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Abstract

Title
Load Swing and Skew Vibration Suppression and Excitation Controls

of Crane Systems.

The transportation of heavy and hazardous payloads from and to various places, such as harbors,

factories, shipyards, is mainly carried out by cranes. All types of cranes share a common structure,

i.e., the payload is suspended under a trolley or a boom tip by flexible ropes. Therefore, the

pendulum-like motion of the payloads, which is referred to as vibration, is induced when actuators

start to exert accelerations on the payloads through ropes. In fact, there are two types of vibrations

existing in crane systems. The first type is swing vibration, which occurs when the payload position

is changed. The second type is skew vibration, and it happens when the payload orientation is

adjusted. The swing vibration is spherical pendulum-like, whereas the skew vibration is torsional

pendulum-like. The central concept of crane control is to manipulate these vibrations as our wish to

suit different engineering purposes. Thus, a number of new control schemes and refined algorithms

were established in this dissertation to address both skew and swing vibration control problems of

cranes. The current common school of thought views the vibration as a harmful phenomenon that

needs to be eliminated, which is why the vibration suppression control is a widely studied subject

in many literatures. However, in fact, the vibration might be undesirable for some applications

but favorable for others (e.g., bulk material transportation described in Chapter 6). Hence, crane

control should be perceived from the points of view of both vibration suppression control and

vibration excitation control.

Part I of this dissertation focuses on the skew vibration control of crane systems. To solve the

robust control problem of the skew transfer process in the presence of parametric uncertainties,

two robust controllers were proposed. First, an integral sliding mode controller was established. A

coupled integral siding function was introduced to inject the skew vibration information into the

control law to drive the payload to a desired skew angle while effectively damping the vibration.

The reaching phase as found with the conventional sliding mode controllers was also canceled, so

the robustness can be achieved from the beginning of time. Second, a dynamic output feedback H∞
controller was also applied to the system for comparison with the integral sliding mode control.

The robust stability condition of the H∞ controller was performed using the µ-synthesis with

a structure singular value criterion, whereas the Lyapunov indirect method was employed for

the integral sliding mode controller. For both schemes, an optimization routine based on the

metaheuristic particle swarm optimization mechanism was established, and it adopted the robust

stability conditions with regard to each controller as the nonlinear constraints. With the proposed

optimization procedure, the minimization of a desirable performance index and robust stabilization

of the closed-loop system was simultaneously guaranteed in a single framework. Based on a random
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simulation and the experimental results, the integral sliding mode controller showed its superiority

over the H∞ control, and hence it is the preferable candidate for actual implementation on the

real-size system in use at the harbor. A switched optimal controller was subsequently introduced to

improve transport productivity. The novelty of such an approach is that the energy consumption

can be reduced without trading-off the sub-optimal transfer time. The basic idea is to use a

binary actuator—an electro-mechanical clutch—to intelligently disengage the connection between

the motor and the payload during motion so that the payload can continue to rotate only with its

own momentum. Two solutions, namely particular and general schemes, were proposed. Physical

constraints of the actuator, including bounded velocity and bounded acceleration, were explicitly

taken into account. Both simulation and experimental results were provided to demonstrate the

effectiveness of the proposed switched optimal control system. In addition, comparisons with the

no-switched time-optimal, input shaping, and integral sliding mode controllers were also presented.

Part II of the dissertation deals with the swing vibration control problem of cranes. First,

minimum-time zero-vibration S-curve commands were established for an overhead crane. Based

on a position baseline S-curve, which is generated from a bang-off-bang acceleration profile, two

approaches were proposed to build the vibration suppression capability: embedding and shaping

methods. In both schemes, the baseline S-curve was parameterized to establish minimum-time

optimization problems in which the maximum velocity and maximum acceleration of the actua-

tor are explicitly taken into consideration. Minimum-time solutions were successfully obtained.

