it as a strong classifier. In our case, each weak classifier
uses only one of the three features; appearance, gait or height. Since online boost-
ing selects the best weak classifiers, only the effective features are used for person
identification. For example, when they are in a severe illumination environment, the
color feature is not effective and only the height and the gait features are used in
the classifier. As a result, we can obtain a reliable person classifier even in a severe
illumination environment (see experiments in Sec. 3.2.6).

While the target person is tracked by the LRF-based tracker, the person classifier
is updated with observed features. While the LRF-based tracker is losing the tar-
get, updating of the person classifier stops and the robot looks for the target person
using the latest person classifier. If a person who is judged as the target person by
the classifier is found, the robot sets the person as the target to track, and resumes
tracking.
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FIGURE 3.14: Comparing joint feature approaches.

Joint Feature for Online Boosting

The observation cycles of the proposed features are largely different. To apply the
features to online boosting, they have to be synchronized and merged into a single
joint feature. There are basically two approaches to synchronize features: synchro-
nizing features to the one with the shortest or the longest cycle.

If we take the first approach, while the feature with the shortest cycle is varying,
features with long cycles are kept constant or interpolated. Weak classifiers using
those with long cycles are updated by one observation until a new observation is
obtained. It may cause an overfitting. We thus take the second approach.

In a traditional way for the second approach, every time the feature with the
longest cycle is obtained, latest feature values are simply concatenated to construct
a feature vector [92]. In our system, however, the observation cycles of the proposed
features are very different from each other; those of the color and the height feature
are about 30 msec long, while that of the gait feature is about 500 msec long. By
using only the latest feature values, a large amount of observations with short cy-
cles are discarded (see Fig. 3.14(a)), and the identification result may be degraded.
Therefore, we also make use of the values of features with shorter cycles obtained
during an interval of the feature with the longest cycle by calculating their statistics
and concatenating them with the feature with the longest cycle (see Fig. 3.14(b)).

In this framework, the statistics of two features, the height and the gait, are cal-
culated. Since the height of a person is fixed, the distribution of the height feature
can be expected to be unimodal. On the other hand, if we observe a person for a
while, the distribution of the color feature may become multimodal due to illumi-
nation changes. However, in our case, the duration for summarizing the features
is about 0.5 [sec] (i.e., the observation cycle of the gait feature). We assume that the
duration is small enough to model the distribution of the color features as unimodal.
We thus employ mean and standard deviation to summarize the features.
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FIGURE 3.15: An example of regions for color histogram extraction selected by online
boosting. The blue rectangles are the regions for hue histogram extraction, and the green

rectangles are the regions for saturation histogram extraction.

3.2.4 Image-based Person Identification

Color Feature

Color features can easily be extracted from an image and are effective for identifying
a person by their clothing color [69, 28, 15]. Texture and shape features, such as HOG
[71] and SIFT [14], are also used for a more robust person identification. However,
all such appearance features are weak under severe illumination environments [93].
We thus use only a color feature as an appearance feature for simplicity.

Color histogram is one of the most popular representations for color modeling.
We use a hue-saturation histogram (HS-histogram) to reduce the effect of light in-
tensity changes. To obtain a histogram, we follow Luber’s histogram extraction
approach [28]. A HS-histogram is constructed from pixels in a rectangular region
with randomized positions and sizes in the person region. By online boosting [78],
histogram extraction regions are sampled randomly, and regions with better iden-
tification rate are used for constructing an ensemble of classifiers. An example of
histogram extraction regions generated by online boosting is shown in Fig. 3.15.

Height Feature

The height of a person can be used as another feature for person identification. Even
if there are multiple persons with similar heights, the height is useful for reducing
the number of candidates for the target person. To calculate the height of a person,
we first determine the topmost position (i.e., sinciput of the head region) in the image,
and then estimate the height using the camera geometry.

A saturation-intensity histogram of a hair region is computed from the hair im-
ages in advance, and then a Gaussian mixture model (GMM) is fitted to the his-
togram. Hair images are collected from about fifty people in various environments,
and the total number of hair images are about two hundred. Since we collected hair
images from Asian people, most of pixels will be the ones with zero saturation (black
or gray pixels). We thus fit a separate univariate GMM to the intensity distribution
of zero saturation pixels. The resultant GMM is used as the hair color model (see
Fig. 3.16 and Fig. 3.17). Currently, the hair color model is specialized for people
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sat.

va
l.

FIGURE 3.16: Hair color model. The green circles indicate gaussian distributions. The
gaussian in the high value region corresponds to bright pixels caused by direct reflections

of light.

FIGURE 3.17: Hair color model for zero saturation pixels. The blue line indicates the
hair color model and the rest lines indicate the gaussian distributions which compose the

model.

with black or gray hair. However, the model can be extended for other people by
adding their hair images.

We make two images from an input image, one representing the similarity of
hair color and the other representing the magnitude of the gradient, and calculate
the pixel-wise product of the images. The pixel which has the highest product value
is considered as the sinciput of the person (see Fig. 3.18).

The sinciput position in the image is combined with the person position obtained
by the LRF-based tracking to calculate the person height. The relationship between
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Similarity to hair color
Sinciput
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FIGURE 3.18: Sinciput detection procedure.

the 3D coordinate relative to the camera (X, Y, Z) and the projected screen coordi-
nate (u, v) in the pinhole camera model is given by:

s

u
v
1

 =

 fx 0 cx
0 fy cy
0 0 1

X
Y
Z

 , (3.1)

where ( fx, fy) is the focal length, and (cx, cy) is the center point of the image. From
this equation, we obtain:

Y =
Z(v− cy)

fy
. (3.2)

The depth Z between the camera and the person is obtained by the LRF-based track-
ing, and v is the sinciput height in the image. By putting these values into eq. (3.2),
we obtain the persons height.

To reduce the effects of a failure of the sinciput detection, we apply a robust
estimation to the person height calculation. We adopt the M estimation with Tukey’s
biweight function [94] to estimate the person’s height.

3.2.5 LRF-based Person Identification

Gait Feature

In computer vision, gait recognition has been studied widely [85, 86, 95]. It is, how-
ever, difficult to apply their methods to mobile robots since they assume a static
background to extract silhouette images of a walking person. By using an RGB-D
camera, such as Kinect, we can separate the person region from the background re-
gion, and then extract gait features [96, 97]. However, Stone et al. reported that
the gait analysis using depth images shows a lower accuracy than those using RGB
images [96]. Furthermore, infrared depth cameras, like Kinect, are not usable in
outdoor scenes.
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supporting leg positions

step length

FIGURE 3.19: Accumulated range data of the legs of a walking person. High-density
regions are considered as the over around the supporting legs.

When a person is walking, the legs of the person swing and stop alternately. The
interval when a leg is stopping is referred to as stance phase, and the interval when
a leg is swinging is referred to as swing phase [98]. During the stance phase, the leg
which stops and supports the body of the person is referred to as a supporting leg.
If we can obtain the supporting leg positions (where the leg touches the ground),
we can calculate gait features, such as a step length and a stance width, from these
positions.

Nakamura et al. [89] proposed a method of detecting the supporting leg posi-
tions from LRF data. They observed the legs of walking persons by several LRFs
from different directions at a railway station and accumulated range data over time.
Since the supporting leg positions have high accumulated values, they are extracted
by Mean shift method [99]. Fig. 3.19 shows an example accumulation of range data;
supporting leg positions can be found at high-density positions. We basically use
their approach but a difference is that a mobile robot has a single viewpoint for LRF.
This causes occlusion of supporting legs by the other ones, which may degrade the
spotting of supporting leg positions in the accumulated range data.

We thus develop a method of reliably spotting support leg positions based on
maximum likelihood estimation which takes such occlusions into account.

Let X = [x1, y1, · · · , xn, yn] be positions of supporting legs, Y = [x′1, y′1, · · · , x′n, y′n]
be their observed positions, and Σ = [σ2

1 , · · · , σ2
n ] be the observation variances. The

Likelihood function L is defined as:

L =
n

∏
i=1

1
2πσ2

i
exp

(
−
(x′i − xi)

2 + (y′i − yi)
2

2σ2
i

)
. (3.3)

We minimize the following objective function J.

J = − log L,

=
n

∑
i=1

log 2πσ2
i +

n

∑
i=1

1
2σ2

i

{
(x′i − xi)

2 + (y′i − yi)
2} .

(3.4)

Since the step length of a person at a stationary walk is constant [95], we assume that
and obtain:
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(xi+1 − xi)
2 + (yi+1 − yi)

2 = const.,
i = (1, 2, · · · , n− 1).

(3.5)

From this equation, we obtain the following constraint function gi:

gi =(xi+1 − xi)
2 + (yi+1 − yi)

2−
(xi − xi−1)

2 − (yi − yi−1)
2 = 0,

i = (2, 3, · · · , n− 2, n− 1).

(3.6)

According to the method of Lagrange multiplier, we define the following function.

F = J −
n−1

∑
i=2

λigi. (3.7)

Then we find a set of leg positions which satisfies the following equations:

∂F
∂xi

= 0,
∂F
∂yi

= 0,
∂F
∂λi

= 0. (3.8)

The partial differentiations of F are introduced as following equations. Note that
λi = 0 for i ≤ 0.

∂F
∂xi

= − 1
πσ2

i
(x′i − xi)− 2λi(xi+1 − xi)

+2λi−1(xi+1 − xi−1)− 2λi−2(xi − xi−1), (3.9)
∂F
∂yi

= − 1
πσ2

i
(y′i − yi)− 2λi(yi+1 − yi)

+2λi−1(yi+1 − yi−1)− 2λi−2(yi − yi−1), (3.10)
∂F
∂λi

= x2
i+2 − 2xi+1(xi+2 − xi)

−x2
i + y2

i+2 − 2yi+1(yi+2 − yi)− y2
i . (3.11)

We use five walking steps for estimation of supporting leg positions and the
duration of the observation is about 2.5 [sec]. We assume that the walking speed is
constant for this duration.

When the robot observes a walk from a side position, a leg on the robot side is
always visible while the other is sometimes occluded. We thus give the observation
of the supporting leg on the robot side a small variance (i.e., high reliability) and that
of the other leg a large variance (low reliability).

Fig. 3.20 shows how to determine the side of a supporting leg. We draw a line ev-
ery two positions and see if the point between them is on the same side as the robot.
In the case of the figure, pt−1 is given a small variance while pt a large variance.

We use the pair of step length and walking speed as the gait feature since those
are determined by physical characteristics of the person (e.g. weight, height, and
lengths of limbs) and specific to an individual [95].

Gait Estimation Evaluation

We describe an evaluation of our gait estimation method. We placed markers evenly
on the ground every 0.6 m and a person walked by stepping at every marker so that
we could obtain a constant step length. The robot observed the walk both from the
front and the side of the person for comparison.
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Robot
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FIGURE 3.20: Assigning reliabilities to the measurement of supporting legs.

(A) Estimation from observation from side of a person.

(B) Estimation from observation from front of a person.

FIGURE 3.21: Estimated step length.

When the robot observes the person from the side (see Fig. 3.21(a)), the mea-
sured step lengths fluctuate due to the occlusion of the supporting leg. The effect of
occlusion is then largely reduced by the proposed estimation method. On the other
hand, when the robot observes from the front (see Fig. 3.21(b)), the measured step
length is much more stable since no occlusions occur.

Table 3.3 summarizes the evaluation. The fluctuation of the observation from the
side is larger than the observation from the front obviously due to the occlusion. The
proposed estimation could reduce the fluctuation in the both cases.

Gait Identification Experiment

A gait identification experiment was conducted. We recorded gait data of about 30
steps long (about 20 seconds long) for eight persons at a normal walking speed as a
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TABLE 3.3: Step length estimation result.

w/ estimation w/o estimation
No. of data mean [m] SD [m] mean [m] SD [m]

observation from side 42 0.6006 0.01387 0.5988 0.06469
observation from front 32 0.6078 0.00862 0.6049 0.0114
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FIGURE 3.22: Observed gait data.

TABLE 3.4: Gait-based Identification Results.

A B C D E F G H

A 0.946 0.486 0.000 0.676 1.000 0.054 1.000 0.270

B 0.711 0.658 0.553 0.789 0.184 0.947 0.500 0.474

C 0.361 0.667 0.944 0.694 0.056 0.722 0.167 0.972

D 0.978 0.609 0.022 0.848 0.761 0.500 0.783 0.174

E 0.564 0.231 0.000 0.103 1.000 0.000 1.000 0.282

F 0.854 0.563 0.375 0.833 0.313 0.917 0.500 0.542

G 0.878 0.366 0.000 0.805 0.780 0.512 0.854 0.268

H 0.529 0.412 0.882 0.500 0.118 0.824 0.206 0.882

model
test data

training set and constructed a classifier for each person using online boosting [78].
In the experiments, the number of weak classifier selectors is five and each selector
contains ten weak classifiers. Fig. 3.22 shows the gait data for training; we can see
some persons (e.g., persons C, E, and H) have distinctive gaits.

