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Abstract: We fabricated tin phosphide–carbon (Sn4P3/C) composite film by aerosol deposition (AD)
and investigated its electrochemical performance for a lithium-ion battery anode. Sn4P3/C composite
powders prepared by a ball milling was used as raw material and deposited onto a stainless steel
substrate to form the composite film via impact consolidation. The Sn4P3/C composite film fabricated
by AD showed much better electrochemical performance than the Sn4P3 film without complexing
carbon. Although both films showed initial discharge (Li+ extraction) capacities of approximately
1000 mAh g−1, Sn4P3/C films retained higher reversible capacity above 700 mAh g−1 after 100 cycles
of charge and discharge processes while the capacity of Sn4P3 film rapidly degraded with cycling.
In addition, by controlling the potential window in galvanostatic testing, Sn4P3/C composite film
retained the reversible capacity of 380 mAh g−1 even after 400 cycles. The complexed carbon works
not only as a buffer to suppress the collapse of electrodes by large volume change of Sn4P3 in charge
and discharge reactions but also as an electronic conduction path among the atomized active material
particles in the film.
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1. Introduction

Li-ion batteries (LiBs) are widely used as a power source for portable electronic devices, and recently
have attracted much attention as a large-scale power source for electric vehicles and plugin hybrid electric
vehicles. In order to achieve advanced LiBs with higher energy density, development of anode materials
with higher capacity is indispensable. Graphite with a theoretical capacity of 372 mAh g−1 is commonly
used as an anode for LiBs, while lithium alloys such as Li–Si and Li–Sn with a higher theoretical capacity
(Li4.4Si: 4200 mAh g−1, Li4.4Sn: 990 mAh g−1) have been extensively studied [1–3]. However, they result
in poor cycling stability due to a large volume change during charge and discharge reactions. In order to
improve the cycling stability, various composite materials including metal oxides, multiphase alloys
and intermetallic compounds have been studied as alternatives to graphite anode for LiBs [3–7]. These
materials show much higher capacities than graphite and improved cycling performance compared to
lithium alloy materials. The enhancement of cycling stability in these Li-alloy-based materials attributed
to an inactive matrix [4]. Li-alloy-based materials form an inactive matrix during cycling and this matrix
is expected to suppress the volume change of the alloying reaction, and keeps the electrode particles
mechanically connected together resulting in a reversible alloying reaction.

Tin phosphide Sn4P3 (theoretical gravimetric capacity = 1255 mAh g−1) is known as one of the high
capacity alloy-based anode materials for LiBs [8–11]. Sn4P3 has a layered structure (space group: R-3m)
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suitable for lithium insertion and high intrinsic electronic conductivity at room temperature. In addition,
Sn4P3 forms Sn and Li3P in the lithium insertion reaction. Li3P has high ionic conductivity [12] and
would act as a matrix for suppressing the volume change during the alloying reaction. According to
these features, application of a Sn4P3 anode for high-capacity sulfide-based solid-state batteries has
been also demonstrated [13].

As reported in the literature [8,9], Sn4P3 shows initial reversible capacity as high as 900 mAh g−1

and by controlling the electrical potential window in galvanostatic charge and discharge testing,
it maintains a reversible capacity above 400 mAh g−1 after 50 cycles. Reducing the size and morphology
of Sn4P3 particles [14,15] and doping of a small amount of Fe [16] and Mn [17] into Sn4P3 are also
effective for further improvement of the cycling stability. Moreover, complexing the carbon materials
with nano-structured Sn4P3 particles significantly enhances both the rate performance and cycling
stability [18–25]. The complexed carbon behaves as the buffer for the volume change of active material
particles during charge and discharge reaction and maintains the electric conduction between the particles.

