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Abstract

Organisms that exploit soft structures produce the incredible capabilities for locomotion and
manipulation in complex natural environments. While conventional robots with discrete
links and rigid actuators are fast, strong, and easy to control, they struggle to operate in
such surroundings. Soft robots with a deformable, continuum body and soft actuators
can potentially approach this problem due to their elasticity, safety of interaction, and
environmental adaptability. However, soft actuators have several problems including a
limited stroke, difficulty of control, and slow response time, restricting their deployment.
On the other hand, rigid actuators such as electromagnetic and piezoelectric motors widely
adopted today solve these drawbacks, but do not have the softness.

A combination of soft and classical technologies may address this challenge. This thesis
introduces a concept of flexible linear motors that consists of a rigid motor’s stator and
a flexible elongated shaft. By moving the flexible shaft linearly via changes of a relative
position to the stator, flexible linear motors provide a large stroke, fast response time, and
ease of control. This research shows two examples of how flexible linear motors can be
realized and investigates how the above advantages contribute to the mobility of continuum
soft robots.

One is a flexible ultrasonic motor that consists of a single metal cube stator with a hole
and an elastic and long coil spring inserted into the hole. When voltages are applied to
piezoelectric elements on the stator, a shaft inserted the hole moves back and forth. To
investigate the influence of softness on the ultrasonic motor, we first inserted a slightly
flexible coil spring and a solid shaft into the stator. We change both shafts diameter with
micron-order accuracy to provide a pre-pressure between the stator and shaft to improve
the output of the ultrasonic motor. Experiments show that the coil spring is easier to adjust
the pre-pressure and provides a larger output. Next, we use the elastic and long coil spring
to bring flexibility for the motor and enables a large stroke. The coil spring also works
as a position sensor by regarding itself as a variable resistance. In order to clarify the
design methodology, the pre-pressure, motion model, and position sensing of the coil spring
are formulated. The resulting sensor-actuator system has good response characteristics,
high linearity, and robustness, without reducing flexibility and controllability. We build a



iv

continuum robot based on two flexible ultrasonic motors and demonstrate feedback control
of planar motion based on the constant curvature model.

The other is a flexible rack pinion actuator that consists of a pinion gear rotated by DC
motor and a flexible metallic tube that works as a rack. Rotating the pinion gear moves the
flexible tube linearly by a engage with the helical groove on the tube surface. We build a
continuum robot whose section has three flexible rack pinion actuators connected in parallel.
The elongation and bending motion of each section can be controlled during operation
by varying the speed of each flexible tube. This design not only allows the expansion of
the robot to otherwise unreachable work areas but also improves the locomotion velocity
by generating a large traveling distance of the flexible tubes. First, we test two types of
locomotion on the ground using a continuum robot with the two sections (6 DoF). The results
show that earthworm-like locomotion with a large body stretch has good mobility even in a
slippery environment. Next, study how soft and large deformations can enhance the climbing
capabilities of LEeCH; a natural land leech-inspired continuum robot with the one section
(3 DoF) and two suction cups at the ends. The large deformations occurring in LEeCH
extend its workspace compared to robots based on constant curvature models, and we show
successful locomotion transition from one surface to another at angles between 0◦ and 180◦

in experiment.
The findings in this thesis demonstrate that the proposed motors provide capabilities and

behaviors that cannot be achieved by either soft actuators or conventional rigid motors alone.
Using the concept of the flexible linear motor results in continuum robots with good mobility,
and has the potential to erase the boundary between conventional rigid and soft robots.
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Chapter 1

Introduction

Robotics researchers have told us for decades that robots will become our good partners and
enhance quality of our lives, but this has not yet been achieved. Conventional robots designed
to be stiff to achieve a precise and repetitive position control are useful in well-defined and
structured environments, primarily manufacturing factory. However, they struggle to operate
in unstructured environments such as homes and open fields. This is a fundamental problem
in robotics because of its limited ability to accurately recognize the surrounding environment
and contact/deal objects in the right way, and overcoming it will be a milestone. Imagine
a robot that picks up a small stone. First, the robot uses a camera or laser sensor to create
a 3D model of the stone for picking, but due to sensor resolution and occlusion issues, the
model is not perfect. Next, the robot considers how to pick up the stone, but many unknown
factors such as hardness, material, weight, and friction of the stone lead to uncertainty in its
behavior. These unexpected events stop the robot’s operation and require human intervention
to return. How do robots achieve such interactions with unstructured environments? One
answer is softness (flexibility).

There are no milestones yet, but over the past 10 years there have been major changes in
the structure of a typical robot consists of high-gear motors and rigid serial links. Atlas is a
humanoid robot that employs a hydraulic system to absorb shocks, demonstrated a jumping
on boxes, performing a backflip while jumping [1]. Cheetah is an MIT’s (Massachusetts
Institute of Technology) quadruped robot with low ratio gears for backdrivability, showed to
jump over obstacles up to 40cm in height while running at 2.5 m/s [2, 3]. One key to achieving
these superior motions is the softness or compliance of the actuator reduced complexity in
their interactions with their environment. Another major change is the emergence of soft
robotics, a new research field that seeks to achieve even greater softness in robots [4–6].
In soft robots, the actuators that make up most of their structure are made of soft, elastic,
deformable materials such as rubber and elastomer. The inherent compliance of the soft
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actuators leads to realize systems that are safer, cheaper, and adaptable than the level that
a robot with the traditional motors can achieve. Researchers believed that a completely
soft robot would achieve these full potentials, but it has a drawback, namely, it would be
much too unconstrained. How would the robot recognize and control the infinite degrees of
freedom (DoF) of its body? We don’t yet have a design method and control system like a
biological system that properly positions and uses myriad muscles and sensors. Unlike robots,
animals with the system produce the incredible capabilities for locomotion and manipulation
in unstructured environments.

The feasible way to bridge the gap between robots and animals is probably to gradually
soften a traditional, completely rigid robot. The most successful robot that looks soft or
flexible to date is hyper-redundant discrete robots (i.e. snake robots [7] or arm robots [8]
with many DoF). They mainly consist of a number of rigid links connected in series and
motors attached at each joint, which have a high level of dexterity to reach any point in a
3D workspace. However, they are inherently rigid to accurately determine the shape and tip
position of the robot and their ability to conform to obstacles is limited. The next stage of
hyper-redundant robots in robot softness is continuum robots. Continuum robots are defined
as a robot that has a continuous form, or backbone, which can be bent at any point along its
length [9]. With no prior planning or knowledge, the deformable body can help the robot
adapt and navigate through confined spaces, prevent injuries in interaction with obstacles,
which leads to energy efficiency for locomotion tasks.

Despite these great benefits, most of the applications of continuum robots are not mobile
robots but manipulators. Although several hyper-redundant discrete manipulators have been
replaced by continuum manipulators in the field of minimally invasive surgery [10], there
is no sign yet that snake robots will be replaced by continuum robots. What is preventing
the application of continuum robots? A satisfactory answer to this question is not fully
understood within the scope of this study, but probably the lack of actuator performance is
the main factor. Wire-driven and fluid elastomer actuators, which are most commonly used in
continuous robots, are not suitable for locomotion because they require large external devices.
In other actuators, the problems of response time, stroke (strain) range, and sensing limit
applications. The stroke range issues are particularly important, and because high strains
or large stroke are often required to achieve high mobilities. We describe the structure of
continuum robots in the next subsection and the linear actuator of that in the next subsection
to describe this problem in more detail.
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1.1 Continuum Robots

The history of continuous robots is surprisingly long, and the generally first known example,
"tensor arm", released in 1967, consists of a series of plates interconnected by universal
joints driven by tendons [11]. To be precise, this robot is a a not continuum robot but hyper
redundant robot because it does not have a bendable continuous backbone. Even when the
deformation is not continuous, some hyper redundant robots are sometimes classified as
continuum robots because their sufficiently large degree of freedom and flexibility can realize
most functions of continuum robots [9]. For example, a snake that is a vertebrate behaves like
a continuum robot, but its backbone consists of very small rigid links (bones). In recent years,
a continuum robot with a soft body, inspired by invertebrates, has been proposed. The octopus
arm robot uses tendons or shape memory alloys to create longitudinal and lateral contractions
in order to simulate a biological muscle system, and can exhibit basic movements of real
octopus such as stretching and bending in water [12]. In particular, elongation motion is
interesting because it does not exist in vertebrates whose length is fixed by the spine. A
real octopus uses a strain amplification mechanism to provide a large elongation of 70%,
which is not achieved with the octopus robot. The elongating/shortening motion is also
applied in the locomotion of many invertebrates (e.g. earthworms, caterpillars, leeches) [13].
This locomotion method adapts confined spaces and works in unstructured environments.
An important factor in determining their speed of locomotion is their displacement of the
body elongation, but nature muscles generally only move in the direction of contraction.
Many invertebrates use a flexible skeleton supported by fluid pressure called a hydrostatic
skeleton to transform circular, radial or transverse muscle contraction into increased length
body [14, 15]. Mechanical structures and actuators with capabilities comparable to natural
hydrostatic skeletons have not yet been built. We approach this problem with structures
and actuators that are different from animals. The next subsection discusses the general
actuation/structure of continuum robots.

1.1.1 Extrinsic Actuation

The actuation of continuum robots is classified as either extrinsic or intrinsic depending on
where actuation force occurs: when the force is transmitted from the outside of the robot
structure through mechanical transmissions, it is extrinsic; when the force is generated inside
the robot structure itself, it is intrinsic [10]. The common approach to drive continuum robots
is the use of remotely actuated cables or thin rods. Most continuum robots are so-called
single-back bone robots that have one central elastic structure and multiple disks that support
the passage of cables [16–18]. Multi-backbone continuum robots use secondary backbones,
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such as thin rods, instead of cables. They control bending motion by adjusting the lengths of
the cables or secondary backbones from their base [19, 20]. For example, the use of a central
backbone with an elastic structure is known to reduce the length of the robot by compressing
the elastic body [21].

The another extrinsic actuation of continuum robots is a concentric-tube transmission.
Concentric-tube robots are composed of multiple, precurved, elastic tubes that are nested
inside of each other (The smaller the diameter, the farther the tube is positioned) [22, 23].
The tubes whose ends are not fixed to each other are translated and rotated to control the
robot shape. The concentric backbone structure allows the continuum robots to generate the
elongating/shortening motion by moving the backbones linearly [24–26]. These robots can
obtain a relatively slender body and good accessibility into narrower spaces, but they are not
suitable for locomotion due to large external spaces for actuation.

1.1.2 Intrinsic Actuation

Intrinsic actuated continuum robots usually form a backbone from soft actuators made of soft
materials. In this respect, the robot design is close to biological structure. A typical structure
has one or more sections, each section consists of three fluid elastomer actuators (FEAs)
whose both ends are fixed to each other [27–29]. Depending on their design, FEAs either
increase or decrease in length when pressurized. When each actuator operates at different
pressures, the section bends along a nearly constant curvature. When each actuator operates
at the same pressure, the length of the section either increases or decreases. Direct intrinsic
actuation can reduce the external footprint, but the need for a fluid tether to a fixed position
limits the range of movement.

While intrinsic actuation is clearly more suitable for mobile robots than extrinsic actuation,
actuator specific problems prevent its application. In order to investigate this problem, the next
section describes the details of general linear actuators and then discusses the performance
of the actuator that we aim to build.

1.2 Linear Actuators

Linear motion is the basic unit movement in continuum robots and soft robots, which can
be extended, contracted, bent and twisted by adding some constraints or combining the
motions [30]. Here we classified linear actuators based on their materials and drive principles
into four categories as shown in Fig. 1.1. First, they can be subdivided as hard or soft
depending on the compliance of the material. In this category, the entire actuator does not
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necessarily need to be soft, and only the driving part may be soft. For example, wire-driven
are included in “soft” in spite of the use of conventional motors in external platforms for
actuation because of the compliance of the wire or cable. Next, linear actuators can be
subdivided as shape/volume-based or relative positions-based depending on the driving
principle. For example, electromagnet motors generate the motion via changes of relative
positions between their components such as stator and rotor, while soft actuators generate
the motion via changes of their shape or volume due to stresses generated within them.
The former produces large strokes with their continuous drive according to the shaft length,
whereas the latter has compliance due to fluid compression and material stiffness. Let us
summarize the features of each linear actuator.

�����������
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Fig. 1.1 Classification of linear actuators based on materials and driving principles. (a) Fluidic
cylinders. (b) Traditional linear motor including electromagnetic motor and piezoelectric
motors. (c) Soft expansion and contraction actuators. (d) A few exceptions exist [31–33] but
are not generally recognized.

1.2.1 Rigid Linear Actuators

Fluidic cylinders and electromagnetic motors are typical conventional linear actuators, and
are shown in the Fig. 1.2 (a) and (b), respectively. The fluidic cylinders are mechanical
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devices that use the power of compressed fluid to produce a force in a reciprocating linear
motion. The most common cylinder has a simple mechanism that consists of a piston and rod
moving inside a closed cylinder, and generated by air or hydraulic pressure. These cylinders
are cheaper, reliable, and have compliance in the axial direction due to fluid compressibility.
However, they have a limited stroke range by the length of the cylinder and a control difficulty
due to fluid compressibility. Electromagnetic linear motors are mechanical devices in which
a stator and a rotor of rotary motors are linearly deployed, and generate linear motion instead
of rotational motion. They have no bearings and are simple in structure and they are used as
weapons, maglev trains, aircraft launching and mass drivers for spacecraft propulsion. In
the field of robotics, the combination of the rotary electromagnetic motor with a reduction
gear and ball screw is more preferred because of their design flexibility. They consist of
rigid components without softness, but generally can make the stator hollow and have a large
stroke depending on the length of the shaft.

Fig. 1.2 Rigid linear actuators. (a) Fluidic cylinder and (b) electromagnetic linear motor
(refer to https://www.micromo.com/ and https://uk.rs-online.com/web/).

1.2.2 Soft Expansion/Contraction Actuators

Soft actuation as shown in Fig. 1.1 (c) can be categorized into three types (Fig. 1.3): variable
length tendon [34], fluidic elastomer actuators (FEAs) [35], and electro-active polymers
(EAPs) [36]. Variable-length tendon actuators including wire-driven and SMA are typically
embedded in soft segments, and change the length of the cable by winding or shortening
to create motions [37, 38]. Wire-driven, which is an exception among soft actuators, is an
easy-to-control drive system due to the use of conventional rotary motors in external platform
for actuation. However, since wire-driven robots can generate force only in the pulling



1.2 Linear Actuators 7

direction, they need a restoring force by springs or their soft body to return to their original
shape. SMA is an actuator that can memories and recover its original shape, after heated
over its transformation temperature. SMA actuators actuated electrically by Joule heating
are lightweight and powerful, and require no additional mechanical components. From
these excellent features, they are used for various soft robots to replicate the functionality of
muscular structure [39, 40], but their small strain and slow response time are restricted for
their applications.