We recorded another set of data in the same settings for evaluating the identifi-
cation performance. Table 3.4 shows the result of the experiment. The first row indi-
cates the constructed models, and the first column indicates the test data. Each cell
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(A) Experiment 1. Persons with the similar
heights and the different color clothes.

(B) Experiment 2. Persons with the different
heights and the similar color clothes.

(C) Experiment 3. Persons with the different
heights and the different color clothes.

FIGURE 3.23: The environments of the person identification experiment.

TABLE 3.5: Precision of person identification.

height gait color
all features all features
(traditional) (proposed)

exp. 1 0.542 0.712 0.949 0.949 0.966
exp. 2 0.924 0.532 0.684 0.937 0.937
exp. 3 0.810 0.726 0.903 0.921 0.948

indicates the acceptance rate of the test data by the constructed model. For model
C and D, the correct person shows a higher identification rate than the others. For
model A, B, E, F, and H, the correct person’s are the second highest. These results
show that the gait feature is mostly effective to identify a person or to reduce the
number of possible identities of a person.

The model B, however, shows the lower identification rate for the correct person,
since the gait data of person B is in the most dense area. It is difficult to identify the
person using only the gait feature in some cases, such as person B. This will be dealt
with by combining with the other features.

3.2.6 Experiments

Person Identification Experiment

In order to compare the effectiveness of the features, we conducted person identi-
fication experiments. In the experiments, two people walk side by side while the
robot is controlled manually and follows both persons and measures their person
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features. To evaluate the effectiveness of the each feature, five person classifiers are
constructed. These classifiers use the following features, respectively.

1. Height feature

2. Gait feature

3. Color feature

4. All proposed features with the traditional joint feature approach

5. All proposed features with the proposed joint feature approach

For the classifiers with all the proposed features, we tested two methods: one with
a traditional joint feature approach and the other with the proposed one. In the all
experiments, online boosting contains 10 weak classifier selectors, and each selector
contains 10 weak classifiers.

The experiments are conducted in three different cases (see Fig. 3.23); two per-
sons are with similar colors and different heights in case (a); those with different
colors and similar heights in case (b); those with different colors and heights in case
(c). The learning process of the classifier with all the proposed features takes about
20 msec long for one person. We tested the proposed system in this experiment,
and calculate the precision of the identification. Table 3.5 shows the result of the
experiments.

The classifiers using a single feature show a good precision in specific cases but
not in the others. The classifiers with all the proposed features show superior per-
formances in all cases. In addition, the classifier with the proposed joint feature
shows equal or greater precision than the one with traditional one. This shows the
effectiveness of the proposed joint feature.

Person Identification Experiment in Severe Illumination Environments

We conducted person identification experiments for two target persons and for two
different illumination environments. Fig. 3.24 shows snapshots of the experiments.
In experiments 1 and 3, most of the persons were wearing similarly colored clothes
and sometimes entered shadowed areas. In experiments 2 and 4, color information
is almost lost due to a strong backlight. In all cases, it is very difficult to identify the
target person using color information only.

Fig. 3.25 shows snapshots of the experiment 2; The experiment was conducted in
the most severe illumination environment. Green rectangles in the images indicate
detected persons and the red triangles above them indicate the target person. At the
beginning of the experiment, the robot learned the features of the target person and
created a person classifier (Fig. 3.25 (a)), and then some persons occluded the tar-
get person (Fig. 3.25 (b)(c)). The LRF-based tracker failed to track the target person
several times due to the occlusion of the person (Fig. 3.25 (d)(e)). The robot how-
ever, found the correct target person using the person classifier, and resumed correct
tracking (Fig. 3.25(f)). In this experiment, the robot successfully continued to track
a specific person in spite of temporarily-lost situations thanks to the height and the
gait feature.

Table 3.6 shows the result of the four experiments. The total time for the exper-
iments was about 765 [sec] and the target person was occluded by others 43 times
through all of the experiments. The robot lost track of the target person 16 times due
to occlusions. The person classifier, however, found the correct target person and
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(A) Experiment 1. Direct light condition. Tar-
get person is subject A.

(B) Experiment 2. Backlight condition. Target
person is subject A.

(C) Experiment 3. Direct light condition. Tar-
get person is subject B.

(D) Experiment 4. Backlight condition. Target
person is subject B.

FIGURE 3.24: The environments of the person identification experiment.

TABLE 3.6: Result of the experiments in the severe environments.

exp. 1 exp. 2 exp. 3 exp. 4 total
time [sec] 157 213 195 200 765
occlusion of the target [times] 11 11 8 13 43

successfully tracked [sec] 128 168 167 157 620 (81.0%)
lost track of the target [sec] 29 45 22 43 139 (18.2%)
tracked wrong person [sec] 0 0 6 0 6 (0.8%)
lost track of the target [times] 3 6 3 4 16
wrong association [times] 0 0 1 0 1

successfully tracked [sec] 128 102 74 105 409 (53.5%)
lost track of the target [sec] 29 61 24 21 135 (17.6%)
tracked wrong person [sec] 0 50 97 74 221 (28.9%)
lost track of the target [times] 3 1 1 2 7
wrong association [times] 0 0 1 0 1
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resumed the tracking every time. The robot tracked a wrong person as the target
for 6 [sec] (0.8% of the experiments) due to a wrong data association. However, that
person was then judged not to be the target and the robot then found the correct
person. Among the rest of the time, the robot correctly tracked the target person for
620 [sec] (81.0%) and looked for him while calculating the gait feature values for 139
[sec] (18.2%)
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(A) (B)

(C) (D)

(E) (F)

FIGURE 3.25: Person identification experiment in a severe illumination environment:
Red triangles above green rectangles indicate the identified target person.

The person classifier with only the color feature was also tested in the exper-
iments. The robot with the classifier successfully tracked the target person in ex-
periment 1. In the other experiments, however, the robot tracked wrong persons in
many frames (221 [sec] (28.9%)) due to severe illumination environments.

3.2.7 Person Following Framework

Tracking Strategy

The LRF-based tracking method described above may sometimes fail to track the
target person. The robot has to be able to recover from such a failure situation. We
therefore define three states which switch in the operation as follows (see Fig. 3.26).

In the initial state, the robot measures the person features while following the
target person. If a sufficient number of person features are measured, the robot
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the target person is lost

a person judged as the target person is found

learning tracking temporary lost

the person features are measured enough

FIGURE 3.26: State machine for person following behavior.

constructs a person classifier from the features and transits to the tracking state. In
the tracking state, the robot performs the usual tracking and identification. When the
LRF-based tracking loses the target, the robot transits to the temporary lost state. In
this state, while the robot is looking for the target person using the person classifier,
the position of the target person is predicted from the most recent person movement,
and the robot moves toward the position. If a person is judged as the target, that is,
the target person is re-identified, the robot transits to the tracking state.

Person Following Experiment

We applied the proposed system to person following experiment. The experiment
was conducted in both indoor and outdoor environments. The experimental en-
vironment is a public space in Toyohashi university of technology, and there were
many ordinary persons. Fig. 3.27 shows snapshots of the experiment. The left im-
ages show experimental scenes. The right images show the images captured by the
robot. The rectangular region in the upper right corner of the right images indicates
range data and the conditions of the LRF-based tracker. The circles in the region in-
dicate the tracked persons by the LRF-based tracker. The circles under the persons in
the images also indicate the position of the tracked persons. Green rectangles in the
images indicate detected person regions and the red triangles above them indicate
the target person.

The experiment started in a populated outdoor environment. The robot followed
a target person while measuring his features (Fig. 3.27(a)). Then, the robot con-
structed the person classifier and continued the following behavior. Several persons
walked with the target person, and often occluded the target person (Fig. 3.27(b)).
The LRF-based tracker lost the target person due to the occlusion (Fig. 3.27(c)). The
green circle in the upper right rectangular region in the right image of Fig. 3.27(c)
indicates the predicted target person position to witch the robot was moving. Once
the target person appeared and walked for several steps (Fig. 3.27(d)), the robot re-
alized that the person was the correct target to track (Fig. 3.27(e)). After the robot
followed the person for a while, the target person moved to the indoor environment
(Fig. 3.27(f)). While the person and the robot were moving into the indoor envi-
ronment, a strong illumination change occurred (Fig. 3.27(g)) and the target person
was also occluded by another person (Fig. 3.27(h)). However, the robot success-
fully found the target person (Fig. 3.27(i)(j)). After that, the person returned to the
outdoor environment and continued the following behavior (Fig. 3.27(k)(l)).

The duration of the experiment is 920 [sec], and the LRF-based tracker lost the
target person 11 times due to occlusions. However, the robot re-identified the target
every time and successfully continued to follow the target throughout the experi-
ment. The average re-identification time after the person appeared was 5.6 [sec].
Since during that time, the robot kept moving towards the predicted position of the
target, it was able to find the target when he appeared again.
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

(K) (L)

FIGURE 3.27: The person following experiment.
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3.3 Person Identification based on Foot Strike Timings

3.3.1 Related Work on Wearable Device-based Person Identification

Many previous works use a combination of laser range finders (LRFs) and cameras
for person tracking and identification by mobile robots [69, 28, 14]. In these works,
a robot learns the appearance of the target person from cameras and uses them for
identifying the person. However, if the appearance of the target person changes
drastically while the person is occluded by other persons or obstacles, it is difficult
for the robot to find the correct person again using only the image. If we use a device
for identification and the target person holds the device, we can realize a person
identification which does not suffer from any environmental changes and persistent
occlusions of the target person.

Some works propose person identification methods using environment sensors
and an IMU (Inertial Measurement Unit) [100, 101]. They place multiple static sen-
sors, such as a camera and an LRF, in an environment and attach an IMU to the
target person. These methods measure the walking pattern of the target person us-
ing the IMU and those of all persons in the environment using the sensors. Shiomi
et al. [100] use depth cameras as environment sensors. They calculate persons’ ac-
celeration using the depth cameras and the IMU, and classify the persons’ states into
moving or stopping. By matching the states obtained by the depth cameras and the
IMU, they identify the target person. Ikeda et al. [101] put LRFs in an environment,
and tracked the legs of all the persons in the environment. They estimate the ac-
celeration of the legs and compare them with the acceleration obtained by the IMU.
By calculating the signal correlation between the accelerations, they find the person
holding the IMU among others. However, we cannot apply these methods to mobile
robots directly since multiple static sensors are not available.

3.3.2 System Overview

Here, we propose a person identification method based on the matching of foot
strike timings for mobile robots. We estimate the foot strike timings of the target
person using a smartphone held by the person and LRFs on the robot. By matching
these data, the robot can reliably identify the target person in the LRF data.

Fig.3.28 shows an overview of the proposed system. The robot is equipped with
two LRFs, and the target person puts a smartphone in their pocket. The smartphone
is connected to the robot via wifi. The system first detects and tracks all persons
around the robot using the top LRF, and then estimates foot strike timings for each

LRF

Smartphone

Foot strike timings

Sensors

Walking patterns

Person Detection
Person Tracking

Comparing

Foot strike timings

Stopping conditions

Stopping conditions

Walking patterns

Person Recognition

for each
tracked
persons

FIGURE 3.28: System overview.
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supporting legs

LRF 1m

FIGURE 3.29: Accumulated range data of the legs of a walking person.

person using the bottom LRF. It also estimates the foot strike timings from the accel-
eration of the smartphone, and compares it with the timings of all tracked persons
to identify the target person. When the target person is stopping, however, the foot
strike timing is not available. We therefore judge if a person is stopping by using the
LRFs and the smartphone, and the stopping states are also compared to estimate the
target person. Note that the top LRF is used just to simplify the data association for
people tracking. Therefore, this method essentially requires only one LRF placed at
a leg height.

We define a dissimilarity measure for the foot strike timings and the stopping
states from the LRFs and the smartphone, and calculate the likelihood that each
person is the target. This information is integrated over time using the Bayesian in-
ference, and the person with the highest posterior probability is judged as the target.
When the LRF-based tracker loses the target person due to, for example, occlusion,
it stops the estimation and starts re-identification of the target person among all sur-
rounding persons.

3.3.3 Estimation of Foot Strike Timings and Stopping State using LRFs

The method first detects the positions of the supporting legs of a walking person
from LRF data and then estimates the strike timing from a time period where a foot
is near each supporting leg position.

Fig. 3.29 shows an example of accumulated range data of a walking person ob-
tained from the LRF placed at a leg height. The supporting legs of the person appear
as high-density regions of range data. According to Nakamura et al. [89], we extract
the supporting legs by spotting high-density regions using Mean Shift [99]. We then
estimate the actual positions of the supporting legs using the maximum likelihood
estimation described in Sec 3.2. We use five steps for the estimation of supporting leg
positions. We assume that the walking speed is constant throughout the duration.