In general, the electrodes used in actual batteries are fabricated by coating a slurry composed of
electrode active materials on metallic foils and contain conducting carbon additives and binders. For the
case of carbon complexed alloy-based anodes, the weight fraction of active materials in an electrode
becomes small (less than ~70%) due to significant amounts of conducting additives and binders.
Consequently, gravimetric specific capacity calculated by the total mass of the electrode (including carbon
additives and binders) is reduced significantly. To address this issue, we are focusing on the aerosol
deposition (AD) method [26–28] as an electrode fabrication process, which uses impact consolidation
for ceramic particles at room temperature. This method is known as a fabrication process of various
functional ceramic films at room temperature. By controlling the size and morphology of the base powder
material, the film fabricated by AD has a dense structure made of nanocrystalline particles, and the
structural and physical properties are similar to the base powder material. Moreover, adhesion strength
between the film formed by AD and the substrate is high without adding binders [26,27]. To date, several
works for the application of AD to rechargeable battery materials have been reported. The electrochemical
performance for film-shaped electrodes of Si alloy or composite [29,30], tin-phosphide with different
compositions [31], transition metal oxides [32–40] formed on a metal and a ceramic-based solid electrolyte
substrate have been studied to verify the feasibility of AD. Moreover, as-deposited solid electrolyte films
show a moderate Li+ conductivity of 10−7–10−5 S cm−1 at room temperature [41–45].

In this work, we fabricated Sn4P3–carbon (Sn4P3/C) composite films on a stainless steel substrate
by AD and the electrochemical performance of the LiB anode was evaluated. Sn4P3/C composite
powder was prepared by ball milling and used as a raw material to form the composite film via impact
consolidation. The influence of complexed carbon on the cycling stability of both the microstructure
and reversible capacity was examined.

2. Materials and Methods

2.1. Fabrication and Characterization of Sn4P3/C Composite Powders

Sn4P3 powder was prepared using a simple mechanochemical synthesis with a planetary
ball-milling [8,9,13]. Sn (99%, Kojundo Chemical Laboratory, Saitama, Japan) and red P (99.9%,
Kojundo Chemical Laboratory, Saitama, Japan) powders were used as starting materials. Stoichiometric
amounts of the starting materials (10 g) were put into a ZrO2 vessel (45 mL) with ZrO2 balls that were
10 mm in diameter (100 g) and reacted in a planetary ball milling apparatus (Nagao System, Planet
M2-3F, Kawasaki, Japan) with a fixed rotation speed of 350 rpm for 8 h under an Argon atmosphere.

It is known that controlling the particle size of raw powder is important for film fabrication by
AD [14–16,28,30,32], and we could not form Sn4P3 film by AD with as-synthesized powder. In order to
prepare Sn4P3 powders suitable for AD, as-synthesized Sn4P3 powder (~10 g) was put into a ZrO2

vessel with ethanol (30 mL) and ZrO2 balls with diameters of 1 mm (30 g) and 2 mm (100 g) and then
pulverized by a planetary ball-milling at 350 rpm and 24 h. After the pulverization, the obtained Sn4P3
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powder and acetylene black (AB) were mixed with a weight ratio of Sn4P3:AB = 8:2. The mixture (~5 g)
was put into a ZrO2 vessel again with ZrO2 balls with diameters of 5 mm (50 g) and 10 mm (100 g),
and Sn4P3/C composite powder was prepared by a planetary ball-milling at 350 rpm for 24 h.

The crystal phase of as-synthesized Sn4P3, ball-milled Sn4P3 and Sn4P3/C powder was evaluated
by X-ray Diffractometer (XRD; Rigaku, MultiFlex, Tokyo, Japan) using Cu Kα radiation (λ= 0.15418 nm),
with a measurement range 2θ of 5–90◦ and a step interval of 0.002◦. Field emission scanning electron
microscopy (FE-SEM; Hitachi High-Technologies, SU8000 Type II, Tokyo, Japan) was used to observe
the size and morphology for all powder samples. Energy dispersive X-ray (EDX) analysis was also
performed using FE-SEM, to observe Sn4P3/C particles and the corresponding distribution of Sn, P and
C elements.