Also, online trajectory generation can be achieved using the proposed approach. In comparison

with other relevant studies, the minimum-time S-curve commands were faster. Second, a model

reference input shaping control was formulated for a nonlinear luffing dynamics of a rotary crane

system with a time-varying rope length. The newly established technique is able to completely

suppress the residual vibration for a highly nonlinear time-varying system. The fundamental idea

is to match the real vibration of the system with a reference oscillation, by which an exact zero

vibration suppression can be achieved for the actual system. Standard input shaping control de-

signs cannot possess such a quality. Finally, a vibration excitation control scheme was introduced

for an overhead crane system in the context of bulk material transportation where the transferred

materials can be dropped/discharged while in the air. In order to exploit such a unique feature, a

new concept, named tossing control methodology, was introduced to enhance transportation pro-

ductivity. A specific type of tossing controller that relies on the phenomenon of linear resonance

was proposed to induce oscillation in a periodically increasing amplitude. It was shown that the

resonance-based tossing control can reduce the transfer time up to 26.5% compared with the well-

known minimum-time swing suppression controller—the fastest member of the swing suppression

control group—under similar requirements of bulk material transportation, conditions, and actu-

ator constraints. Thus, it was found that the vibration suppression control is not always the best

option in every situation.
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Chapter 1

Introduction

Transportation is usually defined as an action to move humans, animals, and goods from one location

to another. The mankind’ first means of transportation involved walking, running, and swimming.

Later, various animals had been used to carry and transport heavy objects at a faster speed. However,

due to the strength and endurance limits of biological bodies, the modern transportation mostly relies

on mechanical tools, structures, and machines, which are able to operate in diverse environments such

as air, land, water, and space. Some typical transport machines/structures can be listed as follows:

fix-wing aircraft and helicopters (air), cars and trains (land), vessels and submarines (water), and

spacecraft and space shuttle (space). These machines considerably free humans from hard, menial,

and dull work. The transportation enables trade between people regardless of geographical distance,

which is crucial for the development of civilizations.

It is widely accepted that cranes are one of the most important means of transportation in various

places, including factories, shipyards, construction sites, and especially harbors, as they are needed

for transferring heavy and hazardous materials between different locations within the workspace. The

21st century witnessed a revolution in the maritime industry, in which containerization played a key

role. Every year, billion tons of merchandise and containers are transported by sea, and it is generally

accepted that more than 90% of the global trade belongs to seaborne commerce. In order to transload

such an enormous and annually increasing amount of goods, crane systems are getting larger in size

and in lifting capacity. They are also being designed to operate at much higher productivity rates than

before so as to shorten the transloading time. As a result, the transportation cost can significantly be

reduced. The main focus factor in the pursuit of improving the productivity of cranes is the oscillation

of the payload around its equilibrium. The vibration phenomenon is a natural characteristic of every

1
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crane and it is elaborated in Section 1.2. The central idea here is to control that vibration in order

to suit and adhere to different engineering purposes. At present, mainstream research focuses on the

vibration suppression control, where the vibration is seen as an unwanted phenomenon that needs to be

eliminated. However, the vibration might be undesirable for some applications but favorable for others

(e.g., bulk material transportation described in Chapter 6). Therefore, crane vibration control should

also be understood in the sense of vibration excitation control, not just in the direction of vibration

suppression control. Due to its significance in fostering both theory and application advancements,

the vibration control of cranes attracted considerable attention from both control theorists and control

engineers. The last 50 years have seen a tremendous interest and effort in modeling and control of

crane systems. It is therefore necessary to review common crane types and their vibration control

techniques.

1.1 Crane categorization

Cranes are the machines that can lift and lower loads, by means of ropes and pulleys, and move the

load horizontally. It is primarily used for lifting heavy loads, which are beyond the normal capacity

of a human, and transport them to other places [1]. There are many types of cranes, e.g., overhead

crane, boom crane, tower crane, telescopic crane, level luffing crane, crawler crane, floating crane,

etc. However, conceptually, cranes can be classified into two main categories depending on their

structures: gantry cranes and rotary cranes. They are different in the sense that, in gantry cranes, all

main motions are linear, whereas rotary cranes can perform at least one rotary motion.

1.1.1 Gantry cranes

Gantry cranes are commonly used in factories, warehouses, and shipyards, where they usually work

in a three-dimensional configuration. The trolley can move along the Y-axis rail, which has a linear

motion on the X-axis rail, as shown in Fig. 1.1. These motions are called trolley and gantry motions,

respectively. The payload is attached to the hook below the trolley by ropes, and its height can be

adjusted along the vertical axis by a hoisting motion, which is the motion of extending or retracting

the rope. By incorporating the three aforementioned linear motions, the payload can be transferred to

any point within the workspace. Since all the motions of the gantry crane are perpendicular to each

other, they can be best described in the Cartesian coordinate. Gantry cranes mainly work in a two-

dimensional configuration (trolley motion is the primary one) at harbors, where they are specialized in

handling containers. For this reason, they are called container cranes. Instead of using a conventional
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Trolley with hoisting 
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Y axis rail
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Figure 1.1: A three-dimensional gantry crane.1

hook, container cranes are equipped with a device called spreader, which is used to grip the container

more efficiently by means of a twistlock mechanism.