To estimate foot strike timings from the positions of the supporting legs, we
count the number of the range data around a supporting leg at each frame, and ex-
amine how the number changes over those frames. Fig. 3.30 (a)(b) show the change
of the numbers of range data for both legs. Each cluster corresponds to a foot strike.
We treat the number as a weight and consider the weighted mean of times as a strike
timing. Fig. 3.30 (c) shows the estimated foot strike timings.

The stopping state of a person is determined by the walking speed measured by
the LRF-based tracking. If the speed of a person is less than a specified threshold
(currently, 0.3 [m/sec]) the person is considered to be stopping.
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(A) Change of the number of range data for one leg.

(B) Change of the number of range data for the other leg.

(C) Estimated foot strike timings.

FIGURE 3.30: Estimating foot strike timings using LRFs.

3.3.4 Estimation of Foot Strike Timings and Stopping State using a Smart-
phone

While a person is walking, the body of the person moves up and down periodically.
By detecting the peak of the acceleration of the body, we can find the foot strike tim-
ings. We use a method proposed by Li et al. [102]. They first apply an FIR low-pass
filter to the acceleration data obtained by a smartphone, and then detect the peak
of the filtered acceleration using two threshold values ∆t and ∆a (see Fig. 3.31(b)).
Since their method does not depend on the position of the sensor, the smartphone
can be held at any location on a person; the person can put a smartphone in a pocket
or hold it in the hand. Fig. 3.31 shows an example of the acceleration of a smart-
phone placed in the chest pocket and the estimated foot strike timings from it. We
set the cutoff frequency of the low-pass filter 3 [Hz], ∆t = 0.2 [sec], and ∆a = 1.5
[m/s2].

The stopping state of a person is determined when the smartphone is judged as
being stationary for a certain period of time. We use Jimenez’s method [103], which
uses simple thresholds of acceleration and angular velocity to judge if a sensor is
stationary or not. If the smartphone is judged as stationary for 1.0[sec], we consider
that the person who has the smartphone has stopped.

Fig. 3.32 shows an example of foot strike timings and stopping states when a
person walks for several seconds and then stops and walks again.
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(A) Raw acceleration.

Δt

Δa

(B) Low-pass filtered acceleration.

(C) Estimated foot strike timings.

FIGURE 3.31: Estimating foot strike timings using a smartphone.

3.3.5 Data Integration for Person Identification

Stopping states and foot strike timings are obtained by a smartphone for the target
person and by LRFs for all persons. We compare each person’s data with those of
the target to find the best-matched person in the LRF data. For this purpose, we
define the dissimilarity of the stopping states and the timings, which is then used
for defining the likelihood function. The likelihood function is used for applying the
Bayesian estimation to the target identification.

Dissimilarity Measure between LRF and Smartphone Data

To compute the dissimilarity between foot strike timings, we first associate the tim-
ings by LRF and those by a smartphone by finding the closest LRF timing for each
smartphone timing. We calculate the mean of the time differences between the asso-
ciated timings, and use it as the dissimilarity measure.

The dissimilarity between stopping states by LRF and smartphone is calculated
by the difference between the binary patterns of stopping. We set a time window
and measure the total time duration where the LRF and the smartphone patterns are
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IMU

Smartphone

FIGURE 3.32: Foot strike timings and stopping states obtained by LRFs and a smart-
phone.

TABLE 3.7: Dissimilarity of foot strike timings and stopping state

target person other persons
foot strike stopping foot strike stopping

# of data 381 472 1483 2486
mean 63.6 [msec] 0.0585 144.8 [msec] 0.3005

std. dev. 28.6 [msec] 0.0898 68.2 [msec] 0.2650

different. The duration is normalized by the width of the time window and used as
the dissimilarity measure. We set the time window size to 5 [sec].

Table 3.7 gives statistics of dissimilarity values for foot strike timings and stop-
ping states. This is obtained from the real experiments which were conducted under
the same settings used in Sec. 3.3.6. The dissimilarities of the target person is much
smaller than the dissimilarities of the others.
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Bayesian Estimation for Person Identification

The target person usually shows low dissimilarities and the others high dissimilar-
ities. The target person, however, sometimes shows a high dissimilarity due to a
lack of range data or measurement errors. For a robust tracking, we use a Bayesian
estimation for determining the target person.

Let p(xi) be the prior probability that the ith person in the LRF data is the target
person. We define the likelihood of person xi for an observed dissimilarity value y
as:

p(y|xi) = exp (−cy) , (3.12)

where c is a constant. We calculate the likelihood values for the foot strike timing
and the stopping state, and the multiplication of the two likelihood values is used as
the likelihood p(y|xi). Then the posterior probability p(xi|y) is given by:

p(xi|y) = αp(y|xi)p(xi), (3.13)

where α is the normalization constant. The probability is updated every 100 [msec].

Re-detection of the Target Person

If the LRF-based tracking loses the target person, Bayesian estimation stops tem-
porarily and the system starts to re-detect the person. This re-detection is done while
the target person is walking, by searching for a person whose foot strike timings by
LRFs are close enough with those by a smartphone to a high confidence.

We consider that a pair of foot strike timings matches if their difference is less
than a threshold thtm. Then, if the foot strike timings of a person (by LRFs) and
those of the target person (by a smartphone) have at least nsim matched frames in
ntest consecutive frames, that person is considered as the target. We determine these
three parameters as follows.

Fig. 3.33 shows relationship between the matching threshold thtm and the match-
ing rate of timings for the actual target person and other persons. We calculated the
matching rate from a real data sequence. The experimental setting is the same as the
one used in Sec. 3.3.6. In the experiments, we placed a smartphone in two difference
locations, a trousers pocket and a chest pocket. As the threshold increases, the rates
increase, but that for the target person much more rapidly increases. When we put
the smartphone in the trousers pocket, the matching rate of the target person is less
than the chest pocket case. It is strongly affected by the attached leg and the foot
strike of the opposite leg becomes difficult to detect. Even in the case of the trousers
pocket, however, since the matching rate of the target person is significantly larger
than the others, it can be used for identifying the target person.

According to binomial distribution, we can calculate the probability that a person
is identified as the target from the matching rate and arbitrarily nsim and ntest as:

pident(p, nsim, ntest) =
ntest

∑
i=nsim

(
ntest

i

)
pi(1− p)ntest−i, (3.14)

where p is the matching rate of the foot strike timings of the person. We calculate
the probability where the correct person is identified as the target (true positive rate)
and where another person is identified as the target (false positive rate).

In order to determine the appropriate parameters, we set the target true positive
rate as 80 % and the target false positive rate as 5 %. Table 3.8 shows examples of
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FIGURE 3.33: Matching rate.

TABLE 3.8: Candidate parameters

threshold nsim ntest true positive false positive
70 [msec] 3 4 0.814 0.045
70 [msec] 4 5 0.831 0.027
90 [msec] 4 5 0.897 0.049
90 [msec] 5 6 0.857 0.019
90 [msec] 6 7 0.814 0.007
70 [msec] 6 9 0.910 0.008

the candidate parameters which meet the criteria. As shown in Table 3.8, if we set
nsim and ntest large enough (it means focusing on the person for a longer number of
seconds), we can obtain a better re-detection performance.

For mobile robots, however, there is a limitation on re-detection time, because
the target person may get far away from the robot while the robot is trying to re-
detect the person. We, therefore, choose parameters nsim = 3 and ntest = 4; then,
the true positive rate and the false positive rate are estimated to be 0.814 and 0.045
respectively, and the minimum time for re-detection will be about 1.5 [sec].

Comparison with the Previous Method

We compare the identification performances of the proposed method and our previ-
ous method which uses an IMU attached on a leg of the target to detect foot strike
timings [22]. We define the identification performance as the harmonic mean of the
true positive rate and the inverse of the false positive rate:

performance =
2TP · (1− FP)
TP + (1− FP)

, (3.15)
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FIGURE 3.34: Relationship between the identification time and the identification perfor-
mance.

TABLE 3.9: Results of the person identification experiment

duration [sec]
smartphone IMU

chest trousers foot
successfully tracked 135.5 128.2 121.8

lost track
target appears 44.6 49.1 56.6

target not appears 28.3 24.5 27.7
tracked wrong person 0.0 6.6 2.3

average identification time 3.4 3.5 4.7

and we define the identification time as the average of the minimum identification
time (nsim) and the maximum identification time (ntest):

identification time = Tstep
nsim + ntest

2
, (3.16)

where Tstep is the cycle time of foot strike. Since the proposed method uses the foot
strike timings of both legs and the previous method uses only one leg, we set Tstep
of the proposed method to 0.5 [s] and the previous method to 1.0 [s].

Fig. 3.34 shows the relationship between identification time and identification
performance. The identification performance values shown in Fig. 3.34 are the best
ones among those with the same identification time. As shown in Fig. 3.34, if we take
a longer identification time, we can obtain better performance. Since the proposed
method can obtain more foot strike timings than the previous method in a certain
period, it shows a better identification performance than the previous method.
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(A) (B)

(C) (D)

FIGURE 3.35: Person identification experiment. The person wearing the yellow jacket
is the target person; he placed two smartphones, one in his chest pocket and one in his
trousers pocket and an IMU on his foot. Circles under persons indicate their positions
obtained by LRF-based tracking, red triangles indicate the target person and green, blue,
and red bars indicate the posterior probabilities of each person, the likelihood of the foot

strike timings, and the likelihood of the stopping state, respectively.

3.3.6 Experimental Results

Person Identification Experiment

We conducted a person identification experiment. In the experiment, the target per-
son held two smartphones (FREETEL FTJ152B, MediaTek accelerometer is embed-
ded), one in his trousers pocket and one in his chest pocket and attached an IMU
(ZMP IMU-Z2) to his foot. We used two LRFs (HOKUYO UST-20LX) to track peo-
ple and estimate their foot strike timings. We apply the proposed method to those
smartphones and our previous method to the IMU.

Fig. 3.35 shows snapshots of the experiment with the smartphone in the chest
pocket. The person wearing the yellow jacket is the target person. Circles under per-
sons indicate their estimated positions obtained by the LRF-based tracking. Green,
blue, and red bars indicate the posterior probabilities that a person is the actual tar-
get, the likelihood of the foot strike timings, and the likelihood of the stopping state,
respectively. Red triangles on a person indicate that the person is tracked as the
target.

The target person and the other persons entered the field and walked around
(Fig. 3.35 (a)), and then the target person was lost by the LRF-based tracking due to
occlusions (Fig. 3.35 (b)(c)). Once the target person appeared again and walked sev-
eral steps, however, the target person was re-detected and the tracking was resumed
(Fig. 3.35 (d)). During the experiment, the robot lost the track of the target a total of
12 times due to occlusions. The target person was, however, successfully re-detected
in every case.

Table 3.9 shows the result of the experiment. The total time of the experiment
was 208.4 [sec]. In the case of the smartphone in the trousers pocket, while the



3.3. Person Identification based on Foot Strike Timings 53

target person is hidden by other persons, wrong persons are re-detected as the target
twice. However, the system realized that the person is not the target by the Bayesian
inference and soon tracked the target person again. Since we used parameters which
are optimized for a smartphone in a chest pocket, the identification performance in
the case of the trousers pocket is a little worse than in the case of the chest pocket. If
we optimize the parameters for a smartphone in a trousers pocket, we could improve
identification performance.

Since the previous method takes longer identification time than the proposed
method, its duration of target loss is longer than the others. It shows that the pro-
posed method has improved its responsiveness from the previous method.

During the experiment, the whole procedure except visualization took less than 1
[msec] per frame. Since the processing cost is very low, the method can be extended
to track multiple targets by using a smartphone of every target person.

Person Following Experiment

We applied the person identification method to a person following task. While the
robot is tracking the target person, it moves toward the person. If the track of the
person is lost, the robot moves toward the target person position predicted from the
latest observed position and the velocity of the person in order to keep the robot
close to the person. We used a path planning method by proposed Ardiyanto and
Miura [17] to make the robot avoid obstacles while following the person.

Fig. 3.36 shows snapshots of the person following experiment. During the exper-
iment, the robot lost the target person several times due to occlusion by others (Fig.
3.36 (b)). However, once the target person appeared and walked for several steps,
the robot successfully re-detected him among the others and continued to follow
him (Fig. 3.36 (c)).
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(a)

(b)

(c)

FIGURE 3.36: Specific person following experiment: The left column shows experiment
scenes and the right column shows view of the camera on the robot. The meanings of the

markers (triangle, circle, bars) are the same as in Fig. 3.35.
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Chapter 4

A Portable People Behavior
Measurement System using a 3D
LIDAR

Measuring and analyzing people behavior are essential to construct human social
models, such as awareness estimation models. Here, we propose a system for long-
term and wide-area people behavior measurement using a 3D LIDAR. In this chap-
ter, we also provide the result of a field test conducted in Sawarabikai Fukushimura
hospital. In this test, we collected the behavior data of professional caregivers at-
tending elderly persons. Through this test, we analyzed how the professional care-
givers attend eldely persons. The measured behavior data is useful to make atten-
dant robots socially acceptable by letting them mimic the human behavior.