2.2. Fabrication and Characterization of Sn4P3/C Composite Films by AD

As shown in the literature [34,40,42], an AD apparatus consists of a carrier gas supplying system,
an aerosol chamber, a deposition chamber equipped with a motored X-Y-Z stage and a nozzle with
a thin rectangular-shaped orifice with the cross-sectional size of 10 mm × 0.5 mm. Sn4P3/C powder
was used as a raw material for fabricating Sn4P3/C composite film by AD. A carrier nitrogen (N2) gas
flows out from the gas supply system to the aerosol chamber. In the aerosol chamber, the powder is
dispersed into the carrier gas to make an aerosol. Using a pressure difference between the evacuated
deposition chamber and the carrier gas system, the aerosol flows into the deposition chamber through
a nozzle and is sprayed onto an SUS316L stainless steel substrate. The deposition area was masked
into a circular shape 8 mm in diameter. The deposition chamber was evacuated to a low vacuum
state at approximately 20 Pa and deposition was carried out for 20–30 min. During the deposition
process, the stage was moved uni-axially with a back-and-forth motion length of 50 mm and a speed
of 10 mm s−1. Based on the results in our previous works [34,38,40,42,44], the distance between the
substrate and nozzle tip was set to 10 mm and the mass flow of the N2 carrier was fixed at 20 L min−1.

The crystal phase of the Sn4P3/C composite film was evaluated by XRD using Cu Kα radiation
(λ = 0.15418 nm), with a measurement range 2θ of 5–90◦ and a step interval of 0.002◦. Microstructure
observation of composite films was carried out by using FE-SEM, and EDX analysis was also performed
to observe the distribution of Sn, P and C elements in the composite film.

The electrochemical properties of as-deposited Sn4P3/C films were evaluated by using a two-electrode
set up. A Sn4P3/C film on an SUS316L substrate was used as a working electrode, where as a single
lithium foil served as both a counter and a reference electrode. The electrolyte solution was 1 mol L−1

LiPF6 in a mixture or ethylene carbonate (EC) and dimethyl carbonate (DMC) with a volume ratio of 1:1
(Kishida Chemical Co., Ltd., Osaka, Japan). Together with a separator (Celgard, Celgard 3501, Tokyo,
Japan), these components were assembled in a CR2032 coin-type cell. The cell assembly was carried out
in a dry Argon-filled glove box. The cells were charged and discharged over the cell voltage ranges of
0 to 0.75, 1, 1.25 and 2.5 V at a fixed current density (per total mass of composite film) of 50 mA g−1 and
25 ◦C using the Battery Test System (TOSCAT-3100, TOYO-SYSTEM, Iwaki, Japan). After the cycling
test, the cells were disassembled in a dry Argon-filled grove box and the microstructure of the Sn4P3/C
composite films was observed using FE-SEM. Before the observations, cycled Sn4P3/C films were cleaned
with DMC to eliminate residual Li salt therein.

3. Results and Discussion

3.1. Crystal Phase and Microstructure of Sn4P3/C Composite Powder and Film

The XRD data for as-synthesized Sn4P3, ball-milled Sn4P3 and Sn4P3/C composite powders are
summarized in Figure 1. The pattern for Sn4P3 (JCPDS No. 03-066-0017) is also shown as the reference.
It is confirmed that peak patterns for all sample powders agree well with the reference, suggesting that any
structural changes did not occur in the ball-milling and carbon-complexing process. No peaks from carbon
were detected in the Sn4P3/C powder because complexed carbon with Sn4P3 has amorphous structure.
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Figure 2 shows scanning electron microscopy (SEM) images for as-synthesized Sn4P3, ball-milled Sn4P3

and Sn4P3/C composite powders. As-synthesized powder consists of agglomerated particles with a size
of 1–5 µm (Figure 2a). After ball-milling, the particle size reduces to 0.5–1.5 µm (Figure 2b). On the other
hand, after complexing carbon (acetylene black (AB)) with Sn4P3 by ball-milling, the particle size is not
changed remarkably (Figure 2c).
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Figure 2. Scanning electron microscopy (SEM) images for (a) as-synthesized Sn4P3 powder,
(b) ball-milled Sn4P3 powder and (c) Sn4P3/C composite powder.