1.1.2 Rotary cranes

Rotary cranes are characterized by the rotary motion of at least one actuator, and they can be

divided into two types: boom cranes, which are commonly used in shipyards, and tower cranes, which

are frequently seen at construction sites. In these cranes, the load-line attachment point undergoes

rotation, but another degree of freedom may exist for this point. In boom crane systems, this point

moves vertically, whereas it moves horizontally in tower cranes. The cable and load are treated as a

spherical pendulum with a two-degree-of-freedom sway.

Boom cranes, as shown in Fig. 1.2, are naturally described in spherical coordinates, where a boom

rotates about both perpendicular and parallel axes with respect to the ground. This type of crane

has three main motions: slewing, luffing, and hoisting. The payload is supported using a suspension

cable at the end of the boom. Generally, boom cranes have main advantage of handling loads in

compression. As a result, they are typically more compact than bridge or tower cranes with similar

load-carrying capacities.

1Source: https://www.craneservicesystems.com
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Luffing

Slewing

α 

β 

Figure 1.2: A boom crane at a harbor.2

Tower cranes are most naturally described in cylindrical coordinates, where a horizontal jib arm rotates

around a vertical tower. As shown in Fig. 1.3, a tower crane moves the payload within the workspace

using three motions: slewing, trolley, and hoisting. The payload is suspended under the trolley by

cables, which radially moves along the jib arm. Tower cranes are commonly used in the construction

of multi-story buildings, and they have the advantage of having a small footprint-to-workspace ratio.

1.2 Swing and skew oscillations in cranes

1.2.1 Swing oscillation

All crane types share a common structure, where the payload is suspended under the trolley (in gantry

and tower cranes) or under the boom tip (in boom cranes) by flexible ropes. Such a design is adopted

2Source: https://www.liebherr.com
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Slewing

Figure 1.3: A tower crane at a construction site.3

because altitude of the payload needs to be changed in a large range, which might reach up to 40–50

meters in some cranes. Therefore, a cable-driven structure is more suitable than a rigid-arm one for

large-scale systems like cranes. Since ropes are flexible, the payload behaves like a spherical pendulum

when it is transferred from one point to another, as shown in Fig. 1.2. This pendulum-like motion

is referred to as the swing oscillation of cranes, and it can be decomposed into two swing angles: α

and β in a spherical coordinate system whose origin is attached to the boom tip. Due to the swing

oscillation, the payload does not stop at the designated position after the transfer, but rather oscillates

around that point if no control action is imposed.

1.2.2 Skew oscillation

In every crane, three fundamental motions (i.e., gantry + trolley + hoist in gantry cranes, slew + luff

+ hoist in boom cranes, and slew + trolley + hoist in tower cranes) can only control the position of the

payload. To further adjust the payload’s orientation, cranes need to be equipped with an additional

skew adjustment device. In fact, the skew orientation control of a payload plays an important role in

crane systems. For example, the payload’s center of gravity G of the overhead crane system shown in

Fig. 1.4 arrived at the correct position without any oscillation. However, when the target orientation

is taken into account, the transferring process is said to be incomplete since there exists a skewing

mismatch angle γ between the payload’s orientation and its desirable pose. Therefore, it is essential

to rotate the payload at a skew angle of γ along the Z-axis in the counter-clockwise direction so as

3Source: https://www.simscrane.com
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to accomplish the transferring task. A similar issue is also encountered in boom crane systems in use

at harbors, where the skew orientation of the container has to be adjusted to comply with that of the

truck or vessel.