Fluidic elastomer actuators (FEAs) are the most prevalent soft actuators, which inflate
channels within the soft body to deform the structure in a controlled manner. They can
generate various motions such as bending and twisting from expansion/contraction motions
by adding inextensible constraints such as cloth, paper, plastics, fiber and even stiffer rubbers.
There can be many sub-groups of actuators under the FEA-type such as pneumatic artificial
muscles (PAMs) [41, 42], soft pneumatic actuators (SPAs) [43, 44] and flexible-fluidic
actuators (FFAs) [45, 46]. They are highly scalable and less complex to product by using
casting, soft-lithography, and multi-material 3D printing [47]. These fabrication tools allow
soft robots to be combined composites with heterogenous materials, embedded electronics,
and internal channels for actuation. A large challenge for FEAs is portable power sources for
actuation. With a few recent and very notable exceptions [48–50], fluidic power sources are
heavy and bulky, restricting mobility and making miniaturization difficult.

Electro-active polymers (EAPs) are polymer-based actuators that generate a change in
size or shape when stimulated by an electric field [51]. They are low weight and have fracture
tolerance, pliability, and relatively large actuation strain, which are suitable for soft robot
actuation. Besides actuators, EAPs can be used as sensors, electronic components, and energy
harvesting devices. EAPs are classified based on the driving principle into two categories:
electronic EAPs and ionic EAPs. Electronic EAPs, which are actuated by applied electric
fields and Coulomb forces, have a large strains and rapid response time (mSec order) but
require high voltages for actuation (∼150 MV/m). Ionic EAPs, which are driven by the
migration of ions or molecules, work at low voltages (less than 5 V) but usually are used as
bending actuators. Most of them can work only in wet conditions.

1.2.3 Flexible Linear Motors

Actuators classified in Fig. 1.1 are generally not known and rarely have been studied [31–33].
We named them "flexible linear motors", which are defined as motors that consist of a stator
and a flexible shaft that moves linearly via changes of a relative position to the stator. Flexible
linear motors are clearly different from conventional soft actuators that change their shape by
internal stress. There would be three possible benefits if flexible linear motors were realized.
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Fig. 1.3 Three typical types of soft actuators. (a) Variable-length tendon [34], (b) fluidic
elastomer actuator (FEA) [35], (c) electro-active polymer (EAP) [36].
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First, the motors can use an attractive driving principle. For driving sources, traditional rigid
motors use piezoelectric effects and electromagnetic forces that are easy to control, while
soft actuators mainly use compressed air and heat that are difficult to control. Furthermore,
the former has good response time and high resolution. Flexible linear motors with a stator
based on conventional motors would inherit these excellent features. Second, the motors
can obtain a large stroke regardless of the shaft material. Soft actuators can only produce a
limited stroke depending on the fracture resistance and stiffness of their material because of
their driving principle. On the other hand, traditional motors with a hollow stator would have
a large stroke depends on the shaft length because the energy for driving such as vibrations
and electromagnetic forces is applied from the stator. Third, the motors can attach multiple
stators on one shaft. This implies that motor output would be increased according to the
number of stators. As an example of a use of multiple stators, take for instance continuum
robots that have a flexible and elongated body: a continuum robot that has several backbones,
or flexible shafts, would be able to have multi driving units with two or more stators on
the shaft axis (Fig. 1.5). This implies that the continuum robot can increase the degree of
freedom (DoF) without the diameter increase.

Fig. 1.4 Imaginary view of a flexible linear motor. A stator based on a conventional motor
drives a flexible shaft lineary.
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Fig. 1.5 Imaginary view of a continuum robot using flexible linear motors. Several driving
units with two or more stators move along the flexible tubes. Changing the lengths of the
flexible tube between each driving unit allows the robot to elongate and bend significantly.

1.3 Specific Applications

The previous subscription described the advantages of flexible linear motors, but the specific
application is still unknown. Here, we will explain the background of the continuum robots
for the application.

1.3.1 Pipeline Inspection Robot

Continuum robots that can access hard-to-reach targets in unpredictable environments have a
wide range of potential applications from rescue to medicine [47, 14]. For example, a typical
place where continuum robots apply is the pipeline which is long, narrow, and has significant
curvature. A flexible and elongated continuum robot goes inside the pipe via small opening
and enables the inspection and subsequent repair activity.

With the increase in the expectation of such continuum robots, many hardware designs
have been proposed and demonstrated. The important characteristics of these robots to
explore deeper and inaccessible sites are flexibility and stroke. High flexibility is necessary
to conform to surroundings. A long stroke expands reachable work areas and increases the
locomotion speed. One challenge of continuum robot design is to have both high flexibility
and long stroke in the elongated body. However, it is difficult to have both the characteristics
because the designable space inside the elongated tube robots is limited.

A remarkable development in recent years has been the proposal of continuum robots
that can achieve significant growth of several 1000% [52, 53]. They consist of multiple
expandable balloons, which provide manipulation by varying the amount of air in the balloon.
However, they are completely fixed to the ground and cannot move around. Locomotion
is often essential for navigating substantially long and narrow environments and accessing
remote locations. The most commonly used locomotion in pipe inspection robots is based on
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earthworms [54, 55]. Earthworm robots have a plurality of segments and move through a
narrow conduit by sequentially stretching or contracting each segment. Many robots have
only the ability to go straight [56, 57], but some exceptions allow for selective branching.
However, they suffer from low speed movement.

1.3.2 Climbing Robot

Climbing robots have a wide range of potential applications, including building inspection,
maintenance, construction, and search and rescue tasks [58–61]. A challenging problem
in climbing robots is increasing reachability to navigate and transition between obstacles
such as steps and walls. Most climbing robots are yet to achieve such tasks, whereas soft-
bodied animals such as leeches, slugs, and caterpillars easily complete them. One strategy
often observed in such organisms is the exploitation of large deformations and, therefore,
nonlinearities to increase reachability.

Some traditional rigid robots that can climb at many angles and transition from wall
to wall have been demonstrated [62–66]. However, since all climbing robots are always at
risk of falling from high altitudes, it is desirable for them to be as light and flexible (as the
organisms are) for safety and survival. Unlike traditional climbing robots with rigid links,
soft robots have great potential to interact with environments safely and adaptively [67].
Some soft climbing robots with extreme compliance have been reported [68–70], but they
can only generate simple locomotion on the wall. Despite the difficulties of modeling and
control of soft robots arising from the many degrees of freedom in such systems, a few recent
and very notable exceptions partially overcame these difficulties.

Flippy [71] is a cable-driven continuum robot with two grippers attached to the ends.
It can transition between interior planes in different orientations by bending its body 180°.
While this locomotion enables transition motion without complex sensing or control, its
stride is restricted and increases the risk of collision with obstacles. Treebot [32] has a
continuum body that consists of three mechanical springs, and it can extend and bend in any
direction by controlling the spring lengths. This provides a large working space and makes it
possible to climb from a tree trunk to a branch. Treebot has superior maneuverability and
adaptability, but the body deformation was only explored within the regime of deformations
which was predicted by a constant curvature model, thus constraining the range of possible
robot postures. It is still an open challenge to achieve a wall-to-wall transition in soft robots
(or continuum robots) and to model and control large nonlinear deformations.
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1.4 Objective

This thesis argues that the realization of a flexible linear motor can overcome many of
the drawbacks of previous soft actuators. To support this argument, subsequent chapters
studied the proposal, model, performance, sensor, and control of flexible linear motors.
The advantage of this approach that fuses rigid motors and soft actuators is to involve both
features such as flexibility, robustness, large stroke, precise control, and electrically-driven.
Explicitly enumeration the objectives:

• Proposal of flexible linear motors. To achieve a realization of the motors, two flexible
linear motors based on the electromagnetic and piezoelectric principles are proposed
and built.

• Experiments of flexible linear motors. To evaluate these motors, we build models,
measure the basic performance, and consider sensor and control.

• Robot implementation of flexible linear motors. To demonstrate the advantages of
these motors for soft robots, especially continuum robots, robots embedded these
motors are built and tested.

1.5 Thesis Organization

This thesis comprises four chapters. This chapter introduces the concept of the flexible linear
motor and the main body of literature related to soft robots and linear actuators. We show the
benefits obtained from the realization of flexible linear motors and the goal and approach
of this research. Chapters 2 and 3 propose two flexible linear motors: flexible ultrasonic
motor and flexible rack pinion actuator, respectively. Table 1.1 sums up the characteristics
and capabilities of each flexible linear motor. The former is advantageous for miniaturization,
and the latter is easy to make multiple degrees of freedom (DoF) robot due to a simple
driving circuit. Chapter 2 investigates the effect of inserting a slightly flexible shaft on
the ultrasonic motor as a preliminary step in creating the flexible ultrasonic motor. After
verifying experiments of the hard shaft, the flexible ultrasonic motor is built which has a
flexible and elongated coil spring as the drive shaft. We formulate the pre-pressure and
motion model of the coil spring to clarify the design methodology of the flexible ultrasonic
motor. Experiments including when the motor moves under a load, a bending constraint,
and feedback control are tested. Moreover, we build a self-sensing sensor by regarding the
coil spring as a variable resistance. We build a twin coil spring-based flexible ultrasonic
motor prototype and demonstrate feedback control of planar motion based on the constant
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Table 1.1 Characteristics of flexible linear motors

Flexible ultrasonic motor Flexible rack and pinion actuator
Power < 0.5 N > 10 N

Response
Starting time: 10ms
Stopping time: 1ms ≃ 100 ms

Efficiency < 30 % ≃ 90 %
Size 1–20 mm3 > 25×30×50 mm3

Power supply
High AC voltage: > 100 Vp−p

High Frequency: > 20 kHz Low DC voltage: < 24 V

Driving principle Piezoelectric phenomenon
Electromagnetic phenomenon

(with mechanical transmission)

curvature model. After having introduced the design and mechanism of the flexible rack
pinion actuator, Chapter 3 presents a mobile continuum robot and soft climbing robot as
their applications. To clarify how superior flexibility and stroke, the main advantages of
flexible linear motors, contribute to manipulation and locomotion, these robots are modeled
and are tested. Chapter 4 summarizes the outcomes of our studies and puts the results of the
individual chapters. The concept of the flexible linear motor opens several ideas for future
work.



Chapter 2

Flexible Ultrasonic Motor

This chapter will introduce a flexible ultrasonic motor as a first flexible linear motor. Although
the main focus of this thesis is a linear motion of a flexible shaft, the flexible ultrasonic motor
can not only translate but rotate, therefore we will also mention the rotary motion briefly.
Section 2.1 introduces principles, features and applications of general ultrasonic motors.
Section 2.2 presents the driving principle of a rotary-linear motor that is an ancestor of the
flexible linear motor. Section 2.3 shows experiments of the ancestor motor that inserted a
slightly flexible shaft as a preliminary step for the flexible ultrasonic motor. Section 2.4
builds the flexible linear motor and formulates the pre-pressure, position sensing, and motion
model of the coil spring. In addition, the motor performance under various conditions is
evaluated.

2.1 Ultrasonic Motor Overview

Ultrasonic motors are types of electro-driven motors that use mechanical vibrations in
ultrasonic range (>20 kHz) as their driving principle [72–76]. AC voltages are applied to
piezoelectric elements to generate expansion and contraction motions. The displacement of
piezoelectric oscillations amplifies by the mechanical resonance of a stator. A rotor or slider
pressed against the stator moves by receiving the vibration via a frictional force.

The first ultrasonic motor was put into practical use in 1986 [73]. Since then, ultrasonic
motors have been used for autofocusing system in camera lenses, head-rest control in cars,
and calendar turning mechanism in watches. These adoptions are thanks to the excellent
features of the ultrasonic motors shown below.

• High power/weight ratio

• High power at low speed
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• High holding power at zero speed

• Quick response time

• Compact size and light weight

• Design flexibility

• Resistance to external magnetic fields or radiation

Despite these attractive features, necessity for a high frequency power supply, less durable
due to friction drive, and thermal problem due to long-time driving have restricted their
deployment.

2.2 Driving Principle

There are many type of the driving methods of ultrasonic motors including traveling wave
type, standing wave type, mode rotation type, and multi-mode excitation type [77]. Here,
we use travelling wave typed ultrasonic motor, which is the most commonly known. We
particularly focus on a rotary-linear ultrasonic motor that has a very simple cube stator with
a through hole [78, 79].

A schematic of the stator of the rotary-linear ultrasonic motor is shown in Fig. 2.1. Four
plate piezoelectric elements are bonded on the four side of the cube made of phosphor bronze.
Each piezoelectric has two silver electrodes polarized positive on one side. Totally, there
are eight electrodes on the outside of the stator. The other side, a silver electrode polarized
negative, conducts electrically to the metallic body and ground reference of power supply
devices. Voltages are applied by the eight wires connected to the eight electrodes, respectively,
as shown in Fig. 2.1. The four sides of the stator are labeled "A" to "D" clockwise, and the
forward and backward directions are labeled " f " and "b", in the axial direction, respectively.
The voltages applied to all silver electrodes of the eight piezoelectric elements are named as
"EA f ", "EAb" to "EDb", "ED f ".

2.2.1 Rotation

The stator of rotary-linear ultrasonic motor excites individual vibration modes for rotary and
linear motions as the driving principle. The rotation is based on a vibration mode that excites
three waves along the circumference of the through-hole (R3 mode) shown in Fig. 2.2. When
a periodic force Fa acts on the top surface of the stator by piezoelectric effect, a standing
wave R3 mode is generated. When the other periodic force Fb acts on the next surface
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Fig. 2.1 Schematic of the stator and applied voltages
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with 90 degrees, another R3 mode is excited. By generating these two R3 modes with the
temporal phase difference of π/2 (one-quarter of a cycle) simultaneously, the travelling wave
is produced on the inner surface of the through-hole (Fig. 2.3). While producing the traveling
wave, elliptical motion is generated, and it moves the output shaft in the circumferential
direction. This driving principle of the rotation is the same as that of the traveling type
ultrasonic motor [80], although it appears different design. The voltages applied to all silver
electrodes of the eight piezoelectric elements are named as "EA f ", "EAb" to "EDb", "ED f ". To
generate rotation, four kinds of the voltages with phase shift of π/2 are applied:

EA f = EAb = AE sin(2π fEt) (2.1)

EB f = EBb = AE sin(2π fEt +π/2) (2.2)

EC f = ECb = AE sin(2π fEt +π) (2.3)

ED f = EDb = AE sin(2π fEt +3π/2) (2.4)
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Fig. 2.3 Generation of elliptical motions for rotation. When R3 and another R3 modes are
simultaneously excited, the stator generates an elliptical motion and moves a rotor

where AE is the amplitude and fE is the frequency of the applied voltages. When the
frequency fE is in the neighborhood of the natural frequency of R3 mode, the amplitude of
the vibration is enhanced. This fact results in the production of a traveling wave with a large
vibration amplitude.