A higher magnified SEM image of Sn4P3/C particles and elementary distributions for Sn, P and C
in an observation area are shown in Figure 3. As shown in Figure 3a, the sample powder looks like
agglomerated particles with a particle size of about 0.5–2 µm. Sn and P show similar distribution in
an observed area and were detected on agglomerated particles, and interestingly, C is also distributed
along the particle shape. This suggests that carbon (AB) particles are complexed successfully with
Sn4P3 particles by a simple ball-milling process.
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Figure 3. (a) SEM image of Sn4P3/C composite powder and corresponding element mapping for Sn,
P and C are shown in (b), (c) and (d).

Figure 4 shows the XRD pattern and cross-sectional SEM image of the Sn4P3/C composite film
formed on an SUS316L substrate by AD. Note that the peak intensity for the composite film is one
order lower than the raw powder. Together with the peaks from the substrate, the peaks from the
Sn4P3 phase are clearly confirmed but become broader compared to raw powder. No other secondary
phases are formed during film fabrication by AD. The thickness of the composite film is confirmed to
be 2.5–3 µm. An SEM image and elementary distributions for Sn, P and C for the broader surface of
the Sn4P3/C composite film are shown in Figure 5. It can be seen that the film is composed of deformed
or fractured particles. Moreover, Sn, P and C are distributed uniformly in an observed area, suggesting
that carbon is included successfully in the film.
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3.2. Electrochemical Performance of Sn4P3 Film Electrodes

Next, we discuss the electrochemical performance for Sn4P3/C composite film as a LiB anode.
Figure 6 shows the galvanostatic charge (Li+ insertion) and discharge (Li+ extraction) curves at different
cycle numbers for the Sn4P3/C film electrode in a coin-type cell. The cell voltage window is from 0 to
2.5 V. At the first cycle, charge capacity reaches 1750 mAh g−1, which is much higher than the theoretical
capacity (1255 mAh g−1) of Sn4P3, while discharge capacity is confirmed to be 1200 mAh g−1. Coulombic
efficiency at the first cycle is 69%, but irreversibility in charge and discharge reaction is greatly reduced
after the second cycle and the Coulombic efficiency retains 96–98%. This suggests that the charge capacity
in the first cycle includes the contribution of side reactions such as the decomposition of an organic
liquid electrolyte at a lower cell voltage to form Li+ conducting solid-electrolyte interphase (SEI) on
the electrode surface. The reversible capacity decreases monotonically with cycling but retains a high
capacity of 800 mAh g−1 at the 50th cycle. The averaged operation potential is approximately 0.7 V and
step-like profiles are confirmed in both charge and discharge processes, which is consistent with the
results reported in the literature [8–11].

Cycling stability for the Sn4P3/C composite film electrode is shown in Figure 7, together with the
data for the Sn4P3 film electrode without complexing carbon. The Sn4P3 film was fabricated by AD
with ball-milled Sn4P3 powder (Figure 2b) on an SUS316L substrate, with a thickness of approximately
2 µm (Figure S1). As can be seen, the capacity fading in the Sn4P3 film with cycling is relatively fast and
reduces to less than 10 mAh g−1 at the 80th cycle. We checked the Sn4P3 film taken from a disassembled
coin-type cell after testing and confirmed that the majority of the film was collapsed and peeled off from
the SUS316L substrate. Therefore, the rapid degradation of Sn4P3 films with cycling is caused by the
mechanical damage due to the large volume change of the Sn4P3 film in charge and discharge reactions.
On the other hand, the Sn4P3/C composite film shows much better cycling stability than the Sn4P3