In practice, there are two types of mechanisms currently being used for controlling the skew orientation

of the payload, namely the indirect and direct types. The indirect mechanism is usually utilized in

container cranes, where a sophisticated four-rope configuration is used in conjunction with a spreader

[2–4]. Four actuators are equipped to independently control the length of each rope so that full

orientations of the payload, namely trim-list-skew angles, can be controlled. However, in this type of

mechanism, the maximum skewing angle can only be adjusted up to a few degrees in both clockwise

and counter-clockwise directions. Therefore, the flexibility of the skew adjustment is very limited. The

second kind of skewing control mechanism is illustrated in Fig. 1.4, where a two-rope configuration in

combination with a simple device called a rotary hook is used. In contrast to the indirect type, the

rotary hook device is not designed to control the rope lengths. Alternatively, it directly controls the

skewing orientation of the payload using a servo motor that is mounted inside the device. As shown

in the zooming area in Fig. 1.4, the payload is directly attached to the motor shaft, and the entire

suspended load is hung below the trolley through two flexible ropes. By using this kind of direct

mechanism, the skewing orientation can be controlled to any desired value (> 360 degrees). However,

along with the above advantage, after reaching the desired angle, the payload continues to oscillate

rather than stop at the designated skew angle due to the law between inertia force and rope tensions.

γ 

X rail

Trolley

Rotary Hook

Payload
Projection of 

payload on OXY

Payload’s target 
pose

O
X

Y
Z

Y rail

Motor shaft

Hook housing

Ropes

Trolley

Payload

G

Figure 1.4: Necessity of the payload orientation control in an overhead crane system. To adjust the
payload’s skew orientation, the direct mechanism with an aid of the rotary hook device is employed.
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To sum up, the swing oscillation of the payload is induced by the point-to-point transfer, whereas the

skew oscillation is resulted mainly from the orientation adjustment of cranes.

1.3 Overview of cranes’ vibration controls

We know from Section 1.2 that both swing and skew oscillations exist in crane systems. As a conse-

quence, two major themes prevail in the current literature: swing vibration control and skew vibration

control. The prominent challenge in the vibration control of cranes is the underactuated characteristic

of the system (i.e., the number of control inputs is less than that of the control outputs) as well as the

presence of uncertainties and disturbances. Two survey papers [5] and [6] have provided a sufficiently

comprehensive summary of the dynamics and swing vibration suppression controls of cranes, where

the latter is relatively more recent than the first one. Since the accumulative literature is too vast to

list every single detail of all the made efforts on the topic, only the most notable and commonly used

techniques are subsequently reviewed. Even though the structures of different crane systems are quite

distinctive, the control techniques, which are successfully established on one crane type, are generally

supposed to be applicable on others, of course, after some modifications or simplifications.

1.3.1 Swing vibration controls

As previously discussed, one must rely on the objective and context of each given application to

determine if one should use the swing suppression control or the swing excitation control. In general,

the swing suppression control must be used to transfer large blocks for safety, and the swing excitation

control should be appropriately employed in the case of transporting bulk material (e.g., sand, cement,

etc.) so as to shorten the transfer time (see Chapter 6).

1.3.1.1 Swing suppression control

In this case, the swing oscillation is seen as a harmful factor to the system, so it needs to be suppressed.

The swing suppression control can be classified into two main categories: feedback and feedforward

controls. These types can be combined to obtain a 2-DOF control system for improving control

performance.

Feedback controls
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Feedback control techniques are rich in the literature, which lend themselves many key developments

of the control theory field. Therefore, in the primitive era, linear controls were intensively utilized

[7–9]. Among them, one of the earliest works can be traced to Hazlerigg [10], where a lead compensator

was utilized to damp the payload and compensate for random disturbance forces acting on it. The

conflict between a good swing damping and the external disturbance rejection can be compromised by

simply introducing an additional outer feedback loop that takes the error between the actual payload

position and its reference as the input. Yoshida and Kawabe [7] applied a saturating control law that

guaranteed a specific upper bound of a quadratic performance index. Furthermore, the control input

constraint was also ensured. Lee et al. [11] proposed a cascade control system for a three-dimensional

overhead crane in which the position servo control and the anti-swing loop were designed based on

loop-shaping and root locus techniques, respectively. Sawodny et al. [12] utilized a pole placement

controller to suppress the vibration of an automated gantry crane, which showed good performance

through both simulations and experiments. Uchiyama [13] proposed a linear robust control method

for a boom crane. The controller only partially used state feedback, and it was endowed with an

integrator to reduce the position tracking error. In addition, the control system was robust against

the rope length uncertainties. Recently, Mori and Tagawa [14] introduced a transfer-function-based

controller for an overhead crane. To account for the limited acceleration, a linear parameter varying

model with an acceleration limit was established. Experimental results were shown to be satisfactory.