2.2.2 Translation

The linear motion is generated by coupling the first extension mode (T1 mode) and the
second extension mode (T2 mode) of the stator shown in Fig. 2.4. T1 mode is symmetry and
the T2 mode is asymmetry with respect to the axial direction. When the stator design is cubic,
the natural frequency of T1 mode and T2 mode are accorded. This fact has been verified by
vibration analyses in existing literature [78, 80]. Giving the temporal phase difference π/2
between Tl mode and T2 mode, the inner surface of the stator generates an elliptical motion
that moves the output shaft in the axial direction (Fig. 2.5). Such driving principle for the
linear motion is well-known in linear ultrasonic motors [81, 82] and multi-degree of freedom
ultrasonic motors [83, 84]. In these motors, combination of the first extension mode and the
second bending mode is used as their driving principle. Modal analysis using finite element
methods (FEM) clarifies mode shapes and natural frequencies of the stator. The material
characteristics of the stator used in FEM model are the same as those of phosphor bronze.
The stator shape is a single metallic cube with a side length of 14 mm and a through-hole of
10 mm in diameter. The modal analysis shows the mode shape of R3, T1, and T2 modes as
shown in Fig. 2. The resultant R3 mode is excited at approximately 66.7 kHz. The resultant
T1 and T2 modes are observed at 78.0 kHz and 77.5 kHz, respectively. To generate linear
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motion, two kinds of voltages with phase of π/2 are applied:

EA f = EB f = EC f = ED f = AE sin(2π fEt) (2.5)

EAb = EBb = ECb = EDb = AE sin(2π fEt +π/2) (2.6)
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Fig. 2.5 Generation of elliptical motions for translation. When T1 and T2 modes are
simultaneously excited, the stator generates an elliptical motion and moves a shaft.

2.3 Ancestor of Flexible Ultrasonic Motor

This subchapter introduces a rotary-linear ultrasonic motor as an ancestor of the flexible
ultrasonic motor. Since ultrasonic motors are actuators that transmit vibrations to a hard
shaft by friction, it is challenging to operate a very flexible shaft. Therefore, moving a
slightly flexible shaft is the starting point for this study. We focus on a rotary linear motion
ultrasonic motor with a simple structure. The stator comprises of a single metallic cube
with a through-hole, and the output shafts inserted to the hole generates motions in both
its circumferential and axial directions arbitrarily. The ultrasonic motor requires the pre-
pressure between the slider and shaft for improving the output. In this subchapter, two ideas
for optimizing pre-pressure by the output shafts are examined. First idea is a cylinder shaft
with micron-order accuracy in its diameter. The cylinder shaft contacts the whole inner
surface of the stator and generates pre-pressure between the stator and the shaft. The other
idea is a spring shaft having slightly larger diameter than the stator hole. It expands in the
radial direction and generates the pre-pressure. The former is completely rigid, while the
latter is slightly flexible.

2.3.1 Stator Characteristics

Prototype

The stator consists of a metallic cube and four piezoelectric plates on its four sides (Fig. 2.6).
The cube, made of phosphor bronze, has a side length of 14 mm and a hole of 10 mm. Nickel
plating is coated inside the hole to reduce wear. In the neighborhood of a corner of the
stator, an internal thread of 1 mm in diameter is opened to connect to a ground line. Each
piezoelectric plate with a length of 14 mm, a width of 10 mm, and a thickness of 0.5 mm, has
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Fig. 2.6 Schematic of the rotary-linear ultrasonic motor.

two silver electrodes on one side. The four piezoelectric plates are bonded using an epoxy
adhesive (TB2280E, ThreeBond, Japan) at 120 ◦C for 2 hours.

Impedance Analysis

The resonant frequency of the prototype stator can be found by an impedance analyzer
(IM3570, Hioki E. E. Co., Japan). A wire soldered to a piezoelectric element electrode and
the ground wire from the metallic cube are connected to the impedance analyzer. The bottom
of the stator is fixed with a flexible adhesive. Fig. 2.7 shows the frequency characteristics
of the impedance and phase of the stator. A steep change in the impedance is observed at
the frequency close to the frequency estimated as the R3, T1 and T2 modes. The resonant
frequency of R3 mode is shown at approximately 73 kHz and T1 and T2 modes at about 81
kHz. These frequencies are slightly higher than the estimated frequency by the FEM modal
analysis. It is due to that fixing the stator to a test bench increases the resonant frequencies.

Measurement of Vibration Amplitude

The shape of the vibration modes can be clarified by measuring vibration amplitude. A laser
Doppler vibrometer (NLV2500-5, Polytec, Germany), which outputs the vibration velocity
of a point, is used for the measurement. By integrating the vibration velocity, we can obtain
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Fig. 2.7 Resonant frequency of the R3, T1, and T2 modes. (a) Impedance and (b) Phase.

the amplitude of the vibration. Two laser Doppler vibrometers LDV1 and LDV2 are installed
to measure the inner surface and the end of the stator, respectively, as shown in Fig. 2.8.
The laser from LDV1 is aligned with the axis of the stator hole. A rod mirror located into
the stator hole reflects the laser orthogonally to the inner surface of the through-hole. This
reflection enables to measure the radial vibration velocity. To define the position of the
mirror, we denote φ the angle of the mirror and ld the distance from the end of the stator to
the center of the mirror. The other point that LDV2 measures is close to the stator hole at
the end of metallic cube. The axial vibration amplitude of the stator is measured. By using
these laser Doppler vibrometers and manipulating the rod mirror, the mode shapes and their
vibration amplitudes are clarified.

The vibration amplitude of R3 mode is measured by rotating the mirror in the direction
of φ . The gravity direction of the stator is defined as φ = 0 degree. To focus on a single R3
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mode, voltages expressed in Equations (2.1) and (2.3) are applied (AE = 120 Vp−p and fE =
72.2 kHz) and voltages in Equations (2.2) and (2.4) are turned off. Fig. 2.9 (a) shows the
vibration amplitude inside the through-hole of the stator measured by LDV1 when rotating
the mirror. The result shows generation of three waves, in which the positive and negative are
determined by the phase. The peak vibration amplitude of approximately 0.2 µm is obtained
at the antinode of R3 mode. In fixing the angle φ , radial vibration amplitude is roughly
constant regardless of the direction of ld . During the vibration of R3 mode, the vibration
amplitude of the stator edge measured by LDV2 is about 0.013 µm.

The vibration amplitude of the stator excited by T1 and T2 modes is measured by
displacing the mirror in the direction of ld. The voltages in Equations (2.5) and (2.6) are
applied (AE = 120 Vp−p and fE = 81.0 kHz) to observe the vibration amplitude. Fig. 2.9
(b) shows the vibration amplitude measured by the LDV1 when the mirror is moved. The
resultant vibration amplitude increases at the both end of the stator and it decreases at
the center at where node of the T2 mode locates. The stator generates the peak vibration
amplitude of approximately 2.16 µm. The vibration amplitude measured by LDV2 is about
1.57 µm, which is roughly equal to the amplitude of the center. Compared to the peak
amplitude of R3 mode, the amplitude of T1 and T2 modes is more than ten times larger than
the R3 mode.
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Fig. 2.8 Shematic diagram of the vibration measurement by laser Doppler vibrometer (LDV).
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(a)

(b)

Fig. 2.9 Vibration amplitude of (a) R3 mode and (b) T1 and T2 modes. (a) In R3 mode, three
waves are observed on the inner surface of the stator. (b) the vibration amplitude increases at
the both end of the stator and it decreases at the center at where node of the T2 mode locates.
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2.3.2 Pre-pressure Mechanisms and Experiments

Proposal of Two Output Shafts

We propose two output shafts with a pre-pressure generation mechanism to solve this problem
by (i) adjusting clearance between a cylinder shaft and the stator hole and (ii) reducing a
spring shaft to the stator diameter. Fig. 2.10 (a) shows a pre-pressure method using the
cylinder shaft. The cylinder shaft made of carbon steel has a weight of approximately 30.8
g, and its weight becomes a pre-pressure between the stator and the shaft. To evaluate the
contact of the cylinder shaft to the stator hole, let us denote dc the diameter of the cylinder
shaft. When the cylinder diameter is smaller than the stator hole diameter (dc < D), the shaft
contacts with only the bottom of the through-hole by gravity. When the cylinder diameter is
equal to the stator diameter (dc = D), the outer surface of the shaft contacts the whole inner
surface of the stator, and this contact condition is ideal for both rotation and linear motion.
When the cylinder diameter is larger than the stator diameter (dc > D), the friction force
between the stator and the shaft increases and prevents the motor motions.

Fig. 2.10 (b) shows the other pre-pressure method using the spring shaft, which is the
same one as a closed coil spring. The spring shaft made of stainless steel has a diameter of
ds, weight of about 3 g, length of 30 mm and wire-diameter of 0.5 mm. When a moment
is applied to the both ends of the spring shaft around the axial direction, the spring shaft
is twisted and its diameter decreases. While the spring shaft diameter is smaller than
the stator hole diameter by twisting, the shaft is inserted to the stator. When the applied
moment is removed, the outer diameter of the shaft expands and contacts evenly to the inner
circumferential surface of the stator. This is an ideal condition because the pre-pressure acts
between the shaft and the stator without clearance. This pre-pressure can be optimized by
choosing the spring shaft diameter: the pre-pressure increases at the larger spring diameters.
Similarly to the cylinder shaft, if the pre-pressure is too large, the friction force prevents the
motor motions. Fig. 2.11 (a) and (b) show the prototype motor with the cylinder shaft and
the spring shaft, respectively.

Impedance Analysis when Inserted Shafts

We examine how impedance characteristics of the motor behave when the cylinder shafts
and the spring shafts are inserted to the stator. The resonant frequency of R3 mode fR and
that of T1 and T2 modes fT are clarified by the impedance analyzer.

Fig. 2.12 (a) and (b) show the behavior of the resonant frequencies fR and fT , respectively,
in changing the cylinder shafts diameter with 1 µm accuracy. Several cylinder shafts are
prepared for experiments as the output shaft. When the diameter of the cylinder shaft is
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(a)

(b)

Fig. 2.10 Pre-pressure methods using (a) a cylinder shaft and (b) a spring shaft.

smaller than that of the stator hole, the shaft can be inserted to the stator hole smoothly. The
clearance between the stator and the shaft decreases as the shaft diameter increases. When the
shaft diameter is accorded with the stator hole, inserting the shaft into the hole needs a strong
force. We determine this case as zero clearance. For evaluation of the cylinder shaft, we
define clearance between the stator and the cylinder shafts Cc (= D−dc) as the subtraction
of the cylinder diameter from the stator diameter. When the clearance Cc is smaller than 4
µm, the both resonant frequencies sharply increase. This reveals that the outer diameter of
the shaft contacts the inner circumferential surface of the stator without clearance. These
resonant frequencies peak at Cc = 1 µm.

Fig. 2.12 (c) and (d) show the shift of the resonant frequencies in changing the spring
shaft diameter, which is measured by a micrometer. The spring shaft is twisted to be inserted
to the stator. The shaft diameter possible to be inserted without twisting is determined as zero
clearance. This determination of the spring shaft clearance differs from that of the cylinder
shaft. We define a reduction value of the spring diameter Rs (= ds −D) as the subtraction
of the stator diameter from the spring diameter. Also, Rs is an amount of shrinkage in
spring shaft of the radial direction. The resonance frequency stays constant regardless of
the reduction value Rs. This is because the spring shaft is hollow and its mass is very small
unlike the solid cylinder shaft.
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(a) (b)

Fig. 2.11 Prototype motors with (a) the cylinder shaft and (b) the spring shaft.
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Fig. 2.12 Resonant frequencies in changing the shaft diameter. (a) R3 mode and (b) T1 and
T2 modes in the cylinder shaft. (c) R3 mode and (d) T1 and T2 modes in the spring shaft.
(Cc: the clearance between the stator and the cylinder shafts, fR: the resonant frequency of
the R3 mode, fT: the resonant frequency of the T1 and T2 modes).
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Torque and Thrust Force

Let us show how the clearance Cc and the reduction value Rs effect on the torque and thrust
force of the rotary-linear ultrasonic motor. Fig. 2.13 shows experimental setup for measuring
the torque and thrust force. The torque and thrust force are statically measured by a force
gauge (ZP-20N, Imada Co., Japan). In Fig. 2.13 (a), an output shaft is attached to the spring
shaft, and its torque is measured by the force gauge via a pulley. In Fig. 2.13 (b), the output
shaft is attached to the spring shaft, and its thrust force is measured in axial direction. In the
experiment, the amplitude of the voltages are constant (AE = 120 Vp−p), and the frequency
fE is adjusted to make the torque and force maximum. After the voltages are applied, heat
generation occurs. The stator and the shafts expand according to a coefficient of thermal
expansion. Influence of the heat generation can be ignored in this experiment because the
change of the clearance is very small. Incidentally, if the temperature rises by 5◦C, The
change of the clearance between the stator (coefficient of thermal expansion α = 17–18 ×
10−6 K−1) and the shafts (α = 11–18 × 10−6 K−1) is less than 0.35 µm. Fig. 2.14 (a) and
(b) show the relation of the maximum torque and thrust force to the clearance Cc. When the
clearance is minimum (Cc = 1 µ m), both the torque and the thrust force peak (T = 3.6 mNm
and F = 1.5 N). When there is no clearance (Cc = 0 µ m), the motor cannot generate motions.
It is due to that static friction is too large to drive the cylinder shaft. Fig. 2.14 (c) and (d)
show the relation of the maximum torque and thrust force to the reduction value Rs. The
peak torque of T = 2.8 mNm and peak thrust force of F = 2.9 N are obtained at Rs = 5 µ m
and Rs = 9 µ m), respectively.

We discuss a difference of the peak thrust forces values between the cylinder shaft and
the spring shaft (Fig. 2.6 (b) and (d)). It is seen that the peak thrust force of the spring shaft is
roughly twice larger than that of the cylinder shaft. This is because the spring shaft can adjust
the pre-pressure value precisely and optimally by changing its diameter. In other words, it is
insufficient to optimize the pre-pressure by the cylinder shaft with 1 µ m accuracy. Another
interesting aspect is that the spring shaft has a difference between the torque peak and the
thrust force peak: the torque peaks at Rs = 5 µ m and the thrust force peaks at Rs = 9 µ m
(Fig. 2.6 (a) and (b)). It is due to that the vibration amplitude of T1 and T2 modes is larger
than that of R3 mode (Fig. 2.9). The motor can generate large thrust force with high vibration
amplitude under the large pre-pressure, whereas a small pre-pressure with low vibration
amplitude reduces the torque.
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(a) Tom and Jerry (b) Wall-E

Fig. 2.13 Experimental setup for measuring (a) the torque and (b) the thrust force.
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Fig. 2.14 Torque and thrust force in changing the shaft diameter. (a) R3 mode and (b) T1 and
T2 modes in the cylinder shaft. (c) R3 mode and (d) T1 and T2 modes in the spring shaft.
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Fig. 2.15 Relationship of torque and thrust force to the frequency of applied voltages: (a)
torque and (b) thrust force.

Frequency Characteristic using the Optimal Diameters

Frequency characteristic of ultrasonic motors is important to be used for control of the torque
and the thrust force. We examine the torque and thrust force of the rotary-linear ultrasonic
motor by changing the frequency of the voltages at the constant amplitude AE = 120 Vp−p.
Fig. 2.15 (a) shows the behavior of the maximum torque when the frequency is changed. The
torque peaks in the neighborhood of the resonant frequency. The range of torque generation
is 70-76 kHz in both the cylinder shaft and spring shaft. Fig. 2.15 (b) shows the frequency
characteristic of the maximum thrust force. The range of thrust force is 79-83 kHz in the
cylinder shaft and is 81-85 kHz in the spring shaft. The thrust force of the spring shafts peaks
slightly higher frequency than that of the cylinder shaft. The resulting torque and thrust force
are non-linear with respect to the change in the frequency.
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2.3.3 Conclusion

The torque and thrust force have been improved by optimizing the diameter of the cylinder
shafts and the spring shafts experimentally. Compared with the previous rotary-linear
ultrasonic motor with the similar size of the stator when applying the same voltages [9], the
maximum torque of the spring shaft is 1.5 times larger and that of the spring shaft is 1.2
times larger; the maximum thrust force of the cylinder shaft is 4.4 times larger and that of
the spring shaft is 8.5 times larger. In the future, for larger torque and thrust force, there are
several ideas such as coating the output shafts by an appropriate material with an optimal
friction coefficient. The proposed spring shaft works well at the optimal pre-pressure. One
of the advantages of using the spring shaft is the flexibility. Flexible robotics might be an
interesting application of this motor.