film and retains a reversible capacity above 700 mAh g−1 even at the 100th cycle, indicating that the
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complexed carbon is effective at enhancing the cycling performance of Sn4P3. However, the capacity
fading is accelerated by further cycling above 100 cycles and the reversible capacity is reduced to
300 mAh g−1 at the 200th cycle. It is worth noting that we also fabricated a Sn4P3/C composite film with
a lower carbon content (weight ratio Sn4P3:C = 9:1) and evaluated the electrochemical performance,
but the degradation with cycling becomes more significant and the reversible capacity at 100 cycles
was reduced to 500 mAh g−1 (Figure S2).
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film and the Sn4P3 film electrodes. Cell voltage window for galvanostatic cycling is 0–2.5 V.

As shown in Figure 7, the degradation mode of the Sn4P3/C composite film in galvanostatic
cycling seems to be classified into three processes: (1) Rapid degradation below 15 cycles, (2) gradual
degradation from 15 to 100 cycles, (3) accelerated degradation after 100 cycles. In order to further
examine the degradation process, differential capacities dQ/dV (Q: capacity (mAh), V: cell voltage
(V) are calculated and plotted against a cell voltage in Figure 8. Based on the examination of the
electrochemical reaction mechanism for Sn4P3 anode characterized by ex-situ XRD and X-ray absorption
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spectroscopy (XAS) analysis in the literature [8], the reactions occurring in the charge process are
considered as follows: (A) Li+ insertion into the layered structure of Sn4P3 (at ~0.85 V), (B) Formation
of LiP and partial transformation from LiP to Li3P (at ~0.65 V), (C) and (D) Alloying of Sn with Li to
form LixSn alloy (at ~0.5 V and ~0.3 V) and (E) Formation of Li3P and LixSn (at <0.25 V). On the other
hand, reactions in the discharge process are considered as follows: (F) and (G) Dealloying reaction of
LixSn (at ~0.45 V and ~0.65 V), (H) Dealloying reaction of LixSn and Li extraction to Li3P to form LiP
(at ~0.75 V) and (I) Li extraction from LixP (at >0.8 V). Labels (A)–(H) for these expected reactions are
also plotted in a graph.
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film calculated from the data for galvanostatic cycling test.

In the range of 20 cycles or less, the contributions of (A) and (B) in charge and (I) in discharge
decrease remarkably with cycling, while the reactivity of Sn for (D) and LixSn for (G) seems to be
activated with cycling. After discharging, Sn4P3 is not completely formed reversibly but amorphous
Sn and P are formed [8]. Moreover, it is demonstrated that the reversibility of the P↔ LixP reaction is
not good due to the large volume change and poor conductivity of the LiP phase [8,9,46,47], resulting
in rapid capacity fading of the Sn4P3/C composite film during the initial 20 cycles. The dQ/dV profiles
at the 20th and 100th cycle are similar but the peak intensity for (B), (C) and (D) in charge and (E),
(G) and (H) in discharge decreases with the cycle progress. At the 150th cycle, these specific peaks in
dQ/dV profile become smaller and broader compared to the profile at the 100th cycle.

For further examination, we fabricated another Sn4P3/C composite film to observe the change
of the microstructure during the galvanostatic cycling. After the galvanostatic testing with different
cycles, we took out the film electrodes of the disassembled cells and confirmed that all the films
were not delaminated from the SUS316L substrates (see insets in Figure 9). SEM images for Sn4P3/C
composite film after the first, 100th, 120th and 160th cycle are summarized in Figure 9. It is worth
noting that capacity fading behavior with cycling for all Sn4P3/C films is nearly the same as the data
shown in Figure 7. After the first cycle (Figure 9a), it can be seen that the asperities on the surface
of the composite film are clearly increased compared to the as-deposited film (Figure 5a). This is
caused by the large volume expansion and contraction in the charge and discharge reactions of active
material. Such structural change is repeated during cycling and induces the gradual capacity fading
with cycling. At the 100th cycle (Figure 9b), generation of many small cracks and agglomeration of the
particles are confirmed and become significant with further cycling (Figure 9c,d). The former breaks
the electrical conduction path and the latter reduces to electrochemical utilization of active materials in
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the composite film, resulting in acceleration of the degradation of reversible capacities after 100 cycles
as shown in Figure 7.
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Figure 9. SEM images for the broader surface of Sn4P3/C composite films taken out of disassembled
cells: (a) after the first cycle, (b) after the 100th cycle, (c) after the 120th cycle and (d) after the 160th
cycle. Insets in (b), (c) and (d) are the photo images of films with different cycle numbers.