Nevertheless, most of the linear control laws require linearized models. Therefore, they may not

be suitable candidates for high-performance overhead crane systems in which the usage of nonlinear

models is necessary. As a result, modern crane controls steered toward the nonlinear control techniques,

where the second method of Lyapunov was being centralized.

The feedback linearization and differential-flatness-based methodology [15, 16], which aims at trans-

forming nonlinear models to linear ones so as to utilize the well-established linear controls, were also

widely applied [17–20]. Tuan et al. [19] employed a partial feedback linearization technique for a three-

dimensional overhead crane, where the total control law consisted of stabilizing control components of

both actuated and unactuated subsystems. Qian et al. [21] established a learning-based partial feed-

back linearization technique for an offshore boom crane. The unknown periodic disturbances caused

by the sea heaves were estimated and compensated in the control law. The main disadvantage of the

feedback linearization method lied in the fact that it is not robust to the parametric uncertainties and

unmodeled dynamics. In order to deal with such circumstances, sliding mode-based controls [22–24],

adaptive controls [25–28], and energy and passivity-based nonlinear controls [29–32] are preferable.

Almutairi et al. [23] proposed a first-order sliding mode controller for a three-dimensional overhead
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crane, where the key point is to inject the swing oscillation to the sliding function to deal with the un-

deratuation of the system. Simulation results were provided. Chen et al. [33] introduced an adaptive

control law for a tower crane system. Unlike the sliding mode control scheme, the swing information

was naturally integrated into the parameter adaptation law. Recently, Sun et al. [34] formulated a

nonlinear controller for a dual boom crane. The proposed method eliminated the need for velocity

sensors or implicit differentiation, which is sensitive to measurement noises. Furthermore, the actu-

ator constraints were explicitly taken into account in the design process. Other new developments

in model predictive control have promptly been applied to crane systems [35–38]. Also, intelligence

controls, which are based on fuzzy logic and neural networks have also been successfully implemented

to overhead crane systems [39–42].

Feedforward controls

Unlike the feedback controls counterpart, feedforward controllers do not need to use the information

of swing oscillations for vibration suppression. This plan-and-run feature makes the implementation of

feedforward control schemes to real systems easy and simple since it does not require a complex sensor

structure. However, the robustness of feedforward controls is not comparable to that of feedback

schemes under the presence of uncertainties and especially under harsh disturbances. In the case

that only mild uncertainties and disturbances affecting the system, feedforward controls have proven

to be very effective for achieving a transportation without residual vibration. There are three main

techniques in the feedforward control category: input shaping, optimal control, and motion planning.

Input shaping [43–50] is perhaps the most widely used technique in the feedforward vibration control.

Its basic idea is to intelligently modulate the original reference command by convolving with a sequence

of impulses called input shaper. The input shaper is designed in a way that the induced vibration by

all impulses is self-canceled. If an input shaper causes no vibration, its convolution with any reference

command also results in a zero-vibration for the system. The study of Singer et al. [44] is among the

first ones to apply the input shaping control to a crane system. Since then, input shaping has been a

promising method for suppressing sway motions in crane systems. Singhose et al. [46] reported that

input shaping control results in a considerable reduction in both residual and transient oscillations,

even when the hoisting distance is a large percentage of the cable length. Lawrence and Singhose

[51] proposed two new input shapers that suit the slewing motion of a tower crane. It was shown

that the improved input shapers outperformed the standard zero-vibration, zero-vibration-derivative,

and unity-magnitude input shapers. Both simulation and experimental results were provided. In [52],

a multi-mode specified insensitivity input shaper was implemented to a laboratory double-pendulum

tower crane. Recently, Ramli et al. [53] attempted to use an artificial neural network (ANN) trained by
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particle swarm optimization to modify the unity-magnitude zero-vibration input shaper online and to

deal with the change in the rope length and payload mass uncertainties. The ANN was actually used as

a nonlinear multivariate regression method, whose training data was taken from a given list of optimal

unity-magnitude input shapers for different rope lengths and payload mass values. An improvement

was demonstrated through experimental results in comparison with standard input shapers.