2.4 Flexible Ultrasonic Motor Prototype

In the previous subchapter, we have succeeded to move the slightly flexible shaft and provide
pre-pressure by changing the shaft diameter in the micron order. Here, we use a longer
and more flexible coil spring to bring flexibility for the motor and enable a long stroke to
access to deeper sites (Fig. 2.16). In addition, the long and flexible coil spring generates
the pre-pressure with larger diameter shrinkage (millimeter order) and works as a position
sensor by regarding itself as a variable resistance. We formulate the relation between the
coil spring parameters and the pre-pressure to clarify the design methodology of the flexible
ultrasonic motor. We model the linear motion of the coil spring by an equation of motion and
compare it with the transient response by experiments. The performance under various loads
or feedback loops is evaluated to study the characteristics of flexible ultrasonic motors.

2.4.1 Modeling

Design of the Coil Spring and Pre-Pressure

In the flexible ultrasonic motor that uses the friction drive as the principle, the most important
parameter for optimizing its output is the pre-pressure between the stator and slider. The
magnitude of the pre-pressure can be designed from the dimensions of the coil spring and
the diameter of the stator hole. The coil spring slider is composed of a single metallic wire
formed into a helix. It has a slightly larger diameter than the stator hole.

Fig. 2.17(a) shows an original coil spring and the coil spring inserted to the stator hole.
The coil spring with an outer radius r1 shrinks to the hole radius r2. The shrinkage of the
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Fig. 2.16 Flexible ultrasonic motor. The coil spring inserted to the stator can move back and
forth when voltages are applied.

outer radius is defined as ∆r (= r1 − r2). The coil spring has a rectangular cross-section
with a width b and a thickness h, as shown in the detailed view in Fig. 2.17(a). The median
centerline of the coil spring exists at the cross-section center vertically, and the median
centerline length that spirals inside the stator hole is defined as L. In other words, L is the
product of 2π , the radius r2, and the number of turns N between both the edges of the stator
after the coil insertion:

L = 2πr2N (2.7)

When the coil spring is inserted into the stator hole, the shrunk coil generates the pre-pressure
P at the interface between the stator and the coil spring as shown in the right of Fig. 2.17
(a). To estimate the pre-pressure value from the coil’s parameters, we consider two types
of the elastic potential energy stored in the coil spring: strain energies by a shrinkage in the
radial direction and by bending deformation. Assuming that these two energies take the same
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Fig. 2.17 Geometric relationship between the coil spring and the stator. (a) A coil spring with
a slightly larger diameter than the stator hole diameter is inserted to the stator hole. The coil
spring shrunk to the stator hole generates pre-pressure in the radial direction. (b) The detail
of the deformation of a coil spring element. The cross section either lengthen or shorten,
creating the strain.

value, we can estimate the pre-pressure using this equivalence. First, we consider the energy
by the shrinkage in the radial direction. Deriving a rigid solution of the radial deformation
is too complicated because the coil spring with a thick cross-section has a non-linearity. In
addition, the shrinkage of the coil spring results in the radial and circular deformations. To
simplify this radial deformation, we regard the coil spring as a cylinder with an unknown
elastic coefficient. When the pressure P is applied in the radial direction, the coil spring
shrinks with a displacement of ∆r. The work done by the pressure is equivalent to the strain
energy stored in the coil spring:

U =
1
2

PbL∆r (2.8)

where the product of the width b and length L is similar to the outer surface area where the
pressure acts. This is the energy stored by the radial shrinkage, and the pressure P is still
unknown in (2.8). The pressure P can be estimated after the strain energy is solved from the
bending deformation.

Second, we consider the bending deformation of the Euler–Bernoulli beam, which is
well known in the mechanics of materials [85]. Fig. 2.17 (b) shows an element of the coil
spring from the view of the axial direction of the stator hole. When the coil spring is inserted
into the stator hole and bends, the upper part of the beam is in tension and the lower is in
compression. In somewhere between the top and bottom, there is a neutral line, which is
neither under tension nor compression. An elemental length of the neutral line that remains
constant is defined as ds. Denoting the deformation at a distance y from the neutral line as
∆ds, the strain ε is determined as ∆ds/ds (ε = ∆ds/ds). The strain energy by the bending
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deformation is the integral over the volume of the coil spring:

U =
∫

V

1
2

Eε
2dV =

1
2

EbL
∫ h/2

−h/2
ε

2dy (2.9)

where E is Young’s modulus and the coil spring volume V is the product of b, h, and L. How
the strain ε changes with y is geometrically determined when the dimensions of the coil
spring and the inner radius of the stator hole are determined. The strain ε is expressed as

ε =
∆r

r1r2
y (2.10)

Substituting (2.10) into (2.9), the strain energy can be obtained. Hence, these equations
(2.8)-(2.10) show the relation between the pre-pressure and the design parameters of the coil
spring slider. The pre-pressure P can be estimated by substituting the energy U solved in
(2.9) into (2.8).

Modeling of Translational Motion

We build a mechanical model to estimate the linear motion of the flexible ultrasonic motor. In
general, the motion of the ultrasonic motors is expressed as a first-order lag system regardless
of rotary and linear motions [86]. When the stator generates a force F and the slider translates
with the velocity ẋ, the motion is expressed as

mẍ+ cẋ = F (2.11)

where m is the mass of the slider and c is the damping coefficient. This damping coefficient
is determined by the axial velocity of the elliptical motion generated by the stator [87]. This
is the simplest model of the linear ultrasonic motor with a rigid slider.

In the flexible ultrasonic motor, the coil spring exists at both sides of the stator; therefore,
the equation of motion must incorporate the spring components of the coil spring in addition
to the above model. Fig. 2.18 shows the model of the flexible ultrasonic motor with a coil
spring slider, both the sides of which are expressed as mechanical components: mL, cL, and
kL are mass, damper, and spring at left side, respectively, and mR, cR, and kR are those at
right side. The sum of mR and mL is the mass of the whole coil spring slider. The terms with
cL and cR are mechanical loss in the coil spring, regardless of the stator’s vibration. This
model has three degrees of freedom with xL, x, and xR. When the stator generate a force F ,
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Fig. 2.18 A generalized model of the flexible ultrasonic motor, which is expressed as three-
degrees of freedom system.

the motion of the coil spring can be expressed by the equation of motion:

mL 0 0
0 0 0
0 0 mR


ẍL

ẍ
ẍR

+
−cL cL 0
−cL cL + cR −cR

0 cR −cR


ẋL

ẋ
ẋR

+
−kL kL 0
−kL kL + kR −kR

0 kR −kR


xL

x
xR

=

0
F
0

 (2.12)

This three degrees of freedom model is usable at x ∼= 0. i.e., the motion can be estimated
when the displacement x is in the neighborhood of the stator position that generates a force
F .

When the displacement x enlarges and the position that generates the force F is far from
the stator (x ≫ 0), the model (2.12) is not accorded to the actual. The stator is rigidly fixed
in an experimental setup while the coil spring slider moves. In this case, the parameters of
the coil spring slider change with the displacement x. Fig. 2.19 shows the right side of the
stator when the displacement increases. Parameters at x ≫ 0 are expressed using the prime
symbol (′) to distinguish from those of x ≫ 0. The mass and the spring coefficient become a
function of x. The mass mR

′ is expressed as

mR
′ =

m
lall

(lini + x) (2.13)

where m and lall are the mass and length of the whole coil spring, respectively, lini is the
initial length between the stator center and the coil spring end, defined in Fig. 2.18. The
spring coefficient kR

′ is

kR
′ = 2lall

k
lini + x

(2.14)
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Fig. 2.19 A model at the right side of the coil spring. The mass and spring coefficient become
variables of the displacement.

where k is the spring constant of the whole coil spring. There is a damping coefficient, but
it can be regarded as constant because its change is small. When the stator generates a
force F , the displacement x occurs. Regarding that the behavior of the displacement x is
independent of the motion of the masses, the displacement x can be simply estimated from
the axial velocity of the elliptical motion. The relationship between displacements x and
xR

′ is expressed by the equation of motion with the variable mass and spring coefficient as
follow.

mR
′ẍR + cR(ẋ− ẋR)+ kR

′(x− xR) = 0 (2.15)

The motion at the left side in the model can be estimated by replacing index R with L in
(2.13) to (2.15).

The natural angular frequency of the coil spring depends on length of the coil at both
the sides of the stator. Seeing the right side from the stator, the natural angular frequency is
described as

ω =

√
kR

′

mR′
(2.16)

This equation shows that the natural angular frequency decreases at larger displacements;
that is, an end of the coil spring vibrates slowly as it moves away from the stator.
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2.4.2 Static Evaluation

Prototype of the Stator

We use almost the same stator as used in section 2.3. The size of the stator and piezoelectric
element is the same, but nickel plating is coated inside the hole to reduce wear. We use almost
the same stator as used in section 2.3. The size of the stator and piezoelectric element is the
same, but nickel plating is coated inside the hole to reduce wear. We build a support part to
facilitate the connection of the stator wiring as shown in Fig. 2.20. The support part has four
copper sheets to which four electrode wires are connected. When the stator is inserted into
the support part, these sheets are elastically deformed and contacted to each piezoelectric
element, making electricity flow for driving.

The resonances of the stator can be found by analyzing the frequency characteristics of
admittance. To move the coil spring slider linearly, both the T1 and T2 modes should be
simultaneously excited at the same driving frequency. We confirm that the two vibration
modes exist at the same frequency by observing the admittance curve. The admittance and
phase of the stator are measured by an impedance analyzer (IM3570, Hioki E. E. Corp.,
Nagano, Japan). Changing the connection between the stator and the impedance analyzer
can clarify the existence of both T1 and T2 modes. The left of Fig. 2.21 (a) shows how
to connect the piezoelectric plate electrodes to the analyzer. To excite T1 mode, the input
voltage wire is connected to all eight electrodes of the piezoelectric plates, and the ground
wire is connected to the metallic cube of the stator. When the voltage Vin is applied, all the
piezoelectric plates repeat extension and contraction and generate T1 mode. On the other
hand, to excite T2 mode, the input voltage is connected to the four electrodes at backward
and the ground wire is connected to the other four electrodes at forward as shown in the right
of Fig. 2.21 (a). In this case, when the backward extends, the forward contracts, or vice versa.
The repetition of these extension and contraction generates T2 mode.

Fig. 2.21 (b) and (c) show the frequency response of the admittance and phase, respec-
tively, in which the solid lines and dashed lines show T1 and T2 modes, respectively. The
resonance of T1 and T2 modes is observed as a steep change at almost the same frequency at
around 82.0 kHz. These figures show that the T1 and T2 modes can be excited at the same
driving frequency. When two voltages described in (2.5) and (2.6) are applied at 82.0 kHz,
the excitation of T1 and T2 generate a translation as shown in Fig. 2.5.

Relation between the Output and the Pre-pressure

The important characteristic of the proposed motor is how the motor output changes with
respect to the pre-pressure. We experimentally clarify the relation of the pre-pressure with
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(a)

(b)

Fig. 2.20 Support part for wiring. (a) CAD design and (b) Prototype of the support part

the thrust force and velocity generated by the motor. The coil spring model are given as a
length L = 94.2 mm, width b = 3 mm, height (thickness) h = 0.15 mm, and Young’s modulus
E = 196 GPa. To change the pre-pressure, we insert several coil springs with different
diameters ranging from 10 to 11 mm into the stator hole with a diameter of 10 mm. i.e., the
coil spring with a larger diameter generates a large pre-pressure because the diameter of the
stator hole is constant. The pre-pressure can be estimated from (2.8) after the strain energy is
computed using (2.9). For example, when the coil spring diameter is 10 mm, the pre-pressure
becomes zero. When a coil spring with a diameter of 11 mm is inserted into the stator hole, it
generates a pre-pressure of P = 0.036 N/mm2 and stores a strain energy of U = 2.8 mJ. (The
strain energy is evaluated by the experiment shown in the Appendix). We can also change
other design parameters of the coil spring to change the pre-pressure. However, we need to
consider additional effects arising between the stator and the coil spring, for example, a coil
spring with very small height or low Young’s modulus possibly decreases the transmission
efficiency of the vibration energy. In the experiments, the force is measured by a force gauge
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Fig. 2.21 Frequency response of the T1 and T2 modes. (a) Connection of the piezoelectric
plates to the impedance analyzer. Frequency characteristic of (b) admittance and (c) phase.
The result shows that T1 and T2 modes occur at the same resonant frequency.

(ZP-20N, Imada Co., Japan) attached to the end of the coil spring. The velocity is measured
by a laser displacement sensor (ZX2-LD50, OMRON Corp., Kyoto, Japan) placed in the
travelling direction of the coil spring.

In general, the velocity is calculated from the differentiation of the displacement, but
estimating the motor velocity has large noise because the coil spring vibrates. We define
the velocity from the displacement of the coil end after vibration and the period that the
voltages apply. In this measurement, the transient time is ignored because the motor velocity
peaks within a few milliseconds—the mass of the coil spring is much smaller than the output
or brake force. During the experiments, the amplitude of the voltages is constant at 120
Vp−p, and the frequency is adjusted to about 82 kHz to maximize the force and velocity. The
optimum frequency has a slightly different value by coil springs because it depends on the
pre-pressure value. For example, the optimum frequency at a coil diameter of 10.8 mm is
81.6 kHz, 0.2 kHz higher than the natural frequency at that of 10.15 mm.

Fig. 2.22 shows the behavior of the force and velocity when the pre-pressure varies.
The force increases with the pre-pressure and peaks at 0.02 N/mm2 (a coil diameter of 10.5
mm). A too large pre-pressure over 0.03 N/mm2 (a coil diameter of 10.8 mm) decreases the
force. On the other hand, the velocity is 200 mm/s at maximum, and decreases at higher
pre-pressures. This is because a higher pre-pressure increases the friction at the stator-slider
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Fig. 2.22 Relation of the velocity and the force to pre-pressure. The pre-pressure is changed
by using several coil springs with different diameters.

interface. Such a relation between the motor output and the pre-pressure has been seen in the
pre-pressure characteristic of ultrasonic motors with a friction drive [88, 89].

Load Characteristic

The relation between the force and velocity is a fundamental characteristic of linear actuators.
It can be seen by measuring the motion of a coil spring that lifts load attached to its end.
Fig. 2.23 shows an experimental setup to examine the force–velocity curve. The coil spring
that generates an optimal pre-pressure of 0.02 N/mm2 is placed in the setup vertically.
External weights are connected to the coil spring as load. Because the weight of the coil
spring is approximately 6 g, the sum of the coil spring and the additional weights is the force
generated by the motor. The velocity is measured by the laser displacement sensor while
the coil spring moves upward with the weights. Fig. 2.24 shows the force-velocity curve
when the weights change from 0 to 50 g. The velocity decreases as the load increases, and
the motor cannot generate a motion over a load of 50 g. This behavior is roughly linear as
with the load characteristic of other ultrasonic motors [86].