The improvement of the cycling stability of the Sn4P3 anode has been demonstrated by controlling
the cell voltage window in the literature but the cycle numbers were limited to only 50 [8,9], so we
investigated the long-term cycling stability for Sn4P3/C composite films at different cell potential
windows of 0–0.75 V, 0–1 V and 0–1.25 V. The galvanostatic charge and discharge curves at the 20th
cycle and cycling performance for Sn4P3/C composite films tested at different cell potential windows are
shown in Figures 10 and 11. Although the reversible capacities at the 20th cycle reduce monotonically
with decreasing cell voltage for discharge from 1.25 to 0.75 V, the cycling stability is dramatically
improved. The film tested at 0–0.75 V shows a reversible capacity of 380 mAh g−1 at the 400th cycle
and the capacity retention reaches 80%. The film electrodes tested at 0–1 V and 0–1.25 V also show
higher reversible capacities of 400 and 500 mAh g−1 at the 200th cycle than the film tested at 0–2.5 V
(300 mAh g−1, see Figure 7), but the capacity fading is accelerated with further cycling. Reversible
capacities at the 400th cycle for the films tested at 0–1 V and 0–1.25 V are only 250 and 110 mAh g−1,
respectively. By limiting the potential for discharge below 0.75 V, the extraction reaction of Li from LixP
with a larger volume change is greatly suppressed, which could contribute to better cycling stability.
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the 20th cycle for the Sn4P3/C composite film electrode tested at different cell voltage windows.
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Figure 11. Cycling stability of charge and discharge capacities for the Sn4P3/C composite film tested at
different cell voltage windows.

In Figure 12, the Coulombic efficiencies for Sn4P3/C composite films tested at different cell voltage
windows are plotted against the cycle numbers. It can be seen that the efficiency for the initial several
cycles becomes lower by reducing the cell voltage for discharging (Li extraction) from 1.25 to 0.75 V.
This is mainly attributed to the reduction of the Li+ extraction reaction from LixP that occurred at
a cell voltage above 0.8 V. After 20 cycles, the efficiencies for all films reached approximately 95%.
After 40 cycles, the film tested at 0−0.75 V shows an efficiency as high as 97−98% and maintains it
stably in whole measurement range. This is consistent with the good cycling stability of this film
(Figure 11). On the other hand, the films tested at 0–1 V and 0–1.25 V show a slightly lower efficiency
of 96−97% after 40 cycles.

For further examination, we took the Sn4P3/C composite film electrodes out of the disassembled
cells after cycling at different cell voltage windows and observed their microstructures by SEM
(Figure 13). As shown in Figure 13a, no delamination of the film from the SUS316L substrate was
observed after cycling at 0–0.75 V. In addition, the structural change of the film cycled at 0–0.75 V
is less than that for the film cycled at 0–1.25 V, which contributes to the better cycling performance.
For the film cycled at 0–1.25 V with the lowest capacity retention (Figure 13b), delamination of many
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parts of the film from the substrate is confirmed and the large transversal cracks were generated at the
location without peeling.
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Figure 13. SEM images for the broader surface of Sn4P3/C composite films taken out of disassembled
cells: (a) cycled at 0–0.75 V and (b) cycled at 0–1.25 V. Insets are the photo images of films.