4.1 Motivation

Several models which describe the social interaction between persons, such as so-
cial distance [26] and social force model [25], have been proposed, and a number
of works have applied those models to service robots [20, 104, 21]. However, since
those models are based on the simple analysis of the distance between persons, they
cannot describe the influence of the surrounding environment and the other persons.
Such limitations may yield unnatural behavior of the robots in complex situations.
To realize a robot with natural and acceptable behavior, it is necessary to measure
person behavior in diverse situations and construct a sophisticated interaction be-
havior model.

There are several datasets which provide people behavior in indoor [105] and
outdoor environments [106, 107]. However, to our knowledge, no dataset provides
people behavior involving interaction between followed and following persons even
though such a situation is very common in daily services. Most of existing robots
just keep the distance to the target person constant, and this naive following strategy
could make people feel uncomfortable. We believe that it is necessary to measure
and analyze people attendant behavior to design the behavior of attendant robots,
and it triggered us to develop a system which enables long-term and wide-area peo-
ple behavior measurement and create a dataset which consists of real professional
human’s attendant behavior data.

Fig. 4.1 illustrates the proposed system for people behavior measurement. The
system is based on a 3D LIDAR, and a human observer carries the system and fol-
lows the persons to be observed while keeping them in the sensor view. The system
simultaneously estimates the sensor pose in a 3D environmental map and tracks the
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FIGURE 4.1: The proposed system to measure people behavior using a 3D LIDAR. The
observer carries the backpack with a 3D LIDAR and follows the persons to be measured.

target persons. The proposed system can be applied to long-term and wide-area
people behavior measurement tasks.

4.2 Related Work

Systems to measure people behavior can be categorized into two groups: 1) sys-
tems using static sensors which are fixed at the environment, and 2) systems using
wearable sensors attached to the target persons.

People tracking using static sensors, such as cameras and laser range finders,
have been widely studied. In particular, people tracking using cameras for surveil-
lance is a major research topic in the computer vision community. A lot of works
have proposed people detection [43] and tracking methods [108] using RGB cameras.
Recent inexpensive consumer RGB-D cameras allow us to reliably detect and track
people [28], and a camera network system for people tracking using RGB-D cameras
has been proposed [109]. Although such works provide reliable people tracking, a
capability of recovering the track of a person, who left the camera view once, is nec-
essary. This problem (i.e., person re-identification) has been one of the main research
topics of vision-based people tracking systems. A lot of re-identification methods
based on people appearance [93, 14, 23, 110], and soft biometric features [111, 112]
have been proposed. They enable reliable people re-identification over time and
over cameras.

Laser range finders have also been used for people tracking systems [90, 89].
Such systems can very accurately localize people, and the measurement area of each
sensor is larger than cameras. While the reliability and the detection accuracy of
those static sensor-based systems are very good, they can measure people behavior
only in an area limited by the sensor view. In order to cover a large environment,
they require the placement of a lot of static sensors, thereby increasing the time and
cost of installing and calibrating all the sensors.

Another way to measure the behavior of specific persons for a long time over
a wide area is to attach a wearable sensor to each target person and measure their
behavior with the sensor. Several kinds of sensors, such as INS (Inertia Navigation
System) and GPS (Global Positioning System), have been used for this purpose. Re-
cent small wearable GPS sensors allow us to track a person in outdoor environments,
and they have been applied to several applications of people behavior measurement
and analysis [113, 114]. As an application, GPS-based wearable devices for helping
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elderly or visually impaired people have been proposed [115, 116]. The combina-
tion of GPS and INS improves tracking accuracy under low-level GPS radio power
[117]. However, GPS signals are not available in places close to buildings and indoor
environments.

Recently, WiFi signal-based localization has been widely studied [118, 119, 120].
Some of them are based on triangulation of WiFi signal strength and show decimeter
or centimeter accuracy in ideal situations [118, 119]. However, they require to place
multiple antennas in the environment to accurately estimate the device position,
and thus, it is hard to be applied to a large environment. Other ones are based on
the matching of WiFi fingerprint matching [120]. While they do not rely on external
antennas and can be applied to large environments where WiFi signal is available,
the estimation accuracy is very limited.

Behavior measurement systems for indoor environments based on pedestrian
dead reckoning have also been proposed [102, 121]. Those methods estimate the
target person position by integrating acceleration and angular velocity obtained by
an INS (attached to the person). In order to prevent estimation drift, Li et al. com-
bined pedestrian dead reckoning with map-based localization [102]. Those methods
can keep track the position of the person as long as they hold the sensor. Since
they utilize smartphones which are very common and inexpensive in recent years,
those methods are cost effective and easy to adopt. However, since INS is an inter-
nal sensor and it cannot sense the surrounding environment, it is hard to accurately
measure the person position with respect to the environment and other persons po-
sitions. Thus, they cannot be applied to the measurement of the interaction between
persons and that of person’s behavior affected by the environment.

Velodyne HDL32e

posi on 
velocity 
etc.

O ine Online

FIGURE 4.2: System overview.
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4.3 System Overview

Fig. 4.2 shows an overview of the proposed system. In this system, the observer
carries the backpack equipped with a 3D LIDAR (velodyne HDL-32e) and a PC,
and follows the persons to be measured. The 3D LIDAR provides 360 degree range
data at 10 Hz, and from the range data, the system estimates its pose while tracking
the target persons. The process of the proposed system consists of two phases: 1)
offline environmental mapping and 2) online sensor localization and people detec-
tion/tracking.

In the offline mapping phase, we create a 3D environmental map which covers
the entire measurement area. For the mapping, we employ a graph optimization-
based SLAM approach (i.e., Graph SLAM [122]). In order to compensate accumu-
lated rotational errors of the scan matching, we introduce ground plane and GPS
position constraints for indoor and outdoor environments, respectively.

In the behavior measurement phase, the system estimates its pose on the map
created offline by combining a scan matching algorithm with an angular velocity-
based pose prediction using Unscented Kalman filter [63]. Simultaneously, the sys-
tem detects and tracks the target persons.

4.4 Offline Environmental Mapping

4.4.1 Graph SLAM

Graph SLAM is one of the most successful approaches to the SLAM problem. In
this approach, the SLAM problem is solved by constructing and optimizing a graph
whose nodes represent parameters to be optimized, such as sensor poses and land-
mark positions, and edges represent constraints, such as relative poses between sen-
sor poses and landmarks. The graph is optimized so that the errors between the
parameters and the constraints are minimized. Following [122, 123], let xk be the
node k. Let zk and Ωk be the mean and the information matrix of the constraints
relating to xk. The objective function is defined as:

F(x) = ∑ ek(xk, zk)
TΩkek(xk, zk), (4.1)

where, ek(xk, zk) is an error function between the parameters xk and the constraints
zk. Typically, eq. (4.1) is linearized and minimized by using Gauss-Newton or
Levenberg-Marquardt algorithms.

However, if the parameters span over non-Euclidean spaces (like pose param-
eters), those algorithms may lead to sub-optimal or invalid solutions. One way to
deal with this problem is to perform the error optimization on a manifold which is
a minimal representation of the parameters and acts as an Euclidean space locally.
In order to enable it, an operator � is introduced, which transforms a local variation
∆x on the manifold.

Typically, in the 3D SLAM problem, node xk has parameters of the sensor pose
at k (a translation vector tk and a quaternion qk). A manifold of the quaternion qk =
[qw, qx, qy, qz]T can be represented as [qx, qy, qz]T, and the operator � is described as:

qk � ∆q =
[√

1− ‖q′x + q′y + q′z‖2, q′x, q′y, q′z
]

, (4.2)

where, q′∗ = q∗ − ∆q∗.
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In the proposed system, we first estimate the sensor trajectory by iteratively ap-
plying NDT (Normal Distributions Transform) scan matching [124] between consec-
utive frames. For 3D LIDARs, NDT shows a better performance than other scan
matching algorithms, such as Iterative Closest Points [125], in terms of both the re-
liability and the processing speed [126]. Let pt be the sensor pose at t, consisting
of a translation vector t and a quaternion q, and rt, t+1 be the relative sensor pose
between t and t + 1 estimated by the scan matching. We add them to the pose
graph as nodes [p0, · · · , pN ] and edges [r0, 1, · · · , rN−1, N ]. Then, we find loops in
the trajectory and add them to the graph as edges (i.e., loop closure) to correct the
accumulated error of the scan matching with Algorithm 1.

Algorithm 1 Loop-detection

Input: P = {p0, . . . , pN}, pose nodes
Input: R = {r0,1, . . . , rN−1,N}, odometry edges
Output: L = {l0, . . . , lM}, loop edges

1: L ⇐ {}
2: for i = 0 . . . N − 1 do
3: C ⇐ {} . Loop candidates
4: accum_d⇐ 0 . Accumulated distance
5: for j = i + 1 . . . N do
6: d⇐ ‖pi.t− pj.t‖
7: accum_d⇐ accum_d + d
8: if d < thd and accum_d > tha then
9: Add loop candidate l = {pi, pj} to C

10: end if
11: end for
12: for l = {pi, pj} in C do
13: m⇐ scan_matching(pi, pj)
14: if m.score < ths then
15: L ⇐ L∪ {l}
16: end if
17: end for
18: end for

The loop detection algorithm is similar to [127]. First, we detect loop candidates
based on the translational distance and the length of the trajectory between nodes
(Line 2 ∼ 11). Then, to validate the loop candidates, a scan matching algorithm
(in our case, NDT) is applied between the nodes of each candidate. If the fitness
score is lower than a threshold (e.g., 0.2), we add the loop to the graph as an edge
between the nodes (Line 12 ∼ 17). Every time a loop is found, the pose graph is
updated such that eq. (4.1) is minimized. We utilize g2o, a general framework for
hypergraph optimization [123], for the pose graph optimization.

As a generated map gets larger, it tends to be bent due to the accumulated rota-
tional error of the scan matching (see Fig. 4.7). In order to compensate the error, we
introduce ground plane and GPS position constraints for indoor and outdoor envi-
ronments, respectively. Fig. 4.3 shows an illustration of the graph structure of the
proposed system.
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FIGURE 4.3: The proposed pose graph structure.

FIGURE 4.4: Ground plane detection. Points within a certain height range are extracted
by height thresholding (green points), and then RANSAC is applied to them to detect the
ground plane (red points). The horizontality of the ground plane is validated by checking

the plane normal.

4.4.2 Ground Plane Constraint

To reliably generate the map of a large indoor environment, we assume that the en-
vironment has a single flat floor, and introduce the ground plane constraint which
optimizes the pose graph such that the ground plane detected in each observation
becomes the same plane. This assumption is valid in many indoor public environ-
ments, such as schools and hospitals.

We assume that the approximate height of the sensor is known (e.g., 2m) and
extract points within a certain height range which should contain the ground plane
points (e.g., [-1.0, +1.0]m from the ground). Then, we apply RANSAC [128] to the
extracted point cloud and detect the ground plane. If the normal of the detected
plane is almost vertical (the angle between the normal and the unit vertical vector
is lower than 10 deg), we consider that the ground plane is correctly detected and
add a ground plane constraint edge to the graph. Fig. 4.4 shows an example of
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FIGURE 4.5: The experimental environment. The duration of the sequence is about 45
minutes, and the length of the trajectory is about 2400 m.

the detected ground planes. Green points are the points extracted by the height
thresholding, and red points belong to the ground plane detected by RANSAC. We
detect the ground plane every 10 seconds and connect the corresponding sensor
pose node pi with the fixed ground plane node where the plane coefficients π0 =
[nx, ny, nz, d]T = [0, 0, 1, 0]T.

To calculate the error between sensor pose pt and the ground plane π0, we first
transform the ground plane into the local coordinate of the sensor pose pt:

[n′x, n′y, n′z]
T = Rt · [nx, ny, nz]

T, (4.3)

d′ = d− tt · [n′x, n′y, n′z]
T, (4.4)

where, π′0 = [n′x, n′y, n′z, d′] is the ground plane in the local coordinate, and [Rt|tt] is
the sensor pose at time t.

Following Ma’s work [129], we employ the minimum parameterization τ(π) =
(φ, ψ, d), where φ, ψ, d are the azimuth angle, the elevation angle, and the length of
the intercept, respectively. The error between a pose node and the ground plane
node is defined as:

τ(π) =

[
arctan

(
ny

nx

)
, arctan

(
nz

|n|

)
, d
]

, (4.5)

ei,0 = τ(π′0)− τ(πt), (4.6)

where πt is the detected ground plane at t.

4.4.3 GPS Constraint

In outdoor environments where the ground is not flat, we use the GPS-based posi-
tion constraint instead of the ground plane constraint. For ease of optimization, we
first transform GPS data into the UTM (Universal Transverse Mercator) coordinate,
where a GPS data has easting, northing, and altitude values in a Cartesian coordi-
nate. Then, each GPS data is associated with the pose node, which has the closest
timestamp to the GPS data, as an unary edge of the prior position information.