Relation to the Bending Radius of the Coil Spring

Another important characteristic of the proposed motor is its flexibility. Evaluating the
flexibility should be to examine the motion of the coil spring curved by constraints and/or
external forces. The top of Fig. 2.25 shows the experimental setup to clarify how the velocity
of the coil spring behaves under constraints. The coil spring end is fixed to a rotary constraint
component that transfers the linear motion of the coil spring into a motion around an arc
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Fig. 2.23 Experimental setup for measuring the velocity when the flexible ultrasonic motor
lifts a load. The coil spring slider moves upward in this experiment.
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Fig. 2.24 Load characteristic of the flexible ultrasonic motor. It means a force-velocity curve.

trajectory with a radius R. As shown in the bottom of Fig. 2.25, when the motor generates
a linear motion, the coil spring moves to the left side of the stator and bends by the rotary
constraint. The distance between the rotary constraint center and the coil spring end is equal
to the bending radius R of the rotary constraint. The bending radius can be changed in the
experimental setup. The laser displacement sensor installed at the right side measures another
end of the coil spring that moves away from the sensor linearly.

Fig. 2.26 shows the relation between the bending radius and the velocity when the bending
radius varies from 55 to 15 mm. The result shows that the velocity is constant regardless
of the bending radius—a smaller bending radius travels a shorter distance at less travelling
time, and vice versa. This is because the velocity of the coil spring slider is determined
by the steady-state vibration velocity of the stator in the friction drive [87]. Even at the
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smallest bending radius of 15 mm, the motor can generate an average translation velocity.
The bending radius of 15 mm is close to the limit of bending because smaller bending radii
are over the range of elastic deformation.

Fig. 2.25 Experimental setup to examine the relationship between the velocity and bending
radius. The bending radius can be changed by the mechanical constraints.

2.4.3 Dynamic Evaluation

Step Response

We measure the step response of the flexible ultrasonic motor to show the vibration of the
coil spring and verify the dynamic model by experiments. The experimental setup is the
same as that without the rotary constraint component shown in Fig. 2.25. When the voltages
are applied, the coil spring starts to move linearly. The displacement x with vibration is
measured using the laser sensor. The vibration shown in the displacement x depends on the
length of the coil spring, and the step responses are measured at the initial lengths lini of 40,
80, and 120 mm. The step responses are compared with the simulation. Assuming that the
displacement x is independent of the vibration of the coil spring, the displacement x can be
estimated from the coil spring’s mass and the vibration velocity of the stator, as expressed in
(2.11). The coil spring slider is supported by the experimental setup and is guided to move
linearly, but a friction occurs by contact with the setup’s base. A friction term Ff = µmR

′g
between the coil spring slider and the experimental setup is added in the left hand side of
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Fig. 2.26 The relationship between the velocity and bending radius (error bars indicate SD
from 6 tests of one bending radius). The result shows that the velocity stays constant even if
the coil spring is bent.

(2.15). When x is determined in (2.11), the motion of the coil spring end xR
′ can be obtained

in (2.15).
Fig. 2.27 shows the step responses when the control signal is on from time t = 0 to 50 ms.

While the control signal is on, the voltages are applied to the motor from an external power
source. In all responses, when t = 50 ms, the driving force generated in the stator stops, but
the coil spring still has an elastic energy. After the input signal is off, the vibration of the
coil spring remains for 0.1–0.2 seconds. The experimental step response is compared with
the simulations. The model parameters for simulation are given in Table 2.1. The mass m,
spring constant k and spring length lall are determined from the design of the coil spring,
and the damping coefficients c, cR, and the friction coefficient µ are empirical. The motion
of the coil spring is in agreement with the simulation. As the initial length lini shortens,
the natural angular frequency increases as estimated in (2.16). This is because, at the short
initial length, the mass mR

′ reduces and spring constant kR
′ enlarges. The natural angular

frequencies of approximately 69, 100, and 201 rad/s, at the initial length lini of 120, 80, and
40 mm, respectively, are in agreement with the estimation.

2.4.4 Conclusion

In this paper, we demonstrated the first flexible ultrasonic motor using an elastic elongated
coil spring. The proposed idea is the simplest way that provides a flexibility and a pre-pressure



2.4 Flexible Ultrasonic Motor Prototype 46

0

2

4

6

8

10

0 0.05 0.1 0.15 0.2 0.25 0.3

P
o
s
it
io

n
 
[m

m
]

Time [s]

Model 120mm

0

2

4

6

8

10

0 0.05 0.1 0.15 0.2 0.25 0.3

P
o
s
it
io

n
 
[m

m
]

Time [s]

Model 80mm

0

2

4

6

8

10

0 0.05 0.1 0.15 0.2 0.25 0.3

P
o
s
it
io

n
 
[m

m
]

Time [s]

Model 40mm

OFF

ON

0 0.05 0.1 0.15 0.2 0.25 0.3

C
o
n
tr

o
l 

P
u
ls

e

Time [s]

Fig. 2.27 Step response of the flexible ultrasonic motor when changing the initial length lini.
The dashed and solid lines show the predicted result and the measured result, respectively.

because there is no additional mechanism. The experiments showed the sufficient flexibility
under a mechanical constraint and an accordance between the model and experiments.
Although only one example of the flexible ultrasonic motor is shown in this paper, the design
strategy can be extended to the other designs for soft and flexible actuation technologies. In
addition to the flexibility, this idea should be valuable as a simple pre-pressure mechanism
for a rotary or linear motor with a rigid output shaft. Taking it into account that a typical
advantage of ultrasonic motors is a high energy density, the pre-pressure mechanism has a
potential to be miniaturized for narrow spaces, such as the inside of camera lenses and cell
phones.

Our next step is the use of two or more flexible ultrasonic motors as a flexible and
elongated continuum robot. Because the stator can generate a rotary motion, the combination
of rotation and translation might be more attractive as a robotic application. Further investi-
gation about contact problems at the stator-slider interface is important to generate a stable
motion for controlling multiple flexible ultrasonic motors. Another study about a further
miniaturization of the flexible ultrasonic motor might be required for smaller diameter con-
tinuum robots. We have achieved an ultrasonic motor that can generate both rotary and linear
motions by the stator with a cube of 3.5 mm [79]. This miniaturization technology might be
applied to build a medical continuum robot with smaller diameter. Another interesting aspect
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Table 2.1 Model Properties of the Flexible Ultrasonic Motor

Symbol Quantity Value
m Slider mass 0.006 kg
k Spring constant 4.4 N/m
c Damping coefficient 3.7 N·s/m
cR Damping coefficient 0.008 N·s/m
µ Dynamic friction coefficient 0.24
lall Coil spring length 210 mm
F Motor output 0.45 N

is an understanding contact between the stator and coil spring for stabilization and efficiency
improvement. For example, when the coil spring moves linearly, the coil diameter increases
and decreases sharply at both ends of the stator hole without a smooth slope. This can lead
to unstable contact and reduced efficiency. Stator design optimization and dynamic contact
modeling would approach this problem.

2.5 Twin-coil USM

In this chapter, we propose a twin coil spring-based continuum robot that can move forward
and backward, and can bend left and right with flexibility and extensibility (Fig. 2.28).
This is driven by two flexible ultrasonic motors, each consisting of a metallic stator and an
elastic elongated coil spring. This robot has been named “Twin coil spring-based flexible
ultrasonic motor (Twin-coil USM)”. The position of the end effector is determined by the
positional relationship of the two coils and can be kinetically controlled with a constant
curvature model. In the proposed actuator, the coil springs also act as resistive positional
sensors. Changes in the resistance between the stator and the end of a coil are converted
to a voltage and used for position detection. The resulting soft sensor-actuator system has
good response characteristics, high linearity, and robustness, without reducing flexibility and
controllability. We evaluate these advantages experimentally, build a twin coil spring-based
flexible ultrasonic motor prototype, and demonstrate feedback control of planar motion based
on the constant curvature model.
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Fig. 2.28 Twin coil spring-based flexible ultrasonic motor (Twin-coil USM).

2.5.1 Design and Fabrication

Self-Sensing Using the Coil Spring

We present a new sensing methodology to detect the displacement of the coil spring slider.
As mentioned above, the coil spring inserted into the stator hole has two essential roles:
flexibility and pre-pressure. In this study, we also uses the coil as a linear resistive sensor. In
other words, this single flexible ultrasonic motor behaves like a linear resistive potentiometer,
which is a kind of three-terminal resistor consisting of an electrical resistance and a sliding
contact. Fig. 2.29(a) shows the self-sensing design concept for the coil. The coil and the
stator are treated as the resistance element and the sliding contact of a linear potentiometer,
respectively. When a voltage is applied to the ends of the coil, a voltage drop occurs between
each end and the stator, which is at ground potential. When the coil moves, the voltage
drop changes continuously in proportion to the displacement of the coil, and its position
can be measured. One advantage of using such a potentiometer is the stability inherent in
the electrical connection between the resistance element and the stator. In the design of the
coil, the coil expands in the radial direction and makes firm contact with the inner surface
of the stator hole. Wherever the stator is located along the resistance element, the electrical
connection remains stable.
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Fig. 2.29(b) shows an electrical model of the potentiometer. We define the resistance of
the whole coil as R0, and the stator divides it into R1 and R2. The resistances of the wires
are denoted as R3 and R4. When a voltage Ein is applied to both ends of the coil, the output
voltage Eout is obtained as

Eout =
R3 +R1

R1 +R2 +R3 +R4
Ein (2.17)

This is the output voltage from the potentiometer. With the cross-sectional area S and
electrical resistivity ρ of the coil spring, the relative position of the coil spring to the stator is
expressed as

p =
S
ρ

R1Ein (2.18)

When (4) is substituted into (3), the position p is obtained from the measured voltage
Eout.

p =
S
ρ

(
R0 +R3 +R4

Ein
Eout −R3

)
(2.19)

Since all variables in (5) are constant, it can be rewritten using the arbitrary constants C
and D, as follows:

p =CEout +D (2.20)

This equation shows that the relationship between the measured voltage Eout and the
position p is linear.

Constant Curvature Model

We model the motion of the Twin-coil USM to estimate the position of the end effector. The
constant curvature model is a well-known forward kinematics formula for continuum robots
[90]. A Twin-coil USM with two flexible ultrasonic motors can move and bend the end
effector by the relationship between the two coils. Considering that the coils will move on a
plane in the experiments, as described in a later section, we use a planar constant curvature
model to express the motion.
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Fig. 2.29 Principle of self-sensing using the coil. (a) Mechanical components and the
simplified electrical model. (b) Detailed electrical model.

Fig. 2.30 Constant curvature model for the twin coil spring-based flexible ultrasonic motor.

Fig. 2.30 shows a schematic of the constant curvature model. The position of the end
effector is expressed as Px = r(1− cosθ) and Py = r sinθ . Here, r is the bend radius and θ

is the angle between the x-axis and the line PQ. The solid lines represent the coil springs
of the Twin-coil USM. The springs are held at a distance of 2d from each other. The arc
lengths of the coil springs (i.e., the dashed lines in the range y > 0) are set to l1 and l2. Using
the arc lengths l1 and l2 and the distance d, the end effector’s position Px = r(1− cosθ) and
Py = r sinθ can be expressed as follows:

Px =
(l1 + l2)d

l2 − l1

(
1− cos

l2 − l1
2d

)
(2.21)
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Py =
(l1 + l2)d

l2 − l1
sin

l2 − l1
2d

(2.22)

These equations are the forward kinematics equation f (l1, l2) = (Px,Py). The solution of
the inverse kinematics equation f−1(Px,Py) = (l1, l2) can be solved numerically. Note that
this constant curvature model ignores the influence of disturbances, such as external forces.

2.5.2 Experiments

Evaluation of Self-Sensing

The self-sensing apparatus is built and experimentally evaluated. During the experiments,
a constant voltage Ein of 140 mV is applied to the coil spring. The output voltage Eout is
amplified to 55 times by an amplifier circuit because the original signal is very low. This
value is converted by a 10-bit analog-to-digital (AD) converter with a reference voltage of 5
V. The voltages obtained are averaged over 10 measurements to reduce noise. Fig. 2.31(a)
shows the behavior of the sensor output when the coil moves. In the abscissa axis, the
displacement between one end of the coil spring and the front surface of the stator is taken
from 0 mm to 100 mm in 10 mm steps. In this experiment, the coil spring is manually moved
using a scale. The error bars indicate the standard deviation from five tests at each position.
The results show that the relationship between the displacement and the output voltage is
linear, and the maximum standard deviation is 28.1 mV. The constants in (6) are obtained by
approximating this result by a least-squares method (C = 26.6 and D = 34.5).

We examine how the sensor output changes when applying external forces such as those
experienced when bending, extending, or contracting the coil spring. In the experiments,
the output voltages in each condition are measured five times. The coil spring is set to a
displacement of 50 mm and is fixed by insulating tape. The coil springs are set in constraint
components with a radius of 5, 10, 15, or 20 mm. Fig. 2.31(b) shows the voltage change for
each bending radius. The voltage change is slight at all bending radii, and the maximum is
less than 4.0 mV even at a bending radius of 5 mm. This value is as small as the resolution
of the AD converter.

The sensor output with the expansion and contraction of the coil is evaluated. One end
of the coil spring is fixed to a force gauge to measure the restoring force. The voltage is
measured while the restoring force changes from −0.5 N to +0.5 N in 0.1 N steps (negative
values indicate compression). Fig. 2.31(c) shows the variation in voltage with changing
force. When the restoring force is 0 N in the coil, the output voltage is defined as 0V. When
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Fig. 2.31 Change in the sensor output when (a) the coil moves linearly, (b) the coil bends, and
(c) the coil extends and contracts. (Error bars indicate SD from five tests of one condition).

the force of −0.5 N is applied, the voltage change is about 27.5 mV at maximum, which is
equivalent to a displacement of 0.73 mm in this displacement sensor. This result indicates
that the proposed sensor has high robustness against disturbances.

Feedback Control Experiment

We build a feedback control system consisting of a single flexible ultrasonic motor and the
self-sensing. Fig. 2.32 shows the self-sensing feedback control loop. This circuit includes a
central processing unit (an Arduino Uno), a two-phase inverter, a direct digital synthesizer
(DDS), an amplifier, and a PC. To drive the flexible ultrasonic motor, the two-phase inverter
converts a rectangular wave of 5 Vp−p from the DDS into a sine wave of 120 Vp−p by a
bridge circuit and an LC filter circuit. To control the position and speed of the flexible
ultrasonic motor, the Arduino changes the frequency and phase of the rectangular wave by
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Fig. 2.33 Time table of the control cycle.

communication through the Serial Peripheral Interface (SPI). A USB cable connects the PC
and Arduino.

One of the technical problems in the control system is that the actuation voltage and
the sensing signal use the same terminal of the stator, as shown in Fig. 2.29. The sensor,
therefore, suffers from noise due to the high driving voltage applied while the motor is
moving. To overcome this problem, we implemented a program to divide the operating time
into two separate sensing and actuation periods in one control cycle of 11.5 ms, as shown in
Fig. 2.33. In the initial period of 3 ms, the AD converter reads the output voltage from the
sensor. For the next period of 6.5 ms, the driving voltage is applied to the flexible ultrasonic
motor. The remaining 2 ms is a waiting time for the safety of the system. The proportion
of actuation time in one cycle is about 60%, and this reduces the speed of the motor. These
times were determined experimentally to obtain stable movement.