Optimal control originated in the 17th century, and its foundation is based on the calculus of variation,

whose pioneers are among the greatest mathematicians of all time, including Leonhard Euler, Joseph-

Louis Lagrange, and Karl Weierstrass. In 1956, this field was revolutionized by Lev Pontryagin with

his Minimum Principle, which gave necessary conditions for optimality in the presence of state and/or

input constraints [54–57]. Instead of minimizing the given functional over an admissible function

space, by the Pontryagin Minimum Principle (PMP), the problem at hand can be converted to a

pointwise optimization problem for the Hamiltonian function, which is much easier to solve. For some

simple dynamical systems, the PMP can provide analytical solution. However, in most cases where we

need to deal with complex nonlinear systems, computational techniques have to be employed. When

formulating an algorithm to solve the optimal control problem, we need to ensure that the algorithm

must be convergent, and that the converged solution must satisfy the imposed optimality condition by

the PMP. In this line of research, Sakawa and Shindo [58] proposed an efficient algorithm for solving the

optimal control of container cranes with both state and input constraints. The method is based on both

first-order differential dynamic programming and the PMP. Simulation results on a real-size container

crane were provided. Auernig and Troger [59] reported a time-optimal control scheme of a container

crane for both force and position control configurations. The neccesary conditions for optimality with

actuator constraints were first introduced, and then suitable values of co-state variables were selected.

Also, active and inactive constraints were rationally considered in the numerical computation process.

Terashima el al. [60] performed a computational optimal control algorithm on a rotary crane using the

straight transfer transformation method. The luffing and slewing motion were coordinated to transfer

the payload in a way that the projection of the payload trajectory on the horizontal plane is in a

straight line. All the three motions of the rotary crane, including the slewing, luffing, and hoisting,

were simultaneously considered. A free-terminal-state and fixed-terminal-time optimal control problem

was solved using an iterative procedure with the Davidon–Fletcher–Powell update rule for the search

direction. Simulation and experimental results were presented, and they properly resembled each

other. Apart from the schemes using the PMP, a different method that can also solve the universal

optimal control problem is the one that bases on the nonlinear or linear programming techniques.

The system is discretized to formulate and solve linear/nonlinear programs using optimization solvers

[61–64]. In general, this method is less accurate, and it requires more computational effort than the
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methods that use the PMP, with which the “shape” of the optimal control input can be foreseen, and

thus we know more information on what the actual optimal input solution should look like.

In the motion planning method, it is common to assume a specific class of control inputs that will

be applied to the system. From the necessary conditions for vibration-free transportation, essential

constraints on the assumed control input (e.g., rising time, falling time, magnitude of each period)

need to be determined [65–71]. In comparison with the optimal control approach, which can result

in universal optimal solutions, the motion planning method can only provide local solutions for a

particular class of control inputs. However, analytical solutions can usually be obtained when the

motion planning method is used. Thus, it does not require high computational effort as much as the

optimal control technique. Moreover, control input and state constraints can also be conveniently

incorporated in the design process. Meckl and Arestides [65] proposed a S-curve position command

generated from a bang-off-bang acceleration profile to suppress vibration for flexible systems. The

excitation energy of the input forcing function was minimized using frequency analysis. Uchiyama et

al. [68] introduced a simplified model of a rotary crane system that includes significant centrifugal and

Coriolis force terms. This simple model allowed the analytical solutions of the differential equations of

the model to be derived. Then, a trigonometric S-curve trajectory of the slewing motion was designed

such that the vibration at the end of transportation should be zero. Satisfactory experimental results

were provided. Chen et al. [72] established a time-optimal off-line trajectory planning method and

a tracking control scheme for an overhead crane. The B-spline trajectory was parameterized with

unknown parameters to establish a static optimization problem in which the cost function was the

total transfer time. Several constraints, including actuator limitations and maximum allowable swing

angles, were taken into account. Both simulation and experimental results were presented. Using

an overhead crane, Wu and Xia [61] compared the performances of various motion planning methods

in both time-efficiency and energy-efficiency criteria. In [71], a discrete-time command profile was

proposed using finite step segments that matched steps of the discrete command signal to those of the

control hardware. In contrast to the above studies, the jerk-limited S-curve trajectory of [69, 70] was

established in the jerk level for damped and undamped flexible systems. Most of the motion planning

methods utilized linear models in their designs. To directly employ the original nonlinear models of

cranes so as to enhance the control performance, the differential flatness-based approach can be used

[73–76]. Cranes are known to be flat systems in which the flat outputs are the vertical and horizontal

positions of the payload. Therefore, the motions can be first planned for the payload position, and then

the flat inputs can easily be derived based on simple algebraic relations connecting the flat outputs

and the inputs. There are two main disadvantages in the differential flatness-based motion planning.