The error between the translation vector tt of a pose node pt and a GPS position
Tt is simply given by:

ei = tt − Tt. (4.7)
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350m

FIGURE 4.6: The created environmental map. The color indicates the height of each point.
The height of the floor is consistent thanks to the plane constraint.

4.4.4 SLAM Framework Evaluation

In order to validate the proposed SLAM system, we recorded a 3D point cloud se-
quence in an indoor environment. Fig. 4.5 shows the experimental environment
and the trajectory of the sequence. The duration of the sequence is about 45 min-
utes (2700 sec), and the length of the trajectory is about 2400 m (estimated by the
proposed method).

For comparison, we generated 3D environmental maps using the proposed method
with and without plane constraints. We also applied existing publicly available
SLAM frameworks, BLAM [127] and LeGO-LOAM [130], to this dataset.

Fig. 4.7 shows the trajectories estimated by the different SLAM algorithms. BLAM
and LeGO-LOAM were aborted in the middle of the sequence when they failed to
estimate the trajectory and did not recover. BLAM failed to find the loops due to the
accumulated rotation error of the scan matching, and generated a warped and inac-
curate trajectory. Since LeGO-LOAM maintains the local consistence of the ground
plane between consecutive frames, the estimated trajectory is flatter than the one
estimated by BLAM. However, it still suffer from the accumulated rotational error
due to the lack of the global ground constraint. Eventually, it failed to estimate the
trajectory when the observer made a u-turn at the end of a narrow corridor.

With and without the plane constraint, the proposed method could construct
pose graphs properly thanks to the reliability of NDT, and it generated consistent
maps. However, without the plane constraint, the resultant map is warped due to
the accumulated rotational error which is hard to be corrected by loops on a plane.
With the ground plane constraint, the accumulated rotational error is corrected, and
the resultant map is completely flat. Fig. 4.6 shows the generated environmen-
tal map. The color indicates the height of each point. The floor has the consistent
height thanks to the plane constraint. The result shows that the proposed plane con-
straint is effective to compensate the accumulated rotational error in a large indoor
environment.

Table 4.1 shows the processing time of the proposed method and BLAM. The pro-
cessing time of LeGO-LOAM is not available here, since it provides only real-time
processing. While BLAM took about 15,327 [sec] to generate the map, the proposed
method took about 5,392 [sec] thanks to the computational efficiency of NDT.

We also validated the proposed method in an outdoor environment. Fig. 4.8
(a) shows the environment and the trajectory of the sequence. The duration of the
sequence is about 42 minutes (2500 sec). Fig. 4.8 (b) shows the map generated by the
proposed method with the GPS constraint. Although there were large undulations,
the system correctly found loops and constructed a proper pose graph thanks to the
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FIGURE 4.7: Comparison of the sensor trajectories estimated by the existing method and
the proposed method.

GPS constraint. Note that, without the GPS constraint, the system could not find the
loop due to the scan matching error and failed to create the environmental map.

4.5 Online People Behavior Measurement

In order to measure people behavior, the system simultaneously estimates the sen-
sor pose on the 3D environmental map and tracks people around the observer. Fig.
4.9 shows an overview of the online sensor localization and people tracking system.
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(A) The outdoor environment. The duration of the sequence is about 42 minutes, and the length of
the trajectory is about 3000 m.

(B) The 3D map of the outdoor environment generated by the proposed method with GPS con-
straints. The color indicates the height of each point.

FIGURE 4.8: The SLAM system validation in an outdoor environment.

By integrating angular velocity and range data provided by the LIDAR, the system
estimates the sensor pose. Then, it detects and tracks people to know people posi-
tions with respect to the environmental map. Note that the initial pose of the sensor
is given by hand to avoid the global localization problem.
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TABLE 4.1: Processing time of BLAM and our SLAM system.

method time [sec]

ours

scan matching 1542
floor detection 231
loop closing 3619
total 5382

BLAM total 15327

Velodyne HDL32e

Localiza on

People Tracking

posi on 
velocity 
etc.

FIGURE 4.9: The online sensor pose estimation and people detection and tracking system.

4.5.1 Sensor Localization

We can estimate the sensor ego-motion by iteratively applying a scan matching al-
gorithm as in the SLAM part. However, in contrast to the SLAM scenario, the ob-
server has to follow the target persons during the measurement and sometimes has
to move quickly to keep them in the sensor view. In such cases, the sensor motion
between frames gets very large and the scan matching may wrongly estimate the
sensor ego-motion due to the large displacement. In order to deal with this prob-
lem, we integrate the NDT scan matching with angular velocity data provided by
the 3D LIDAR using Unscented Kalman filter [63].

We define the sensor state to be estimated as:

xt = [pt, qt, vt, ba
t ]

T, (4.8)

where, pt is the position, qt is the rotation quaternion, vt is the velocity, ba
t is the bias

of the angular velocity of the sensor at time t. Assuming constant translational ve-
locity for the sensor motion model, and constant bias for the angular velocity sensor,
the system equation for predicting the state is defined as:

xt = [pt−1 + ∆t · vt−1, qt−1 · ∆qt, vt−1, ba
t−1]

T, (4.9)

where, ∆t is the duration between t and t− 1, ∆qt is the rotation during ∆t caused
by the bias-compensated angular velocity a′t = at − ba

t−1:

∆qt =

[
1,

∆t
2

ax
t
′,

∆t
2

ay
t
′
,

∆t
2

az
t
′
]T

. (4.10)
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With eq. (4.9), the system predicts the sensor pose by using Unscented Kalman
filter, and then applies NDT to match the observed point cloud with the global map
with the estimated xt and qt as the initial guess of the sensor pose. Then, the system
corrects the sensor state with the sensor pose estimated by the scan matching zt =
[p′t, q′t]

T. The observation equation is defined as:

zt = [pt, qt]
T. (4.11)

We normalize the quaternion in the state vector after each of the prediction and
correction steps to prevent its norm from changing due to the unscented transform
and the accumulated calculation error. It is worth mentioning that we also imple-
mented pose prediction which takes acceleration into account. However, the estima-
tion result got worse due to the strong noise on acceleration observations.

4.5.2 People Detection and Tracking

We first remove the background points from an observed point cloud to extract the
foreground points. Then, we create an occupancy grid map with a certain voxel size
(e.g., 0.5m) from the environmental map. The input point cloud is transformed into
the map coordinate according to the sensor pose estimated by UKF, and then each
point at a voxel containing environmental map points is removed as the background.
The Euclidean clustering is then applied to the foreground points to detect human
candidate clusters. However, in case persons are close together, their clusters may
be wrongly merged and are detected as a single cluster. To deal with this problem,
we employ Haselich’s split-merge clustering algorithm [131].

The algorithm first divides a cluster into sub-clusters until each cluster gets smaller
than a threshold (e.g., 0.45m) by using dp-means [132] so that every cluster does not
have points of different persons. Then, if there is no gap between those sub-clusters,
the clusters are considered to belong to a single person and re-merged into one clus-
ter. Fig. 4.10 shows an example of the detection results. The person clusters are
correctly separated even when they are very close together thanks to the split and
the re-merge process.

The detected clusters may contain non-human clusters (i.e., false positives). To
eliminate non-human clusters among detected clusters, we judge whether a cluster
is a human or not by using a human classifier trained with slice features by Kidono
et al. [30] and Adaboost [67]. Assuming that persons walk on the ground plane,
we track persons on the XY plane without the height. We employ the combination
of Kalman filter with the constant velocity model and global nearest neighbor data
association [35] to track persons. The tracking scheme works well as long as the
tracked persons are visible from the sensor and are correctly detected.

4.5.3 Sensor Localization Evaluation

To show how the pose prediction improves the sensor localization, we conducted a
sensor localization experiment. Fig. 4.11 shows the experimental environment. An
observer carries the system and moves along the corridor, and the system estimates
its pose from the range and angular velocity data. We conducted the experiment
twice. In the first trial, the observer walked (about 1.5 m/sec) to avoid the sensor
being moved quickly. In the second trial, the observer ran (about 3.0 m/sec) and the
sensor got shaken very strongly.

Fig. 4.12 shows the results of the first trial. Fig. 4.12 (a) shows the estimated
trajectories with and without the pose prediction. Since the observer moved slowly
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(A) Top view. (B) Bird’s eye view.

FIGURE 4.10: Haselich’s clustering algorithm. The green bounding box indicates the Eu-
clidean clustering result. Two persons are wrongly detected as a single cluster. The clus-
ter is divided into small sub-clusters (red bounding boxes) and then re-merged if there
is no gap between those sub-clusters. The blue bounding boxes are the final detection

result.

FIGURE 4.11: The experimental environment of the sensor localization experiment.

TABLE 4.2: The summary of the sensor localization experiment.

seq.
w/ prediction w/o prediction

error[m] error[deg] time[msec] error[m] error[deg] time[msec]
1st (walk) 0.0588 1.0913 38.88 0.1367 2.1625 40.06
2nd (run) 0.1851 4.2845 45.14 0.3330 6.6798 56.11

during the first sequence, both the results show the same correct trajectory. To assess
the effect of the sensor pose prediction, we assume that the trajectories estimated
by NDT are mostly correct, and we compare the predicted sensor poses with the
poses estimated by NDT since measuring the ground truth of the sensor trajectory
is difficult. Fig. 4.12 (b) and (c) show the difference between the predicted sensor
pose (initial guess pose) and the one estimated by NDT. In the case without the pose
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(A) Estimated trajectories.

(B) Difference between the predicted and the cor-
rected positions.

(C) Difference between the predicted and the
corrected rotations.

(D) Processing time.

FIGURE 4.12: The results of the first
trial of the sensor localization experi-
ment. The observer walked during the
trial (about 1.5 m/sec). Both the tra-
jectories with and without the angular
velocity-based pose prediction are cor-
rectly estimated. With the prediction, the
initial guess for NDT significantly gets

closer to the correct pose.

(A) Estimated trajectories.

(B) Difference between the predicted and the cor-
rected positions.

(C) Difference between the predicted and the
corrected rotations.

(D) Processing time.

FIGURE 4.13: The results of the second
trial of the sensor localization experi-
ment. The observer ran during the trial
(about 3.0 m/sec). Without the pose pre-
diction, the system could not correctly
estimate the pose due to the very quick

motion.

prediction, the previous matching result is used as an initial guess. With the pre-
diction, the translational and rotational pose prediction errors significantly decrease
thanks to the constant velocity model and the consideration of angular velocity, re-
spectively.

The results of the second trial are shown in Fig. 4.13. The system failed to es-
timate the sensor pose without the pose prediction (see. Fig. 4.13 (a)) since the ob-
server moved very quickly, and the sensor displacement between frames got larger.
The NDT matching took a longer time (about 56 msec per frame) without the pose
prediction since the large displacement between frames makes NDT need more iter-
ations to converge to a local solution. With the prediction, the matching took about
45 msec per frame thanks to the good initial guess (see Table 4.2). The results show
that the angular velocity-based pose prediction makes the pose estimation robust to
quick motions and fast to converge.

4.5.4 People Detection Evaluation

To analyze the effect of the split-merge clustering [131] and the human classifier [30],
we recorded a 3D range data sequence, in which two persons are close together and
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TABLE 4.3: The people detection evaluation result.

Split-merge Clustering [131] Human Classifier [30] precision recall F-measure
w/o w/o 1.000 0.834 0.909
w/o w/ 1.000 0.809 0.894
w/ w/o 0.902 0.995 0.946
w/ w/ 0.961 0.961 0.961

OpenPTrack
measurement area

FIGURE 4.14: The experimental environment and the configuration of RGB-D cameras
for OpenPTrack. Nine Kinect v2’s are placed in the corridor. While OpenPTrack can
measure only the limited area covered by cameras (about 2m × 20m area), the proposed

system can cover the whole of the floor.

walking side by side. It is a hard situation for the usual Euclidean clustering since
the persons’ clusters may be merged into a single cluster. The number of frames is
102, and we applied the human detection method with and without the split-merge
clustering and the human classifier to this sequence.

Table 4.3 shows the evaluation result. Without both the techniques, the recall
value is low (0.834), since clusters of the persons are sometimes detected as a single
cluster due to the Euclidean clustering. With the split-merge clustering, the wrongly
merged clusters are split into sub-clusters, and the recall value gets higher (0.995).
With both the split-merge clustering and the human classifier, over split sub-clusters
are eliminated by the classifier, and the highest F-measure value is achieved (0.961).
This result shows that, in situations where persons are close together, the split-merge
clustering [131] effectively increases the recall of human detection, and by combining
it with the human classifier [30], we can obtain reliable human detection results.