Lastly, we compare the electrochemical performance of some Sn4P3 anode materials for LiBs
reported in the literature [8,9,11,14–17,20–24], which is listed in Table 1. It is worth noting that our
current results reported in this paper are not the top performance for Sn4P3 anode materials for LiBs.
As reported in [21], Sn4P3/C nanospheres synthesized by carbonization/reduction and phosphorization
of SnO2–GCP (glucose-derived, carbon-rich polysaccharide) nanospheres showed an outstanding rate
performance and cycling stability. These nanospheres can also be applicable for ultra-stable anode
materials for sodium-ion batteries (SiBs). However, as mentioned above, the electrodes with these
Sn4P3/C composite anode materials used in batteries are fabricated by a slurry coating process with
a large amount of carbon additives and binders [20–24], resulting in the decrease of the fraction of
Sn4P3 in the electrode. For the Sn4P3/C composite anode listed in Table 1, gravimetric capacities
calculated by the total mass of electrode (including both carbon additives and binders) are 20−30%
lower than the listed values. On the other hand, Sn4P3/C composite film electrodes formed by AD do
not contain other carbon additives and binders, resulting in higher gravimetric capacity for the whole
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electrode. There is room to improve the electrochemical performance of the size and content of carbon
materials for Sn4P3/C powders used for AD. We are now trying to optimize complexed carbon content
and increase the composite film thickness and the progress will be reported in a forthcoming paper.

Table 1. Comparison of electrochemical performance of some Sn4P3 anode materials for Li-ion batteries
(LiB). AD: aerosol deposition.

Samples Current
Density/mA g−1 Cycle Numbers Specific

Capacity/mAh g−1 References

Sn4P3 100 50 370 [8]

Sn4+xP3 100 50 530 (x = 1)
430 (x = 0.5) [9]

Sn4P3 film by pulsed laser
deposition (PLD) 0.2 mA cm−2 10 553 [11]

Fe doped Sn4P3 100 100 420 [14]
Mn doped Sn4P3 100 150 488 [15]

Sn4P3 100 20 261 [16]
Sn4P3 100 300 442 [17]

Sn4P3/graphite 100 100 651 [20]

Sn4P3/C nanosphere 200
2000

50
500

1050
440 [21]

Sn4P3/SnO2–C 400 200 733 [22]
Sn4P3/hollow graphene

sphere 100 100 606 [23]

Sn4P3/N doped C 100 120 718 [24]

Sn4P3/C film by AD 50 100
400

726
380 This work

4. Conclusions

Sn4P3/C composite film was successfully fabricated by the AD method and its electrochemical
performance for a lithium-ion battery anode was examined. The Sn4P3/C composite film fabricated
by AD showed much better electrochemical performance than the Sn4P3 film without complexing
carbon. Although both films showed initial discharge (Li+ extraction) capacities of approximately
900–1000 mAh g−1, Sn4P3/C films retained the higher reversible capacity above 700 mAh g−1 after
100 cycles of charge and discharge processes while the capacity of the Sn4P3 film rapidly degraded with
cycling. Precise control of the potential window in galvanostatic testing of the Sn4P3/C composite film
results in remarkable improvement in the cycling performance. We obtained a reversible capacity of
approximately 400 mAh g−1 after 400 cycles by controlling the cell potential window, which is mainly
attributed to the suppression of structural change of the film electrode during the cycling.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/7/1032/s1,
Figure S1: (a) SEM image of broader surface (left) and transverse cross section (right) of the Sn4P3 film fabricated
by AD and (b) Galvanostatic charge and discharge curves for the Sn4P3 film, Figure S2: (a) Galvanostatic charge
and discharge curves for the Sn4P3/C composite film (Sn4P3:AB = 9:1 in weight) and (b) Comparison of cycling
stability for Sn4P3/C composite films with different carbon content.
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