Next, we consider how to control the motion of the flexible ultrasonic motor. The flexible
ultrasonic motor changes its velocity and traveling direction by modulating the frequency
fE and the phase φ of the applied voltages, respectively, as described by (1) and (2). Fig.
2.34 shows the forward velocity (φ = π/2) and the backward velocity (φ = −π/2) of the
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Fig. 2.34 Relationship between the velocity and the driving frequency. (Error bars indicate
SD from five tests of one frequency).

motor when the frequency of the applied voltages is changed from 81.0 kHz to 84.5 kHz.
The error bars show the standard deviations of five experiments because the coil vibrates in
the traveling direction during the motion. Although there is a difference between the forward
and backward velocities, both velocities peak at the resonance frequency (81.5 kHz) and
gradually decrease at higher frequencies. Using these characteristics, it is possible to control
the motion of the flexible ultrasonic motor by adjusting the driving frequency fE between
81.5 kHz and 84.5 kHz.

Fig. 2.35 shows the closed-loop position control scheme. The proportional (P) controller
determines the frequency fE and the phase difference φ based on the displacement error e.
Since the motor velocity depends on the traveling direction, the constant of P controller has
different values in the forward and backward directions. Although the relationship between
the voltage frequency and the velocity is non-linear, we assume it as linear for simplicity.
The displacement of the coil is estimated by measuring the amplified voltage Eout. To reduce
noise, the output signal passes through a 10-sample moving-average filter and a low pass
filter with a cutoff frequency of 100 Hz.

We investigate the frequency response of the feedback control system. Fig. 2.36 shows
the bode plot when reference sine waves of between 0.1 and 5 Hz and a constant amplitude
of 60 mm are given as an input. The controller is able to follow the inputs up to about 0.5
Hz without any delay. Although the response depends on the reference displacement, the
results show a good response characteristic in comparison with other linear motors because
the inertia of the coil spring is very low for a generated torque.
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Fig. 2.36 Bode plot for the flexible ultrasonic motor.

2.5.3 Demonstration of a Twin-coil USM

We build a Twin-coil USM using two flexible ultrasonic motors and demonstrate its feedback
control. Fig. 2.37(a) shows a schematic diagram of the Twin-coil USM, in which the two coils
are aligned in parallel, and the ends of the coils are connected to form an end effector. The
two stators are fixed to a housing part, and the distance between their centers is approximately
17 mm. As shown in Fig. 2.37(b), flexible bronze electrodes are attached to the housing to
stabilize the electrical contact with the piezoelectric elements on the stator. Although the
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Fig. 2.37 Structure of Twin-coil USM. (a) Schematic diagram of Twin-coil USM. (b) Housing
and electrodes for the stator. (c) Image taken by 2D tracking camera for tracking end effector.

end effector fixes one end of each coil, the other end remains free. The end effector of the
Twin-coil USM can move and bend by controlling the displacement of the two coils. To
control the two coils, we added a two-phase inverter and a DDS to the control circuit shown
in Fig. 2.32.

For the demonstration of feedback control, a circle with a diameter of 25 mm at a position
35 mm away from the edge of the stator’s housing is set as the desired trajectory. This circle
is approximated by a 36-sided polygon prepared from an inverse kinematics correspondence
table. The end effector is made to draw the same circle four times at a constant speed (11.5 s
per lap) to evaluate repeatability. The motion of a marker on the end effector is tracked by a
camera with a frame rate of 30 Hz (Fig. 2.37(c)). The sensor outputs from the two coils are
also recorded at the same time.

Fig. 2.38 shows the response of each coil spring as measured by the self-sensing. The
position of each coil spring shows a good agreement with the desired trajectory from the
constant curvature model, without overshoot or delay. This result means that the end effector
should have drawn the desired circle, but the actual motion showed an unexpected trajectory.
Fig. 2.39 shows the motion of the end effector obtained by the camera. The recorded
trajectory appears as a distorted ellipse, and it repeats the almost same trajectory four times.
The difference between the sensor and the camera is caused by external forces and friction.
It can be clearly seen in the x-direction, even though the stators move the coil based on the
constant curvature model. There are two probable reasons for this: (1) friction between
the end effector, and the ground restricts the motion, and (2) the stiffness of the proposed
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Fig. 2.38 The signals from the two coil spring-based resistive sensors. They are in good
agreement with the curve from the constant curvature model.

Fig. 2.39 Experimental circular motion obtained by the camera. Four snapshots from (a) to
(d) are accorded to the points in the ellipse trajectory during the motion.

actuator in the x-direction is lower than that in the y-direction due to the inherently elongated
structure of the spring.

2.5.4 Conclusion

We proposed a self-sensing-based soft sensor for a flexible ultrasonic motor and demonstrated
the feedback control of a Twin-coil flexible ultrasonic motor. Hence, the elastic elongated
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coil had three important functions: the flexibility (compliance), pre-pressure, and resistance
sensor. This sensor was able to obtain a good positioning accuracy less than an error of 0.75
mm and linearity over a wide range of motion from 0 mm to 100 mm. Furthermore, the
system showed high electrical stability even when the coil spring was sharply bent with a
minimum radius of 5 mm or pulled/pushed with a maximum force of 0.5 N. A feedback
control system was constructed and evaluated experimentally. A single flexible ultrasonic
motor with a resistive sensor showed a frequency response that was able to follow an input
of up to about 0.5 Hz without degradation of gain or phase delay. We built a Twin-coil
USM using two flexible ultrasonic motors and implemented a feedback control of tracking a
desired trajectory, but an unexpected error between the camera and the resistive sensor occurs.
In future work, we will derive a correct model based on the modified constant curvature
model incorporating friction and external forces.

The proposed sensor-actuator system is still under development, and there are many ways
it can be improved. First, the noise resistance, which is robustness against the influence of
external noise, can be enhanced. Since the coil spring is made from stainless steel and has low
resistance, the sensor requires a very low voltage to minimize power consumption and heat
dissipation, which results in weak noise resistance. Increasing the electrical resistance by an
electrostatic coating can increase the resolution of the sensor and its susceptibility to noise.
Second, the motor response can be improved. The controller restricts the motor response
by alternating the operation between sensing and actuation in a control cycle. Electrically
insulating a part of the stator to separate the sensing and actuation grounds would allow the
controller to drive both the sensor and the actuator simultaneously, improving the motor
response. Third, it would be possible for the sensor to measure more complex motion without
changing its structure or adding additional components. Although the proposed sensor only
measures the displacement of the coil, it is known that the strain of a coil spring can be
estimated by measuring its inductance [91]. Inductance-based self-sensing could also be
embedded in our proposed system without the need for extra mechanical parts.



Chapter 3

Flexible Rack Pinion Actuator

The proposal, design, modeling, and sensing of the flexible ultrasonic motor as the first
flexible linear motor were studied in Chapter 2. We also built a 2 DoF continuum robot using
this motor to demonstrate feedback control. This chapter introduces a flexible rack pinion
actuator as the second flexible linear motor and shows robot implementation with three or
more degrees of freedom using it. We investigate how the flexibility and stroke, which are
excellent features of flexible linear motors, contribute to the locomotion by focusing on
continuum robots which elongate their body. Section 3.2 presents the design of the flexible
rack pinion actuator and how it works as continuum robots. Section 3.3 reports a mobile
continuum robot with several actuated disks on its axis as a first application. We show basic
modeling and elementary manipulation and locomotion test of the continuum robot. Section
3.4 build a climbing continuum robot as another application and study how the features of
flexible linear motors can enhance the climbing capabilities of a robot.

3.1 Design and Mechanism

A flexible rack pinion actuator is a type of flexible linear motor that comprises a pinion gear
and a flexible tube (instead of rigid rack with gears), which convert rotational motion to
linear motion. The pinion gear attached to the DC motor engages with the helical groove
on the surface of the flexible tube (Fig. 3.1 (a)). As with the rack and pinion mechanism,
the rotational motion moves the flexible tube lineary. This enables the transmission of the
motor power even when the flexible tube is bending or buckling. To improve the engagement
between the gear and flexible tube, the gear was designed to be similar to an enveloping worm,
whose diameter increases from its center toward the end and whose teeth twist clockwise
along the axis, as shown in Fig. 2.22 (b). The flexible tube, called stripwound metal hose, has
been used to protect electrical wires or liquid and gas tubes. The flexible design is formed by
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(a) (b) (c)

Fig. 3.1 Overview of the flexible rack pinion actuator.

spirally winding a metal plate with S-shaped profile, as shown in Fig. 2.22 (c). The bending
motion is achieved because each S-shaped corrugation slides against each other and contracts.
Although we can use a helical spring instead of the flexible tube [32, 92], the engagement
with the gear would not be robust because of the elasticity. The flexible tube shrinks but does
not elongate, potentially carrying heavy loads.

3.1.1 Robot Common Design

Fig. 3.2 shows an overview of a proposed continuum body composed of three flexible tubes
that are connected in parallel. The flexible tubes, which are located at the vertices of an
equilateral triangle, pass through a driving unit with three DC motors (75:1 Micro Metal
Gearmotor HP 6V, Pololu Co.). One end of tube is fixed to an endpoint made of plastic, and
the other end is free. As with the rack and pinion mechanism, the rotational motion moves
the flexible tube laterally relative to the driving unit, as shown in Figure 4b. The continuum
body can bend or elongate by controlling the length of each flexible tube. We adopted a
flexible tube with a diameter of 10 mm and a minimum bending radius of 25 mm.

3.2 Mobile Continuum Robot

Locomotion of a flexible and elongated continuum robot in confined spaces allow the access
for hard-to-reach targets. This is useful for applications including inspection, rescue, and
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Fig. 3.2 Overview of the continuum robot using flexible rack pinion actuators

repair activity. The flexibility and stroke of the actuator will allow the continuum robot
to move efficiently in such environments. We propose a mobile continuum robot as first
application of the flexible rack pinion actuator that have both flexibility and stroke. Since
each drive unit can be mounted on the same tube axis, by increasing the number of them, the
robot can take various forms without expanding its diameter. First, we build a prototype of
continuum robot with three degrees of freedom and controlled it based on the basic model.
Next, the prototype with two drive units (6 DoF) is tested for the locomotion performance
using two motion sequences.

3.2.1 Kinematics

To determine the position of the robot end effector, the kinematics of the robot were analyzed.
The constant curvature model is a well-known forward kinematic formula for continuum
robots [90]. Extrinsic actuated continuum robots driven by wire mechanism often require a
model that takes into account the friction between the wire and the internal structure [93, 94],
but our intrinsic actuated continuum robot driven by flexible tubes does not require it. In
the constant curvature model model, the continuum sections are approximated using the
shape parameters L, λ , φ , and θ . As shown in Fig. 3.3, L and λ are the length and radius,
respectively, of the arc formed by the bending of the robot; φ determines the elevation; and θ

is the angle of the plane containing the arc. Assuming that neither buckling nor compression
occurs in each flexible tube, the kinematics of the proposed robot are given by the following
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five equations:
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θ = tan−1
√

3(L3 −L2)

L2 +L3 −2L1
(3.4)

L = λφ (3.5)

where L1, L2, and L3 are the lengths of the three flexible tubes and r is the radial distance
from the central axis to the tubes. Notice that the constant curvature model does not hold
under heavy load conditions, because the flexible tubes contract and buckle.

3.2.2 Experiments

Circular Trajectory Tracking

To evaluate the dynamic response of the proposed robot, a circular trajectory tracking
experiment under closed-loop control was conducted. A circular trajectory was generated by
changing the θ while keeping the arc length L and elevation φ constant. Specifically, each
flexible tube was instructed to follow the corresponding target trajectory Dn (n = 1, 2, 3)
by applying proportional-derivative (PD) control to the motor encoder position. The target
trajectories for the three tubes were defined as

D1 = Linitial +Asin(2π f t) (3.6)

D2 = Linitial +Asin
(

2π f t − 2
3

π

)
(3.7)

D3 = Linitial +Asin
(

2π f t − 4
3

π

)
(3.8)

where Linitial is the initial length of each flexible tube and A and f are the amplitude and
frequency of the circular target trajectory, respectively. During the experiments, the initial
length Linitial and the amplitude A were set to constant values of 80 and 15 mm, respectively.
The end position of the robot was measured using a high-speed camera (VW-9000, Keyence
Co., Japan) at a frame rate of 250 Hz, as shown in Fig. 2.22. The camera system tracked
a marker attached to the robot end effector, and the measurements were transferred to a
computer for image processing.

The images on the right and left hand sides of Fig. 3.5 respectively show the circular
trajectories traced by the robot end effector and the motor response measured by the encoders
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over the course of the trajectories. The cases shown in Fig. 2.22 (a)-(c) correspond to
trajectory frequencies of 0.5, 1, and 2 Hz, respectively. A nearly perfect circle with a large
vibration was achieved at 0.5 Hz (Fig. 2.22 (a)). This is because an acceleration generated by
the discontinuous engagement between the gear and the flexible tube caused the robot end
effector to sway; even if the gear rotation is constant, variations in the flexible tube velocity
are produced in this case. Elliptical trajectories were observed when the trajectory frequency
exceeded 0.5 Hz because the inertial effect increases as the velocity of the robot end effector
increases (Fig. 2.22 (b) and (c)). The asymmetry of the starting position when describing
the trajectories generates the elliptical trajectory. In comparison with the error of the circle
tracking measured by the high-speed camera, that of the motor response measured by the
encoders is small (Fig. 2.22 (a) and (b)). However, a delay between the target positions of
the tubes and those measured by the encoder was observed at 2 Hz (Fig. 2.22 (c)).
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Fig. 3.4 Experimental setup for measuring the robot end effector position. A high-speed
camera was used to track a marker attached to the robot end effector. In the lower image, the
high speed camera software shows the coordinates of the robot end effector.



3.2 Mobile Continuum Robot 66

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Y
[m

m
]

X [mm]

-30

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500 4000

l 1
[m

m
]

Time [ms]

-30

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500 4000

l 2
[m

m
]

Time [ms]

-30

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500 4000

l 3
[m

m
]

Time [ms]

(a)

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Y
[m

m
]

X [mm]

-30

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500 4000

l 1
[m

m
]

Time [ms]

-30

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500 4000

l 2
[m

m
]

Time [ms]

-30

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500 4000

l 3
[m

m
]

Time [ms]

(b)

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Y
 [

m
m

]

X [mm]

-30

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500 4000

l 1
[m

m
]

Time [ms]

-30

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500 4000

l 2
[m

m
]

Time [ms]

-30

-20

-10

0

10

20

30

0 500 1000 1500 2000 2500 3000 3500 4000

l 3
[m

m
]

Time [ms]

(c)

Fig. 3.5 Dynamic response following circular trajectories with frequencies of (a) 0.5 Hz,
(b) 1 Hz, and (c) 2 Hz. The left-hand images show the trajectories of the robot end effector
measured by the high-speed camera. The right-hand plots show the target positions of each
flexible tube and those measured by the encoder.
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Locomotion

The above prototype continuum robot uses only one driving unit; however, the proposed
design can take on various forms with higher numbers of driving units. Experiments using
two driving units were conducted to investigate the locomotion performance of the robot.
In nature, slender limbless organisms such as snakes and earthworms efficiently move and
explore the surrounding space by using several different gaits. The robot was tested with two
operating sequences inspired by these locomotion.