4.5.5 Comparison with a Static Sensor-based People Tracking System

In order to reveal the pros and cons of the proposed system, we compared the pro-
posed system with a publicly available static sensor-based people tracking frame-
work, OpenPTrack [109]. The framework is designed for people tracking using static
RGB-D cameras, and it is scalable to a large camera network. Moreover, it uses cost
effective hardware and is easy to setup. It has been operated by people including
non-experts in computer vision, such as artists and psychologists.
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TABLE 4.4: The difference of the observer and the subject positions measured by the
proposed system and OpenPTrack.

difference [m]
min max mean std. dev.

observer 0.0008 0.2126 0.0768 0.0448
subject 0.0035 0.2837 0.0990 0.0445

Fig. 4.14 shows the experimental environment and the configuration of the RGB-
D camera network. The map is created by the proposed SLAM method. We placed
nine Kinect v2’s so that they cover about 2m × 20m area. We calibrated the camera
network according to the procedure provided by OpenPTrack and then estimated
the transformation between the environmental map and the camera network by per-
forming ICP registration between point clouds of the Kinects and the environmental
map.

While a subject walked in the corridor, an observer carrying the proposed sys-
tem followed him. The trajectories of both the persons were measured by the pro-
posed system and OpenPTrack. Table 4.4 shows the summary of the differences
between the people positions measured by the proposed system and OpenPTrack.
The differences sometimes became larger (about 0.2 ∼ 0.3m) due to detection errors
of OpenPTrack at the border of the camera view. However, the difference is lower
than 0.1m on average, and the result shows that the measurement accuracy of the
proposed system and the static sensor-based people tracking system are comparable.

In summary, the tracking accuracy of the proposed portable system is compa-
rable to the static sensor-based system, and the measurement area of the proposed
system can be extended easily. For instance, the system can measure the people be-
havior over the whole area of the map shown in Fig. 4.6 (200 m × 50 m). We would
need hundreds of cameras to cover the whole area of the map if we used a static
sensor-based system in the environment. On the other hand, static sensor-based sys-
tems can measure behavior of all people in the covered area simultaneously while
the proposed system covers only the surrounding area. Thus, we can say that the
proposed system is suitable to measure the behavior of specific people over a large
area, while static sensor-based systems are suitable for behavior measurement of all
the people in a relatively small environment.

4.6 Field Test in a Hospital

4.6.1 Measuring Behavior of Caregivers Attending Elderly Persons

To show that the proposed system can be applied to real people behavior measure-
ments, we conducted a field test in Sawarabikai Fukushimura hospital. The hospital
is specialized for elderly care, and hundreds of elderly patients are hospitalized and
receiving care and rehabilitation in the hospital. Under permission granted by the
hospital, we recorded professional caregivers’ behavior while they attend elderly
persons with dementia. Fig. 4.15 shows a snapshot of the field test. The caregiver
attends the elderly to prevent accidents (such as stumbling, colliding, and falling)
and sometimes guides him/her to their room.

The number of sequences is 33, and the total duration is about 52 minutes. We
also recorded an attendant behavior sequence in an outdoor environment shown in
Fig. 4.8. The duration of the outdoor sequence is about 22 minutes. Note that, for
privacy reasons, we captured images during only the sequence shown in Fig. 4.15
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(A) Image. (B) Range data.

FIGURE 4.15: A snapshot of the field test. The behavior of the care giver attending an
elderly is recorded by using the proposed system.

elevator

(A) Hallway (1F).

elevator

(B) Ward (2F).

FIGURE 4.16: The environments of the field test.

(A) The distribution of the distance between the
elderly person and the care giver.

(B) The distribution of the relative position of the
care giver with respect to the elderly person.

FIGURE 4.17: An analysis of the people attending behavior during the field test in an
indoor environment.

with the special permission from the hospital, the subject, and his family. In the
other sequences, we recorded only range data. It is a merit of the proposed system
that it can measure people behavior without privacy problems.

Fig. 4.16 shows the created indoor environmental maps through the field test.
The elderly persons take rest at the dining hall on the first floor and then return to
their hospital room on the second floor with a caregiver using the elevator. After
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(A) All the trajectories of the
caregivers and the elderly per-

sons.

(B) An example of the cases
where the caregiver walks on

the outer side of the corner.

(C) The case where the care-
giver walks on the inner side of

the corner.

FIGURE 4.18: The trajectories of the caregivers (in orange) and the elderly persons (in
green) at a corner. The light blue lines indicate that the connected points are measured at
the same time. In most of the cases, the caregivers walked on the outer side of the corner
(15 of 17). In a few cases, the caregivers walked on the inner side. In such cases, they

preceded the elderly persons to ensure outlook of the corridor (2 of 17).

they ride the elevator, we switch the map from the one of the first floor to the second
floor.

During the measurement, there were other patients and objects, such as wheelchairs
and medicine racks, and the observer sometimes had to move quickly to keep the
subjects in sensor view. However, the proposed system could correctly localize itself
through all the sequences thanks to the wide measurement area of the 3D LIDAR
and the integration of the scan matching and the angular velocity-based pose pre-
diction.

Regarding people tracking, the system failed to keep track of the subjects when
a patient came between the observer and the subjects to be observed, and new IDs
were assigned to the subjects after they re-appeared. In such cases, the system noti-
fies that it lost the track of subjects, and we re-assigned correct IDs to them by hand.
Since we saw those cases only a few times, the system could keep track of the sub-
jects for the most part of the sequences, and we could re-assign all the IDs with the
minimum effort.

4.6.2 Preliminary Analysis of the Attendant Behavior

To show the possibility of the behavior analysis with the proposed system, we pro-
vide preliminary analysis of the measured behavior sequences.

Fig. 4.17 (a) shows the distribution of the distance between a caregiver and an
elderly person in the indoor environment. The distribution is unimodal, and the
peak is at about 0.6m. In proxemics, this distance is categorized as “Personal distance
(0.45m - 1.2m)”, and people allow only familiar people to be within this distance
[26] while they keep more distance (i.e., “Social distance (1.2m - 3.6m)”) when meet-
ing or interacting with unfamiliar people. It implies that people maintain a closer
relationship while attending another person comparing to usual people interaction,
such as meeting. Fig. 4.17 (b) shows the distribution of the caregivers’ position with
respect to the elderly persons. The caregivers usually locate at the side of the elderly
persons. In order to lead the elderly persons, they slightly precede the patients. The
distribution is a bit anisotropic: when a caregiver is following an elderly person, the
distance between them tends to be larger since the caregivers see the elderly person
and the surrounding environment at the same time. From this preliminary analysis
we can find that the caregivers decide their attending position in order to keep the
elderly person in the view and look ahead in the environment.
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(A) People trajectory.

(B) The caregiver’s walking speed (green), and altitude (blue).

FIGURE 4.19: The recorded attendant behavior in the outdoor environment.

Fig. 4.18 (a) shows the trajectories of the caregivers and the elderly persons at
a corner, and it also suggests the importance of visibility for deciding the attending
position. The number of the trajectories is 17. The caregivers tend to walk on the
outer side of the corner (15 of 17). We can consider that, by walking at the outer
side, the caregivers keep the outlook of the corridor to prevent accidents, such as
stumbling and colliding. The caregivers walk on the inner side in a few cases (2 of
17). However, they preceded the elderly persons in order to check the safeness before
the elderly persons enter the corner. These results suggest that the caregivers always
check the existence of other surrounding people and objects, such as wheelchairs, to
prevent accidents.

Fig. 4.19 (a) shows the recorded trajectories in the outdoor environment. In this
sequence, the elderly was fine to walk, and the caregiver did let him walk relatively
freely while navigating him to return back to the hospital. Fig. 4.19 (b) shows the
caregiver’s walking speed and the elevation of her position in the global map. When
the caregiver (and the elderly) was going up a slope, they got slow down to 1.0 ∼
1.2 m/sec while they walked at 1.2 ∼ 1.4 m/sec in down slopes. Slopes influence
not only their walking speed but also their position relationship. We extracted their
behavior in up slopes and down slopes, respectively, and calculated the distributions
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(A) Up slopes. (B) Down slopes.

FIGURE 4.20: The distribution of the relative position of the care giver with respect to the
elderly person in an outdoor environment.

of the caregiver’s relative position with respect to the elderly (see Fig. 4.20). We can
see that, in down slopes, the elderly led the caregiver while they walked side by
side in up slopes due to the change of the walking speed. Although the caregiver’s
“X-axis" position varies depending on the walking speed, he almost always stays
at 0.6 m side from the elderly. This is also observed in indoor environments (see
Fig. 4.17). These results suggest that, during attendance, professional caregivers
adjust their position depending on the elderly persons’ status and the surrounding
environment, while keeping their side distance to the elderly persons constant. This
can be applied to designing of person following robots. Most of existing person
following robots just keep the distance to the target constant. However, it might be
unnatural behavior for people. We can make the robot keep the side distance to the
target constant, and it may contribute the naturalness of the following behavior of
the robot.

Those analysis results are difficult to obtain using existing measurement systems
which use static sensors or wearable devices, such as INS and GPS since it requires
accurately measure people behavior with respect to other people and the surround-
ing environment. The results show that we can capture and analyze such people
behavior with the proposed system.
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Chapter 5

Awareness Estimation-based
Attendant Robot Framework

5.1 Robotic Attendant based on Awareness Estimation

One of the significant symptoms of dementia is the lack of attention to objects [133].
Even though elderly persons with dementia keep ordinary body functions, the lack
of attention leads them to get injured by, for example, bumping into obstacles and
falling from steps. We consider that if we properly alert them to dangerous objects
and situations, they can avoid such accidents by themselves. However, if we always
inform them of the existence of obstacles, they may feel it annoying. Therefore, we
need to assess the risk of an accident, and inform the elderly of that only when it is
necessary.

In our framework, the robot assesses the risk of an accident by estimating per-
son’s awareness. If an elderly is not aware of an obstacle, he/she may bump into
it. In this case, the robot should take an action, such as notifying the elderly of the
obstacle, to prevent the accident. On the other hand, if he/she is aware of it, they
avoid the obstacle by himself/herself, thus, the robot lets the elderly walk freely to
avoid disturbing him/her.

Fig. 5.1 shows the proposed robotic attendant framework;

1. The robot observes the target person’s behavior while following him/her.

2. The robot estimates his/her awareness of an obstacle and assesses the risk of
an accident.

3. If the person is not aware of the obstacle and it’s a dangerous situation;

4. The robot takes an action to prevent the accident.

To realize this, we propose a model to estimate a person’s awareness from the
person’s behavior and the surrounding environment information. We take a ma-
chine learning approach to construct this model (see Fig. 5.2). We first collect a set
of behavior data where a person is aware/unaware of an object, and train a machine
learning model to discriminate them. Then, when the robot is in operation, it ob-
serves a person’s behavior and judges if he/she is aware of an object by using the
trained model. Unlike traditional models for person behavior [25, 26], our model
does not rely on hand-crafted parameters, and it is able to model the complex rela-
tionship between a person’s awareness, surrounding objects, and environments.
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FIGURE 5.1: Proposed robotic attendant framework.
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FIGURE 5.2: Machine learning-based awareness estimation approach.

5.2 Simplifying Awareness Estimation Problem

An important issue in this approach is that it is very hard to obtain persons’ unaware
behavior data due to ethical and technical reasons. If a person is not aware of an
obstacle, there is a risk that the person bumps into the obstacle and get injured. We
need to manage and control the experiment very carefully, and it is not feasible to
collect a bunch of behavior data required for the training of the model.

To deal with the problem of collecting unaware behavior data, we introduce a
simple assumption; if a person is not aware of an object, the person acts as if there
were no object. For instance, if a person is walking in a corridor and he/she is aware
of an obstacle, the person changes his/her trajectory to avoid the obstacle (Fig. 5.3
(a)). On the other hand, if he/she is not aware of it, he/she moves as if there were no
obstacle, and as a result, the person’s behavior becomes the same as the one where
the obstacle does not exist (Fig. 5.3 (b)). Our idea is that the person’s aware/unaware
state corresponds to the existence of the object, and it can be observed in the person’s
behavior. We collect a set of behavior data where an object exists/not exist, and then
train a classifier from the behavior data. We consider that, by using the classifier
which estimates the existence of an object from a person’s behavior, we can judge
whether the person is aware of the obstacle or not from his/her behavior.
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(A) Aware trajectory.

(B) Unaware trajectory.

FIGURE 5.3: Influence of person’s awareness on person’s behavior. The unaware trajec-
tory is the same as the trajectory where there is no obstacle.

5.3 Proof-of-concept: Estimating Person’s Awareness of an
obstacle

As a proof-of-concept, we introduce one of our works for awareness estimation. The
purpose of this work is to show that a person’s awareness of an obstacle can be es-
timated by only observing his/her motion. In this method, we first extract motion
features from the person trajectory and model the relationship between the aware-
ness and the motion using HCRF (Hidden Conditional Random Fields) [134]. We
then estimate the person’s awareness of the obstacle from the observed motion us-
ing the model. To simplify the problem, in this work, we assume a person walking
in a straight corridor, and estimate his/her awareness of an obstacle (cardboard box)
in the corridor (like shown in Fig. 5.3). Although, this model is designed for the lim-
ited situation, through this work, we validate that it is possible to estimate persons’
awareness by observing their behavior.

5.3.1 Estimating the Awareness of an Obstacle

Person’s Motion Features

In order to describe a person’s motion with respect to an obstacle, we define the
following four features (see Fig. 5.4).

1. Distance to the obstacle: When the person is close to the obstacle, the person’s
motion is affected strongly by the obstacle.

2. Distance to the skeleton of the hallway: This feature is designed to describe
how the person’s trajectory is affected by the obstacle. Since the person will
move along the hallway if there is no obstacle, this feature will be changed by
the existence of an obstacle.
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FIGURE 5.4: Person’s motion features.

3. Angle between the velocity vector and the vector from the person to the obsta-
cle: This feature represents whether the person moves toward the obstacle or
not. If the person is avoiding the obstacle, this feature will be large.

4. Size of the obstacle: The person’s motion may be affected by several character-
istics of the obstacle. We simply use its size to model the obstacle.

Person’s Awareness Model using HCRF

We represent the motion of a person as x = {x1, x2, · · · , xt} which is a sequence of
motion features with length t. Let y be a binary label of a sequence denoting whether
the person is aware of the obstacle or not. We assume that the person’s motion is in-
fluenced by the condition of the person’s awareness. This relationship can naturally
be modeled using a sequence classifier, such as CRF (Conditional Random Fields)
[135] and HCRF (Hidden Conditional Random Fields) [134]. In this work, we use
HCRF to construct the model. We also use CRF as a baseline.

By introducing HCRF, we can model the relationship between the person’s aware-
ness and the person’s motion as shown in Fig. 5.5. Following the work of [136], the
relationship is modeled as:

P(y|x, θ) = ∑
h

P(y, h|x, θ) =
∑h expψ(y,h,x;θ)

∑y′,h expψ(y′,h,x;θ)
, (5.1)

where θ is the parameter of the model, ψ is a potential function parameterized by
θ. A sequence of hidden states h = {h1, h2, · · · , ht} is introduced as the possible
hidden labels inside the model. In our model, the number of possible values of each
hidden state is set to three.

The parameter θ is optimized using a stochastic descent method [134], and then,
we estimate the label of the sequence as follows:

arg max
y

P(y|x, θ). (5.2)

We obtain observations every 0.5 [s] and use six consecutive observations as one
sequence. The duration of a sequence is 3 [s]. We assume that the duration is long
enough to describe the person’s obstacle avoiding motion.
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FIGURE 5.5: Person’s awareness model.

FIGURE 5.6: Experimental environment.

5.3.2 Experiments

Awareness Estimation Experiments

As explained in Sec 5.2, we collect people behavior with and without obstacles in-
stead of aware/unaware hahavior, and train a classifier which classifies them.

We first collected a set of person trajectories with and without obstacles. Fig. 5.6
shows the experimental setting. A person walking in the corridor is tracked by the
way described in Sec. 4.5.2. The experiments were conducted under two settings; in
the first one, an obstacle was placed at a random position in the corridor, and in the
second, no obstacle was placed. Five persons walked in the corridor and avoided
the obstacle if there was an obstacle. We measured the person’s trajectory 30 times
for each person with and without obstacles, respectively.

Fig. 5.7 shows the heatmap created from the measured trajectories. Red indicates
where the persons passed on frequently, and blue indicates where the persons did
not pass. The white circles indicate the size and the position of the obstacles. As we
can see in Fig. 5.7, the person’s motion is affected by the obstacles. If there is no
obstacle, persons move straight along the hallway. On the other hand, if there is an
obstacle, persons change their trajectories to avoid the obstacle.

In situations where a person is unaware of an obstacle, the person’s motion is
independent of the obstacle. To simulate the situation using the situations without
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20 [m]

(A) Without obstacles.

20 [m]

(B) With obstacles.

FIGURE 5.7: Heatmap of persons’ trajectories. Red indicates where the persons passed on
frequently, and blue indicates where the persons did not pass. The white circles indicate

the size and the position of the obstacles.

TABLE 5.1: Estimation Results.

Method Precision Recall F1
CRF 0.743 0.745 0.744

HCRF 0.921 0.941 0.931

obstacles, we randomly choose obstacle data from the situations with obstacles and
extract the person’s motion features as if there were a chosen obstacle. We train the
HCRF model using the extracted features.

The set of trajectories is divided into five parts, and one of them is used as a test
set, and the rest are used as a training set. The number of the motion sequences in
the test set is 785, and the number of the sequences in the training set is 3146. Table
5.1 shows the estimation results. HCRF shows a better estimation performance than
CRF, and in the case of HCRF, we achieve an estimation accuracy of 92.1%. Fig.
5.8 shows the relationship between the distance to the obstacle and the estimation
accuracy. As a person get closer to an obstacle, the person’s motion is influenced
by the obstacle strongly, and the motion becomes distinguishable from when the
case without the obstacle. As a result, the estimation accuracy increases. When the
distance between the person and the obstacle is less than 4 [m], the method can
estimate the person’s awareness with an estimation accuracy of over 90%.

Online Awareness Estimation Experiments

We collected additional three persons’ trajectories without obstacles and nine trajec-
tories with obstacles for an online test. In order to validate the applicability of the
proposed method to real attendant robots, we examine the point where the method
judged that the person was aware of the obstacle.

Fig. 5.9 shows examples of the estimation results. Thick lines indicate the tra-
jectory of a person and estimation results. Blue color indicates that the system is
accumulating motion data and is not classifying the motion due to an insufficient
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FIGURE 5.8: The relationship between the distance to the obstacle and estimation accu-
racy.

1[m]
10[m]

(A) Without obstacles.

1[m]
10[m]

obstacle

(B) With obstacles.

FIGURE 5.9: Examples of estimation results. Thick lines indicate the trajectory of a person
and the estimation results. Blue color indicates that the system is accumulating motion
data and is not classifying the motion due to an insufficient amount of data. Green and
red colors indicate that the person is unaware of the obstacle, and that the person is aware

of the obstacle, respectively.

amount of data. Green and red colors indicate that the person is unaware of the ob-
stacle, and that the person is aware of the obstacle, respectively. In the case of Fig.
5.9(a), the system started to accumulate the person’s motion data when the person
entered into the environment. After a sufficient amount of motion data is accumu-
lated, the system successfully classified the person’s motion as being unaware of the
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TABLE 5.2: Statistics of the point where the classifier judged that the person is aware of
the obstacle.

mean std. dev. min max
distance [m] 8.53 1.88 6.09 11.41

obstacle. In the case of Fig. 5.9(b), after the accumulation of data was finished, the
system classified the person’s motion as being unaware of the obstacle. However,
as the person got closer to the obstacle, within about 10 [m], the system judged that
he was aware of the obstacle. When a person is close to an obstacle, the system reli-
ably estimates the person’s awareness since the identification accuracy increases as
a person gets closer to an obstacle as shown in Fig. 5.8.

In all of the cases without obstacles, the classifier did not judge that the person
was aware of the obstacle, and in all of the cases with obstacles, the classifier suc-
cessfully judged that the person was aware of the obstacle before the person reached
to the obstacle. Table 5.2 shows the statistics of the point where the classifier judged.
The classifier can realize that a person is aware of an obstacle at a point about 8.5
[m] from the obstacle on average, and about 6.1 [m] at least. If the person is walking
at 1.2 [m/s], the time to bump into the obstacle is about 5.1 [s]. If the robot takes
preventative action within this time, it can avoid the collision. We consider that the
robot can interact with the person within this duration if the robot approaches the
person in advance. At least the robot can call the person to make the obstacle attract
their attention within this duration.
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5.4 Deep Neural Network-based Awareness Estimation

In the previous section, we verified that we can estimate a person’s awareness of
an obstacle by observing his/her behavior. However, the proposed model was too
simple, and it cannot be applied to complex environments. In order to apply the
model to real complex environments, we extend it with a deep convolutional neural
network. The network takes a person’s behavior and environmental information,
and outputs the person’s awareness of the surrounding environment (see Fig. 5.10).

As the input of the network, we use a sequence of local maps (the person is lo-
cated at the center of each map), and as the output, we consider a distribution map
which represents the position of obstacles, which the person is going to bump into
due to the lack of awareness. We also make the network predict the person trajec-
tory in the following frames since it has a significant relation with the awareness
estimation. To estimate a person’s awareness, we need to know how he/she will
move. On the other hand, the person’s behavior would be influenced by the per-
son’s awareness of surrounding objects. It is a kind of chicken-and-egg problem,
and thus, in this work, we propose the network which simultaneously estimates a
person’s awareness and trajectory.

As explained in Sec. 5.2, in order to avoid the unaware behavior collection prob-
lem, we assume that a person, who is not aware of an object, moves as if the object
does not exist. It means the existence of an object does not influence the person’s be-
havior if he/she is not aware of it. Thus, we can say that persons’ unaware behavior
is independent from obstacle properties. If we put a virtual obstacle at the person’s
position at time t, we can consider the person’s trajectory until t as an imitation of a
trajectory where the person bumps into the virtual obstacle (see Fig. 5.11).

We put virtual obstacles at random positions (obsj) on the environmental map,
and then generate awareness and trajectory maps to be estimated from the virtual
obstacle positions and the person trajectory (pt). Fig. 5.12 illustrates the awareness
map generation. The awareness map yaware is defined by:

...

t-N t-1 t

Localmap sequence

Convolutional Neural Network

Collision risk
& trajectory

FIGURE 5.10: The proposed awareness estimation model.
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FIGURE 5.11: Generation of persons’ unaware behavior data by putting a virtual obstacle.
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FIGURE 5.12: Awareness map generation.

wj = exp

−min
t
‖obsj − pt‖

Cα

 , (5.3)

yaware
i = ∑

j
wj · exp

(−‖obsj − xi‖
Cd

)
, (5.4)

where, wj represents the weight of the obstacle j given by the minimum distance
between the obstacle position obsj and the person trajectory pt. We give high weights
to obstacles which the person gets close to, since there is a high risk that the person
bumps into them. xi is the position of the pixel i in the local map coordinate, yaware

i
is the calculated awareness distribution value, and Cα and Cd are constants.

The trajectory map ytraj is calculated as:

ytraj
i = exp

−min
t
‖pt − xi‖

Ct

 , (5.5)

where and Ct is a constant.
Fig. 5.13 shows an example of input localmaps and corresponding awareness

and trajectory maps. The black and gray pixels in the localmap represents obstacles
and people, respectively. In the awareness map (Fig. 5.13 (B)), we can see a strong
response on the obstacle which the person is going to bump into, while the response
on the other obstacle is weak since the person will not get close to it.

To estimate awareness and trajectory maps from input localmaps, we use the U-
Net architecture [137], which is similar to the usual convolutional Encoder-Decoder
network model [138] except for skip connections. It first applies convolution layers
to extract structured features from an input map, and then applies deconvolution
layers to expand the extracted features to the output map with the same dimension
as the input. The difference between the U-Net and the usual Encoder-Decoder model
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(A) Input localmap (B) Awareness map (C) Trajectory map

FIGURE 5.13: The input localmap and the corresponding awareness and trajectory maps.
The black and gray pixels in the localmap represents obstacles and people, respectively.

FIGURE 5.14: The U-Net architecture [137].

is that the U-Net has skip connections between the convolution layers and the cor-
responding deconvolution layers (see Fig.5.14). It allows us to effectively train the
network since the skip connections tells the raw-level information, which can be lost
by applying convolution filters, to the deconvolution layers and helps to avoid the
vanishing gradient problem.

We extend the U-Net to be a recurrent network with LSTM (Long Short-Term
Memory). We put an LSTM layer at the neck-part of the U-Net. Since recurrent neu-
ral networks can naturally exhibit dynamic temporal behavior of inputs, they would
show better performance than feed forward networks when the input sequence con-
tains complex time series behavior. With this recurrent U-Net architecture, we input
localmaps to the network one by one, and the network outputs an awareness map
and a trajectory map at each time step.



86 Chapter 5. Awareness Estimation-based Attendant Robot Framework

(A) PETS2009 [139]. (B) 3DPES [106].

(C) Towncenter [107]. (D) ATC shopping center [105].

FIGURE 5.15: The datasets used to create a real people behavior dataset.

FIGURE 5.16: An obstacle footprint map created by hand.

5.5 Training of the Awareness Estimation Model with Real
People Behavior Data

In order to apply this framework to realistic situations, we train the model with real
people behavior. We use Towncenter [107], PETS2009 [139], 3DPES [106], and ATC
shopping center [105] datasets to create a real people behavior dataset (see Fig.5.15).
ATC shopping center dataset consists of 3D people trajectories in a shopping center
environment, and we can directly use the trajectories to create people behavior se-
quences. Towncenter, PETS2009, 3DPES provide people trajectories in a camera opti-
cal space and intrinsic and extrinsic calibration parameters of each camera. To create
people behavior sequences with the local map representation, we need to convert
the trajectories in a camera space into a bird’s eye view. We first create an obstacle
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(A) Projected obstacle footprint map. (B) Environmental map.