1)Snake− likelocomotion : Real snakes exhibit many forms of locomotion, including
linear progression, sidewinding, concertina movement, and lateral undulation [95]. In the
present experiment, the locomotion of the robot was defined based on linear progression,
which is motion that propels the moving body by generating sine waves that propagate
along its length. The amplitude of the lateral wave was set to zero so that the robot only
generates a vertical sine wave. The robot length was set to 200 mm, and a rubber mesh sheet
with a large frictional force was laid on the ground. Fig. 3.6 (a) shows a snapshot of the
locomotion experiment of the robot. Although the sine wave did not span the entirety of
the robot’s length because of the ease with which the flexible tube buckled, locomotion was
successfully realized. An average locomotion speed of 16 mm/s was achieved using this type
of locomotion.

2)Earthworm− likelocomotion : An earthworm is composed of several segments, each
of which has two types of muscles: longitudinal and circumferential muscles [96]. The
contraction of the longitudinal muscles shortens the body and increases its diameter, whereas
that of the circumferential muscles reduces the diameter and elongates the body. Locomotion
is achieved by contracting both of these types of muscles, which results in the propagation of
a longitudinal wave in the anteroposterior direction. Although the robot diameter is constant,
similar behavior can be achieved by lifting the driving unit slightly above the ground. In this
experiment, the locomotion velocity was measured on a slippery plastic sheet. A snapshot of
the earthworm-like locomotion experiment is shown in Fig. 3.6 (b). The maximum length
of the robot during locomotion was 370 mm, and the initial length was 220 mm. The robot
moved forward with some slippage, and the average velocity was 10-20 mm.

Robustness

A key characteristic of the robot is its flexibility, which provides the structure with a high
robustness. The robustness of the robot was tested by applying an impact to it using a hammer
during operation. Fig. 3.7 shows a series of snapshots depicting when the robot was hit with
a rubber hammer while it followed a circular trajectory. This experiment demonstrates the
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(a) (b)

Fig. 3.6 Photo sequence of (a) snake-like and (b) earthworm-like locomotion. The pro-
posed robot moves by generating sine waves that propagate along its length. In snake-like
locomotion, the robot moves by generating sine waves that propagate along its length. In
earthworm-like locomotion, it moves by alternately elongating and contracting the body.

high robustness of the robot in terms of its ability to maintain the target motion even under
extreme conditions.
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Fig. 3.7 Experiment to verify the robustness of the proposed robot. The robot maintains a
motion following a circular trajectory even when it is hit with a hammer.
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3.2.3 Conclusion

The proposed mobile continuum robot design is the design that provides unlimited extensible
sections for locomotion. In the developed design, motor rotation is converted into the linear
motion of a flexible tube, as with the rack-and-pinion mechanism. The long flexible tube
length provides a large traveling distance unless it buckles.

The continuum robot enables the control of the section length and bending radius. In
comparison with traditional continuum robots mostly used as manipulators, the proposed
robot is better suited for locomotion because it performs intrinsic actuation using DC motors.
This gives the robot a high locomotion efficiency by achieving low mechanical loss, high
response frequency, simple modeling, and high control performance. Although the prototype
drags the extra cables for the control, it could be on-board by installing a microcomputer
and battery in the driving unit in the near future. The robot locomotion was experimentally
tested using two operating sequences. The robot showed especially good earthworm-like
locomotion performance on a slippery surface.

There is still plenty of room for improving the locomotion velocity of the proposed robot.
Increasing the diameter of the flexible tube would make it more difficult for the tube to
buckle, thus allowing the traveling distance to be increased. The efficiency of the robot can
be improved by optimizing the motor gear ratio or the locomotion frequency depending on
the required torque or the ground friction, respectively.
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Fig. 3.8 The left figure shows real leech and the right figure shows LEeCH. LEeCH is a five
DoF system, including two suction cups (p1 and p2), driven by pumps and three flexible tubes
(L1, L2, and L3) controlled by DC motors. DoF, degree of freedom; LEeCH, Longitudinally
Extensible Continuum-robot inspired by Hirudinea.

3.3 Climbing Continuum Robot

Locomotion of soft-bodied organisms, such as amoeba, worms, and octopuses, is safe, robust,
and adaptable and has great promise for applications in complex environments. While such
organisms fully exploit the potential provided by their soft structures, engineering solutions
commonly constrain soft deformation in favor of controllability. In this subchapter, we study
how soft deformations can enhance the climbing capabilities of a robot. We introduce a robot
called Longitudinally Extensible Continuum-robot inspired by Hirudinea (LEeCH), which
has few shape constraints (Fig. 3.8). Inspired by real leeches, LEeCH has a flexible extensible
body and two suction cups at the ends. It is capable of performing 3D climbing locomotion
using two vacuum suction cups and flexible rack pinion actuators. The large deformations
occurring in LEeCH extend its workspace compared to robots based on constant curvature
models, and we show successful locomotion transition from one surface to another at angles
between 0◦ and 180◦ in experiment. We develop a model based on multibody dynamics to
predict the nonlinear deformations of the robot, which we verify in the experiment. The
model reveals a nondimensional morphological parameter, which relates the robot’s shape
to its mass, stiffness, and size. The workspace of LEeCH as a function of this parameter is
studied in simulation and is shown to move beyond that of robots based on constant curvature
models.
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3.3.1 Modeling

The first step in exploiting the power of nonlinear deformations is to understand the physics
behind deformation. In this work we present a model for large deformations to predict
LEeCH’s body shape. The constant curvature model is the most widely used kinematic
framework [90], and a variety of ways for deriving the homogeneous transformation have
been studied such as D–H parameters [97, 98], Frenet–Serret formulas [97], and integral
representation [99]. However, it restricts the achievable workspace of the end effector. In
addition, Bernoulli–Euler beam theory [100] and Cosserat rod theory [101] have been used to
describe continuum robots whose shapes are controlled primarily by elasticity. We describe
a model based on multibody mechanics,31 which involves masses, springs, and dampers in
discrete links.

The bending motions investigated in LEeCH are flat-wall climbing and wall-to-wall
transitions. These motions occur only in one plane at a time, which allows for an accurate
description of the system with a planar model. To approximate the soft body, we use a chain
of rigid bodies under the influence of gravity with acceleration g. We assign a linear torsional
stiffness k and linear damping d at every joint. The first element is attached with a joint to
an inertial reference system I. Each rigid body is associated with a mass m located at its tip
and a length l. Fig. 3.9 (a) illustrates such a chain of n elements. The equations of motion
are derived using the projected Newton-Euler equations with the generalised coordinates
q = [θ1,θ2, . . . ,θn]

T , that is, the sum of all n bodies’ generalised momenta render the inertial
terms of the equations of motion

n

∑
k=1

JT
k ṗk = Mq̈+h (3.9)

where Jk is the Jacobian of the point mass in body k, ṗk is the time derivative of the
momentum of the point mass in body k, M is the mass matrix, q̈ is the second derivative of
the generalised coordinates, and h is the vector of gyroscopic accelerations.

Equations of motion

The equations of motion take the form

Mq̈+h = E +G+JT
c λ (3.10)

where E is the vector of external forces acting on the system, G is the vector of the generalised
gravitational force, and JT

c are the constraint forces. External forces can be applied at any
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(a) (b)

Fig. 3.9 Sketches of the proposed model. (a) One chain of rigid bodies with generalized
coordinates q= [θ1,θ2, . . . ,θn]

T and mass m, length l, stiffness k, and damping d per body. (b)
Two chains located a distance δ apart and connected at their tips with geometric constraints.

point i on the model and are computed by

Fi = Ji f i (3.11)

with Ji the Jacobian of the system at point i and f i the planar force applied at point i.
Furthermore, external forces contain the stiffness and damping terms due to the springs and
dampers we apply to the chain. The ith link in the chain is subject to the forces

Si =−k (θi −θi−1)− k (θi −θi+1) (3.12)

and

Di =−d
(
θ̇i − θ̇i−1

)
−d
(
θ̇i − θ̇i+1

)
(3.13)



3.3 Climbing Continuum Robot 74

Note that the first and the last element in the chain are described by

S1 =−kθ1 − k (θ1 −θ2) (3.14)

Sn =−k (θn −θn−1) (3.15)

and

D1 =−dθ̇1 −d
(
θ̇1 − θ̇2

)
(3.16)

Dn =−d
(
θ̇n − θ̇n−1

)
(3.17)

The spring and damper generalised force terms can therefore be written as a matrix-vector
multiplication by Sq+Dq̇ which leads to the external force vector

E = Ji f i +Sq+Dq̇ (3.18)

For the generalised gravitational force we have

G =
n

∑
i=1

JT
i

(
0

−mg

)
(3.19)

As we will see in the next subsection, we model the robot with parallel chains of rigid bodies
that are interacting through geometric constraints which are enforced on the equations of
motion by Lagrange multipliers. Assume we have defined a geometric constraint g(q) = 0.
The second derivative of this constraint with respect to time takes the form

g̈ = Jcq̈+ξ (q, q̇) = 0 (3.20)

with Jc = Jc(q) what we call the constraint Jacobian and ξ containing all the terms not
depending on q̈. We will now make use of Gauss’ principle to enforce the constraints in
the equations of motion. First recall that we need to find the constraint force λ given in the
equations of motion

q̈ = M−1 (E +G+JT
c λ −h

)
(3.21)
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With (3.20) we obtain

JcM−1 (E +G+JT
c λ −h

)
=−ξ (3.22)

Solving for λ we get

λ =
(
UcM−1JT

c
)−1 (−ξ − IcM−1(E+G−h)

)
(3.23)

Inserting the found λ back to the equations of motion leads to the constrained equations of
motion.

Robot model

For the chain of links to represent a model of our robot we add a second chain located a
distance δ from the first one apart as shown in Fig. 3.9 (b). Note that we doubled the stiffness,
damping, and mass to model two tubes instead of just one in the second chain. This way,
we can model the motion of our 3-tube robot in the plane. The interaction between the two
chains is implemented by geometric constraints as outlined in the last subsection. More
precisely, we added three constraints to model a bridge between the last element of each link:

-Parallel: g1(q) = θn −θe (3.24)

-Distance: g2(q) = rne − c (3.25)

-Perpendicular: g3(q) = rT
n(n−1)rne (3.26)

The parallel constraint ensures that the last two elements of each chain, element n on the first
chain and element e on the second, are parallel to each other. The distance constraint enforces
the tip of each chain to be a distance c apart from each other. Finally, the perpendicular
constraint makes sure that the last link of the first chain is perpendicular to the distance vector
of the two chain tips. The robot’s suction cup with mass ms is affecting its behaviour and we
thus model it as an external force acting on the element e on the second chain with

Fms = JT
e

(
0

−msg

)
(3.27)

For the subsequent investigation we have used model parameters as indicated in Table 3.1.
We found the stiffness by comparing the model prediction of a chain with a tube experiment,
where we measured the slacking of the tube under the influence of gravity for different tube
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Table 3.1 Values of Physical Parameters of LEeCH Model

Symbol Quantity Value
k Stiffness 0.055 Nm/rad
m Element mass 4.4 N/m
ms End effector mass 0.0068 kg
δ Chain distance bottom 0.0398 m
c Chain distance top 0.0398 m
l Element length 0.01 m
g Gravitational acceleration 9.81 m/s2

lengths, as shown in Fig. 3.10 (a). The element mass is simply found by weighing the tube
and dividing it by the element length l.

The presented model is dynamic, but since we are interested in the static solution we will
compute the forward dynamics in simulation until we reach the static equilibrium. Therefore,
we do not need to get an accurate value for the damping terms from the real system but need
to make sure that the simulation converges to the static solution. In most of our simulations
we therefore chose a value of 0.1 Nms/rad which was underdamped but converged to the
equilibrium in a reasonable time.

Fig. 3.10 (b) shows the simulation result of the proposed model with a constant curvature
model. The chains in both models have the same length, but the proposed model is bending
under the effect of gravity due to its stiffness, constraints, and inertial properties.

3.3.2 Robot Architecture and Locomotion Principle

Fig. 3.11 shows the control system of the proposed robot. A personal computer hosting the
user interface is connected to an Arduino Mega by USB and sends commands for specific
motions. The Arduino generates a PWM signal based on the command and supplies voltages
to motors and pumps through drivers. The front and rear suction cups with a diameter of 50
mm (ZP50CN; SMC Co., Japan) are actuated using two vacuum pumps (D2028B; AIRPON,
China). In this suction system, the payload capacity per one suction cup is up to ∼1.7 kg on
a vertical wall, and it is possible to lift our robot with a weight of 240 g (on-board). Each
DC motor moves the flexible tube according to the applied voltage and elongates or bends
the robot body. Encoders attached to the end of the motors send position information of the
flexible tube to the Arduino, closing a feedback loop. Control in the present system does not
need to be very precise and we therefore neglect additional effects arising in our soft-tube
actuators, such as backlash, for the sake of simplicity. For tasks requiring high accuracy,
however, the controller needs to consider such effects. The locomotion of the proposed robot
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(a) (b)

Fig. 3.10 Simulation results of the model. (a) Comparison of the static solution of the model
in simulation with the real-world tube for different tube lengths. (b) Comparison of the
two-chain model with the constant curvature model.

is similar to that of leeches and inchworms, which involves repeated elongation/contraction
of the continuum body and releasing/grasping of the front and rear suction cups. The steps
in the locomotion procedure are shown in Fig. 3.12 and can be described as follows. The
circle with hatch pattern represents the suction cup that attaches to the substrate, while the
other white circle represents the suction cup that detaches to the substrate. First, we choose
the locomotion type such as climbing and bending and set the flexible tube length (L1, L2,
and L3). For example, when the robot moves while turning to the right, the length of the left
tube L2 is set larger compared with the right tube L3. After the rear suction cup adheres to
the substrate, the front suction cup releases. Then, each tube is pushed until it has the set
length. At this time, if the length of the center tube L1 is short, the robot lifts its end, and
if the tube on either side is short, the robot body turns to either left or right. After the front
suction cup attaches to the substrate, the rear suction cup releases. The robot contracts by
pulling all flexible tubes which completes one stride of the locomotion procedure.
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Fig. 3.11 System hierarchy.