FIGURE 5.17: Environmental map generation.

(A) The people trajectories in the camera space. (B) The people trajectories projected in the bird’s
eye view.

FIGURE 5.18: People trajectories provided by Towncenter dataset.

footprint map for each camera by hand (see Fig. 5.16), and then project it into the
bird’s eye view using the extrinsic parameters provided by the dataset (see Fig. 5.17)
to obtain the map of the environment. Then, people trajectories are also projected
into the map space, and we create sequences of local maps from the environmental
map and the projected person trajectories (see Fig. 5.18).

Algorithm 2 Virtual obstacle placement

Input: P = {p0, . . . , pT}, person trajectory
Input: σ2

o , variance of obstacle position
Input: intmin/max, minimum/maximum interval of obstacles
Output: O = {obs0, . . . , obsN}, virtual obstacles

1: O ⇐ {}
2: t⇐ U (intmin, intmax)
3: while t < T do
4: obs = pt +N (µ = 0, σ2 = σ2

o )
5: O ⇐ O ∪ {obs}
6: t⇐ t + U (intmin, intmax)
7: end while

Algorithm 2 shows the algorithm to place virtual obstacles on the environmental
map based on the person trajectory. N and U are sampling from normal and uniform
distributions, respectively. In this algorithm, we place virtual obstacles at positions
deviated from the trajectory. We first place obstacles which the person bumps into
with σ2

o = 0[m], intmin = 3.0[s], intmax = 10.0[s], then place obstacles which the
person does not bump into with σ2

o = 5.0[m], intmin = 3.0[s], intmax = 5.0[s].
The number of sequences is about 2000. We train the proposed network on the
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FIGURE 5.19: The plot of the awareness estimation accuracy versus the distance to the
obstacle.

generated dataset. We use the L2 loss function to calculate the residual of the esti-
mated awareness and trajectory maps. We give a small weight (10−3) to the residual
of the trajectory map in the L2 loss calculation, since the awareness map is more im-
portant than the trajectory map in our application, and the trajectory is sometimes
unpredictable.

To test the trained model, we randomly sampled 100 sequences from the dataset,
and tested if the model correctly detects obstacles which the person is not aware of.
We replaced the obstacles in the sequences, thus, their positions are changed from
the training set. With thresholding, we extract obstacles which the person gets closer
than 0.5 [m] from the estimated awareness maps, and check if they are properly
detected. Fig. 5.19 shows the plot of the success rate of the detection and the distance
to the obstacle. We can see that, when the obstacle is very far from the person, the
estimation accuracy is low (30% at 10 [m]). However, as the person gets close to the
obstacle, the estimation accuracy gets increased. At the point of 4 [m], we achieve
over 80 % of accuracy.

5.6 Model Validation on Real Data

To validate the trained awareness estimation model, we collected a set of people
aware and unaware behavior data. Fig. 5.20 (A) shows the experimental environ-
ment. In this experiment, subjects wear a half-blind glasses (Fig. 5.20 (B)) so that
he cannot see an obstacle on the ground and walks in the corridor. The obstacle
position is changed at every trial, and the subject is not told where it is. To prevent
any critical accidents, we chose a light cardboard box as the obstacle to be placed in
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3D LIDAR
Pedestrian

Obstacle

(A) The experimental environment. (B) The half-blind glasses.

FIGURE 5.20: The experimental setting. The subject wears a half-blind glasses so that he
cannot see the obstacle on the ground and walk in the corridor. We predict if he bumps

into the obstacle by using the trained awareness estimation model.

(A) Local map (B) Awareness map (C) Trajectory map

T=0s

T=2.6s

T=3.6s

FIGURE 5.21: A trial where the person bumped into the obstacle. The left images show
the input localmaps, and the center and right maps show estimated awareness and tra-

jectory maps.

the corridor. In some trials, the subject bumped into the obstacle, and we consider
the subject behavior in these sequences as unaware behavior data. We collected 15
sequences with four subjects in total. The subjects bumped into the obstacle in 10
out of the 15 sequences.

Fig. 5.21 shows a trial where the person bumped into the obstacle. The left fig-
ures show the input local maps, and the center and right images show estimated
awareness and trajectory maps, respectively. At T = 0[s], we can see that, the net-
work correctly estimates that the person will move along the corridor (Fig. 5.21(C)).
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(A) Local map (B) Awareness map (C) Trajectory map

T=0s

T=2.3s

T=5.5s

FIGURE 5.22: A trial where the person did not bump into the obstacle.

TABLE 5.3: Awareness Estimation Accuracy

F1 precision recall TP TN FP FN
Far (10 [m]) 0.909 0.833 1.000 10 3 2 0
Middle (5 [m]) 0.909 0.833 1.000 10 3 2 0
Near (1 [m]) 0.952 0.909 1.000 10 4 1 0
Total 0.923 0.857 1.000 30 10 5 0

TP: True Positive, TN: True Negative,
FP: False Positive, FN: False Negative

As the subject approaches to the obstacle, the estimated awareness map shows high
response at the position of the obstacle which he is going to bump into (Fig. 5.21(B)),
and finally, he bumped into the obstacle (Fig. 5.21(B)). Fig. 5.22 shows another trial
where the subject did not bump into the obstacle. We can see that, in this trial,
the awareness map shows lower response on the obstacle position until the subject
passes by the obstacle (Fig. 5.22(B) (C)).

To evaluate the proposed network quantitatively, we sample estimated aware-
ness maps when the distance between the subject and the obstacle gets 10, 5, and 1
[m] for each sequence, and validate if the network correctly estimated the person’s
awareness of the obstacle. We apply thresholding to the awareness maps, and if the
number of positive pixels is larger than a threshold, we consider that the network
judged that the person is not aware of the obstacle.

Table 5.3 shows the evaluation result. Through the evaluation, the network cor-
rectly estimated the persons’ awareness in the positive cases where the person is not
aware of the obstacle and shows a good recall rate. In two sequences of negative
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cases (the person is aware of the obstacle), the network wrongly judged that the per-
son is not aware of the obstacle. However, as the person gets close to the obstacle,
the awareness map response gets smaller, and the network correctly judged that he
is aware of the obstacle when the distance between the person and the obstacle gets
smaller than 5 [m]. In the other sequence, the network could not judge that he is
aware of the obstacle until he passed by the obstacle. However, in practical situa-
tions, this kind of a few false positives are acceptable while false negatives are not
acceptable since they would make the robot miss the chance to prevent accidents.
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Chapter 6

Conclusions and Discussion

6.1 Conclusions

We have described a robotic attendant framework based on robust person identifi-
cation and awareness estimation. We have presented robust person identification
methods for two scenarios; identifying a person using only sensors on the robot,
and identifying a person using signals obtained by a smartphone held by the per-
son. Depending on the use case, we can choose one of them for robust person fol-
lowing. The proposed deep convolutional channel features and illumination inde-
pendent gait and height features-based identification methods greatly improve the
performance of the online person identification framework in severe illumination
conditions while the foot strike timing-based method realizes a marker-based iden-
tification without any special equipment like antennas.

We have also described a system for people behavior measurement using a 3D
LIDAR. It allows us to measure and analyze long-term and wide-area people be-
havior data. With this system, we collected professional caregivers’ behavior in a
hospital. The analysis of the caregivers’ behavior reveals how human decides at-
tending position while keeping the safeness and the comfortableness of attendance.

We have also proposed a deep convolutional network-based method to estimate
a person’s awareness of surrounding obstacles. In order to avoid the unaware be-
havior collection problem, we take a simple assumption of the influence of a person’s
awareness on his/her behavior. With this assumption, instead of training the net-
work with persons’ aware/unaware behavior, we train the network with persons’
trajectories where an object exists/non-exists. The use of the deep neural network
allows us to construct an awareness estimation model which is applicable to various
environments and can estimate a person’s trajectory and awareness simultaneously.

6.2 Proposal for a Robotic Attendant System Design

6.2.1 Robotic Attendant System

As a summary of the thesis, we present a proposal for a system design of an at-
tendant robot based on robust person identification, awareness estimation, and the
analysis of professional caregivers’ attendant behavior.

Fig. 6.1 shows the system configuration of the proposed system. The system is
built on top of fundamental person following functions, such as localization, person
identification, and path planning. With the appearance and soft-biometric features-
based person identification described in Sec. 3.1 and Sec. 3.2, the robot reliably
follows the target person. In case it is allowed to let the person hold a smartphone,
the identification method can be incorporated with the foot strike timing matching-
based identification method presented in Sec. 3.3. The gait-based identification
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FIGURE 6.1: System configuration of the proposed attendant robot.

methods may not work well in case the person walks with difficulty due to stiff leg
since the methods assume steady walking (the step length is constant). However,
such a walking pattern could be a distinct feature to identify the person. By ex-
tending the gait feature so that it takes the unsteady walking gait into account (e.g.,
adding asymmetric left/right foot step length), the system could be more suitable
for identification of elderly persons.

Then, the awareness estimation module takes the tracked target person’s state
(position and velocity) and the environmental information (the environmental map
and the position of the robot estimated by the localization module) to estimate the
person’s awareness of surrounding obstacles, and the system assesses the risk of ac-
cidents from the estimated awareness. A possible concern here is that the awareness
estimation model trained from behavior of people who are fine to walk may not be
adaptable to elderly persons. Typically, elderly persons tend to walk slowly, and
their walking is sometimes unsteady. However, we consider that the model can be
applied to elderly persons by re-training the model with elderly persons’ behavior
data since the proposed deep convolutional neural network-based method does not
take any human motion assumptions.

The attendant behavior planning module generates the robot behavior. In case
an accident is anticipated, the robot takes an action to prevent the accident. On the
other hand, as long as there is no risk of accidents, the robot lets the person walk
freely. While the robot is following the person, it imitates the attending behavior of
professional caregivers analyzed in Sec. 4.6.2 so that it does not disturb the person.

6.2.2 Basic Person Following Behavior

As long as there is no risk of accidents, the robot lets the person walk freely. Based
on the analysis of the real caregivers’ behavior presented in Sec. 4.6.2, we propose
the design of the basic following behavior of the attendant robot as follows:

1. The robot attends the person while keeping the side-by-side positioning as
long as it’s possible. This positioning allows the robot to look ahead and check
the safeness of the way. In particular, it should keep in the position 0.6m aside
from the person.

2. Depending on the walking speed, the relative position would deviate along
the front-back direction. However, even in such a case, the robot should keep
the certain distance aside from the person.

3. At a corner, the robot should go on the outer-side of the corner so that it can
check the safeness of the corridor while avoiding disturbing the person.
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4. In case the robot cannot go on the outer-side due to positioning or obstacles, it
should go on the inner-side before the person enters the corner and check if it’s
safe. It would slightly disturb the person from walking. However, the safety
has a higher priority than the comfortableness in this case.

5. To attend a person who is fine to walk, the robot has to be able to run at about
1.4 m/s.

Note that the values in the rules, such as the distance to the person to be attended,
should be adjusted depending on the robot configuration (e.g., size and shape).

6.2.3 Attendant Behavior Planning Strategy

Once the robot detects that the person is not aware of an obstacle and going to bump
into it, the robot has to interact with the person to prevent the accident.

The timing to take an accident prevention is important. As a person gets close
to an obstacle, the possibility that he/she notices it increases, and if the timing of
the decision is too early, the robot would take an action before the person becomes
aware of the obstacle by himself/herself. On the other hand, if the timing is too late,
the robot cannot prevent the accident. We have to find the best timing for safeness
and comfortableness.

We can estimate when a person will bump into an obstacle from the person’s
walking speed and the obstacle position, and it could be a good factor to decide the
time to take a preventing action. The robot should start to take action by considering
the estimated accident time, the time required to perform the action, and a time
margin for safety.

As a baseline, we consider a simple prevention action; if the target person is not
aware of an obstacle, the robot informs him/her of the obstacle by voice. The timing
to take the action is given by te − ta − tm, where te is the expected accident time, ta is
the time required to perform the action (e.g., 1.5 sec), and tm is a time margin (e.g.,
1.0 sec). te is given by d

s , where d is the distance between the person and the obstacle,
and s is the person’s walking speed.

The choice of the prevention action has a big impact on the comfortableness of
the system. Human caregivers prevent accidents in an unsure but less annoying way
in low risk situations while they take a compelling way in high risk situations. For
example, they try to change the elderly’s trajectory by getting proximate to him/her
when an obstacle is distant, and if the elderly does not change the trajectory before
he/she gets close to the obstacle, they pull his/her hand or informing him/her of the
obstacle by voice to let the elderly avoid the obstacle. This kind of adaptive preven-
tion action would be a way to strike the balance between the risk of accidents and
the comfortableness of the service, and it would be a future direction of research.
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