3.3.3 Experiments

Model Comparison

To evaluate the accuracy of the proposed model, we measured the deformations of the flexible
tubes in our robot. A comparison of the robot shape in simulation with the real world is
shown in Fig. 3.13. In this experiment, we took several pictures while the robot was attached
to a vertical wall. The tube shape was measured from the images and resized for comparison
with the model. The stiffness of the model was tuned manually until the deformations of
the model and the experiment were matched. Furthermore, we measured tube lengths from
the picture images and substituted these values for the two models: The two-chain model
and constant curvature model. When the tube lengths are short, there is almost no difference
between these two models, whereas when the tube lengths are long, the tube shape and robot
endpoint differ greatly due to the effect of gravity and internal elasticity. The proposed model
predictions match the real robot deformations well, even when the tubes are greatly deformed.
Minor errors between the real robot and the proposed model are detectable, which probably
arise because of stiffness nonlinearities in the real system and neglected mass and hardness
of the air supply tubes inside the central flexible tube.
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Fig. 3.12 Steps in the locomotion procedure.
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Fig. 3.13 Comparison of the flexible tube shape in simulation with the real world. The left
images show the real robots attached on the vertical wall. The middle column of figures
shows a simplified representation of the real robot deformations, and the figures on the
right-hand side show the two-chain model and the constant curvature model.
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Non-dimensional Shape Parameter

The constant curvature model is a kinematic model and, thus, describes the position of the
end effector as a geometric property. In LEeCH, the position also depends on the internal
stiffness, mass distribution, gravity, and length of the extendable robot segments. When
looking at the moment balance of a single chain in our model, one can see that the element
angles depend only on these four parameters. For an element i, the moment balance reads

mg
n

∑
j=i

x j =−k (φi −φi−1) (3.28)

where φ0 = 0. This is equal to

mg
n

∑
j=i

j

∑
p=i

l sinφp =−k (φi −φi−1) (3.29)

with m the mass per element, g gravity, x j the x coordinate of the mass j as shown in Fig. 3.14,
l the element length, k the torsional stiffness per element, and φi/ the angle of element i with
respect to the frame of reference I. Thus, we have for the angle of element i

− 1
(φi −φi−1)

n

∑
j=i

j

∑
p=i

sinφp =
k

mgl
(3.30)

We see that the resulting angles are completely defined by the nondimensional parameter
k/mgl which we will refer to as the shape parameter σ from here on. For any σ which
remains constant, the resulting angles stay constant under the conditions that the number
of elements does not change, that the initial conditions are identical, and that the payload
ms at the tip is zero. This means that we can, for instance, changethe size of the robot by
changing l and guarantee the same robot shape as long as we change the other parameters to
keep σ constant. Fig. 3.15 illustrates this using our model and changing stiffness, mass, and
element length but keeping σ constant. We see that for all configurations the overall shape
does not change although the size of the robot may. For all cases, the vector pointing to rc

which is located at the tip of chain 2 is located at the coordinates [20l , 6l] irrespective of
size. This is particularly interesting in the third case where we changed the element length
which led to a further reach than in the other cases. Note, however, that we also adapted the
chain distance at the bottom and top by the same factor as the element length. Interestingly,
such a scaling is relevant in the natural world. For example, although caterpillars increase
their body weight by 10,000 times in 2 weeks, they maintain the same locomotion kinematics
by changing muscle activation and therefore the stiffness k [102].
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Fig. 3.14 One-chain model of n elements used for the derivation of the shape parameter σ

Fig. 3.16 shows how the two-chain model approaches the constant curvature model when
stiffness and mass are changed, giving rise to different shape parameters σ . We set the
endpoints of the constant curvature model to draw a linear curve and compared to that of our
model with different stiffness parameters. The predicted endpoints in the simulation decline
greatly due to the effects of gravity when σ is low, that is, close to that of our real robot. As
σ increases, our model becomes stiffer and approaches the constant curvature model, but
it does not match it completely. This is probably because the difference in the number of
elements n and tubes in the left and right generates different bending moments in the two
chains.
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Fig. 3.15 Deformation for constant shape parameter σ but changing stiffness k, mass m, and
element length l. The constant guarantees the same robot shape under certain conditions
such as the number of elements n does not change.
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Fig. 3.16 Comparison between the predicted endpoints of the constant curvature model and
the two-chain model when changing the shape parameter σ by changing stiffness k and mass
m. The constant guarantees the same stiffness of the robot as long as element length l and
gravitational acceleration g are constant even when changing the robot size by changing the
number of elements n.
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Locomotion

The lengthening based on the rack and pinion mechanism using flexible tubes enables
the robot to deform greatly, augmenting reachability in locomotion. To understand the
locomotion behavior in our robot, six types of locomotion maneuvers were tested on a plastic
plate as shown in Fig. 3.17. On the flat ground, the tube length can be increased without
buckling because the robot does not apply its load on the flexible tubes. A maximum speed
of 20 mm/s was observed at a maximal tube length of 180mm (left top figure).

The robot also achieved upward and downward climbing locomotion on a vertical wall
(right top and left middle figures). We can see that the tube lengths when climbing downward
are shorter than when climbing upward. This is to guarantee that the rear suction cup is
parallel to the wall at the point when it is being pressed against it. The middle right figure
shows a sideway climbing maneuver. After the front suction cup with a free rotation joint is
attached to the wall, the robot releases the rear suction cup and turns due to gravity, recovering
the original posture. Note that this strategy for sideway climbing allows lateral movement
but prevents steering of the entire robot (e.g., from vertical position to horizontal position)
on vertical walls. If the free rotation joint is fixed the robot can achieve these movements,
but the passive self-righting of the body posture upon release of the rear suction cup would
be lost. The current version of our robot therefore possesses a rotational joint for simplified
climbing control.

Locomotion for the transition from the vertical wall to the ground (90◦–180◦ transition)
and the climb over a wall (90◦–270◦ transition) are described (bottom figures). A climbing
strategy which was not tested in our experiments is moving along a ceiling. This is currently
not possible in our robot but can be achieved in future versions by improving the suction
cup performance and reducing the robot weight. The robot was operated manually because
when the tube lengths are long, autonomous control of the robot end is difficult due to its
nonlinear deformation. An operator controls the motors to move the robot’s end and looks
for a touchdown position of the front suction cup. Note that the touchdown position of the
front suction cup depends on that of the rear suction cup. The wall to ground transition and
the thin wall transition take ∼18 and 86 s, respectively. The latter is relatively slow because
the driving unit is caught on the corner when getting over the wall.
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Fig. 3.17 Six types of locomotion maneuvers.
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Reachability

In this study, we investigate to what extent the reachability with limited tube lengths is
improved when using a multibody mechanics model as opposed to the constant curvature
model. To do this, we set the range of each tube length from 0.05 to 0.3 m, varied each within
this range, and numerically visualized the endpoints for each of these models for different
shape parameter values σ as shown in Fig. 3.18. The shape parameter values are changed by
changing only the element torsional stiffness k and element mass m as with Figure 10. Note
that since we assume a scenario where the real robot gets over walls, the left tube is always
longer than the right tube and the payload at the tip is set as ms.

We can see that the downward reachability is greatly increased using the two-chain
model when σ = 824 or less, as it allows us to utilize the effect of gravity and tube bending.
Note that σ = 824 corresponds to LEeCH’s shape parameter when using the parameters
in Table 3.1. Moreover, we can increase the upward reachability by increasing the shape
parameter σ . This shows that we can design the robot’s reachability by changing its shape
parameter. Conversely, we see that the upward reachability is better in the constant curvature
model, because gravity is not influencing the kinematic posture. It can also reach points in
the neighborhood somewhat lower than the origin that cannot be accessed with the two-chain
model.

The results show that both models have their unique advantages. While the constant
curvature model can target specific points in space precisely, it does not take into account the
effect of external forces and thus cannot exploit properties of the physical environment such as
gravity. In the two-chain model, we can exploit the environment to extend its workspace, but
cannot turn beyond 180◦ without help (e.g., environmental constraints). In continuum robots,
both properties are needed depending on the problem. For example, accurate positioning
is required in medical application such as endoscopes [10], while soft deformations are
beneficial for moving and climbing in unstructured environments [71, 32]. In practical
applications, stiffness parameters should be tunable depending on desired reachability. Even
robots having poor upward reachability, that is low stiffness, can climb walls with the help of
environmental constraints, but decreasing stiffness leads to difficult controllability of their
body ends.

3.3.4 Conclusion

To demonstrate the potential of a climbing robot with large deformation, we built a Longitu-
dinally Extensible Continuumrobot inspired by Hirudinea, or LEeCH. An extensible body
based on a rack and pinion mechanism can increase reachability of the robot end effector.
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Fig. 3.18 Manipulator workspace for constant curvature and two-chain model when changing
the shape parameter σ by changing only stiffness k and mass m as with Figure 10. Circles
show the reachable points of the end effector, and the gray area indicates the reachable area
of the constant curvature model.

The use of flexible tubes (stripwound metal hoses) as the rack showed great advantages
for continuum robots: (1) flexible yet strong and (2) robust engagement with gears. Six
types of locomotion, including wall-to-wall transition, were tested to demonstrate the robot’s
capability, and we found that large deformation is beneficial in certain situations. While
our first prototype is inspired by the leech’s basic morphology and locomotion, we are
currently planning to adopt other features such as their special suckers and multiple muscles
for grasping in unstructured substrates and achieving more complex tasks [103]. Compared
to the constant curvature model, the two-chain model based on multibody mechanics can
accurately predict the real robot’s deformation and improve the downward reachability under
gravity. Themotion studied in our work can be expressed in a planar model; however, more
complex movements will involve rotations and motions out of the plane which require more
degrees of freedom to be considered. In future work, we will extend our 2Dmodel to 3D and
allow for additional physical effects such as twist or stretch.

Moreover, we derived the nondimensional morphological parameter which defines the
robot’s shape and showed that the desired reachability can be designed by changing this
parameter. In a real system, a change of shape parameter can be achieved by modifying
system size, stiffness, mass density, or gravity. As the latter two are hard to alter and the
system size might be constrained by the particular task at hand, a change in stiffness appears to
be a reasonable tuning parameter, which could be achieved using variable stiffness actuators.
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In future work, we will investigate such mechanisms for live changes in shape parameters.
Our study helps lay the foundation for soft robots that achieve complex locomotion such as
overcoming obstacles and transitioning from wall to wall while using large and nonlinear
deformation.



Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, the concept of the flexible linear motor was described and its benefits for
the locomotion of continuum robots were presented. Flexible linear motors are actuators
combined soft and classical technologies, meaning that they are composed of a rigid stator
of traditional motors and a flexible shaft of which appearance is similar to soft actuators.
By moving the flexible shaft linearly via changes of a relative position to the stator, flexible
linear motors provide a large stroke that can not be achieved with soft actuators that change
themselves with internal stress. This thesis described two flexible linear motors: the flexible
ultrasonic motor and the flexible rack pinion actuator. In Chapter 2, we proposed the flexible
ultrasonic motor, argued the modeling, sensing, and design methodology, and demonstrated
a 2 DoF continuum robot with self sensing sensor. In Chapter 3, we built mobile continuum
robots using flexible rack pinion actuators and demonstrated that large strokes are useful for
locomotion and climbing. Here, we will consider the findings and contributions obtained
through this research.

Our research started with thinking about how to realize flexible linear motors. It is not
easy to move a flexible drive shaft. For example, when the flexible drive shaft is driven by
electromagnetic or electrostatic forces, the distance between the stator and the shaft cannot be
kept constant due to the shaft’s flexibility, and the driving forces may not be transmitted. In
other words, such driving principles that the force changes greatly depending on the distance
are not suitable for flexible linear motors. Our idea was the use of friction-driven stators
with a through hole, and shafts with anisotropy rigidness. The shafts that are flexible in the
bending direction but rigid in the circumferential direction are inserted in the stator hole. The
circumferential rigidness keeps the distance between the shaft and stator constant and helps
to stably receive driving friction forces such as a vibration and gear feed. This thesis reported
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an ultrasonic vibration and a rack and pinion mechanism as examples of driving principles
suitable for flexible linear motors.

The application of flexible linear motors to robots was also studied. Flexible linear
motors are applied to all kinds of soft robots, but the most effective application is possibly
continuous robots. The flexible linear motors have advantages such as electric drive, high
response, and easy to control (easily assemble feedback loops), but particularly important is
a large stroke. We showed that the large stroke improves the workspace and mobilities of
continuum robots. Another advantage of flexible linear motors is sensing. Most soft actuators
suffer from sensing with the use of traditional sensors whose rigidness preclude actuator’s
compliance. On the other hand, flexible linear motors succeeded a feedback control by using
position sensors such as variable a resistance and encoder. Although these sensors cannot
detect bending or torsion of the flexible shaft, the position of the continuum robot end is
geometrically calculated from the length of the shafts.

4.2 Future Work

There are many opportunities for future developments of flexible linear motors. For example,
one problem is to prevent an uncontrolled rotational or helical degree of freedom of the
flexible shafts. Both flexible linear motors we proposed have no constraint to restrict the
rotation. In the flexible ultrasonic motors, the linear motion of the coil spring slider might be
with a slight rotational motion. In the flexible rack pinion actuator, even when the position of
the driving unit is fixed, the axial rotation of the flexible tube is still possible due to the helical
pitch of the tube grooves. One solution to this problem is to make the rotational motion
controllable. For example, since the flexible ultrasonic motor is based on a rotary linear
motion motor, the rotary motion can be controlled independently using a driving principle
different from the one used for linear motion. Another solution is to prevent the rotation.
Making the cross-section of the flexible shaft square may eliminate the rotational instability.

Another opportunity for improvement is the reduction in controllability as the shaft
lengths increase, which makes it difficult to position the robot end. One way to improve
controllability is to increase the number of the driving units controlling the flexible shafts.
This allows the continuum robot using the flexible linear motors not only to assume various
shapes but also to control the stiffness by changing the distance between the driving units.
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Appendix A

Experimental Verification of the Strain
Energy

In 2.9, we estimated the strain energy of the coil spring by the model of the bending
deformation of the Euler–Bernoulli beam. There is another computational method for the
strain energy using the bending moment [23]. The advantage of using the bending moment is
that shows the strain energy from the angular displacement by a simple experiment. In this
section, we derive the strain energy using the bending moment and verify it experimentally.
We consider the case that the coil spring inserted to the stator hole generates the pre-pressure
P between the stator and coil (Figure 2.17(a)). At this time, the bending moment M acts both
the ends of the coil spring and makes the beam planes either lengthen or shorten, thereby
creating strains. The bending moment is expressed by integrating the strains:

M =
∫

A
EεydA (A.1)

where dA is the differential element of the beam area. In the Euler–Bernoulli beam, the
bending moment M can be solved from a given angular displacement φ . This is expressed as

φ =
ML
EI

(A.2)

φ can be geometrically determined by the parameters of the coil spring and the hole diameter.
Using the relation between φ and M, the strain energy Us is rewritten to

Us =
M2L
2EI

(A.3)

The energy Us equals to the strain energy derived in 2.8.
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Fig. A.1 Strain energy stored by the twist of the coil spring. The strain energy estimated is
accorded to the experimental result obtained from the change in the potential energy.

Let us confirm the relation between the strain energy and the angular displacement
experimentally. Figure A.1(a) shows the experimental setup. One end of the coil spring is
fixed and the other free end is attached to a pulley. The coil spring has a diameter of 11 mm
and a wire total length of 310 mm. A weight is loaded to the string connected to the pulley
that fixes the free end. When a weight is applied, it moves downwards due to gravity and
twists the coil spring with an angular displacement φ circumferentially. In this case, the
strain energy stored by the twist is equal to the work done by the displacement of the weight.
It is described as a half of the potential energy of the weight m and the change in height h:

Up =
1
2

mgh (A.4)

This value should take the same value as the strain energies in (A3). Figure A.1(b) shows the
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experimental behavior of Us and Up when φ and h are determined. The plots obtained in the
change in the displacement of the mass are in good agreement with the curve of the strain
energy. This fact means that the strain energy computed by 2.8 and (A3) is correct.
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