First, the input trajectory must be smooth. From the PMP, we know that the time-optimal controller
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(of a linear system with only input constraints) is of a bang-bang type, which is not even continuous.

Therefore, the resultant trajectory of the flatness-based method is generally slower than that of other

methods, such as input shaping and especially optimal control. This disadvantage is significant in

the case of real-size cranes where the natural period of the system is large. The second drawback of

the differential flatness-based motion planning approach is that embedding robustness with respect to

parametric uncertainties into the planning trajectory is not straightforward.

1.3.1.2 Swing excitation control

In the current literature, the swing oscillation is often seen as an undesirable property. As a result,

there are almost no studies on the topic of swing excitation control. In Chapter 6 of this thesis, it is

shown that, in the context of bulk material transportation, the swing excitation control can signifi-

cantly reduce the transfer time compared with the minimum-time vibration suppression controller—the

fastest member of the vibration suppression control group.

1.3.2 Skew vibration controls

Skew oscillation is mostly unfavorable in crane systems because the skew adjustment is only necessary

in the case of large block transfers. Therefore, vibration suppression is the sole objective that needs to

be considered in the skew vibration control. In comparison with the well-established swing vibration

suppression control (see Section 1.3.1.1), there have only been a few studies that paid attention to

designing skew vibration suppression controllers. In other words, the current mainstream only focuses

on the payload position control to suppress the swing oscillation. There is a serious lack of consider-

ations in the payload skew orientation control in which the skew oscillation exists. A brief literature

review of the skew vibration suppression control is given below, and further details are mentioned in

Chapters 2 and 3. Moreover, this thesis focuses on the direct mechanism type with the aid of a rotary

hook device to obtain full flexibility in controlling the payload’s skew angle (see Section 1.2.2).

The very first work on modeling and designing automatic controllers for the rotary hook system should

be credited to [77]. A nonlinear model of the rotary hook system was formulated in conjunction with

the development of two controller types, namely time-optimal and state feedback control, based on a

simplified double integrator plant. Full-scale experiments were conducted to verify the performance of

the state feedback controller, and the controller gains were chosen based on trial and error. Terashima

and Suzuki [78] established an innovative autonomous 3D crane system consisting of path planning

and obstacle avoidance algorithms considering the rotary motion of the payload. This study only
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Figure 1.5: Structure of the thesis.

emphasized the potential method and its extension for solving the path generation problem. In other

words, the skew oscillation suppression was not considered to an elaborate degree. Sawodny et al.

[12] introduced a linear model of a rotating system whose function is similar to that of the rotary

hook device. A 2-DOF controller was designed based on the pole placement technique. Experimental

results showed that the tracking error and vibration damping capability of the proposed controller

were satisfactory. Nevertheless, the nonlinear model needs to be further developed and employed to

enhance the control performance as well as to extend the feasible operating region. Recently, Schaper

et al. [79] proposed a 2-DOF skew control with a novel trajectory controller that consists of both state

feedback and model predictive control feedforward paths. The performance of the control system was

validated with test drives using a full-size mobile harbor boom crane.

1.4 Objectives and outline of the thesis

The objective of this thesis is to solve several new practical control problems related to both skew and

swing vibration controls of cranes. These problems arise from the industrial demand, which makes

them practically important. This thesis aims at creatively applying the control theory foundation to
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solve unanswered control problems and improve the existing solutions in crane control. The main

content of the thesis is organized into two parts whose structure is illustrated in Fig. 1.5.

Part I of this thesis is devoted to the skew vibration (suppression) control of crane systems, and it

comprises of Chapters 2 and 3, whose brief summaries are elaborated below.

� Chapter 2 solves the robust control problem for the vibration-free skew transfer process of cranes

in the presence of parametric uncertainties. Two robust controllers are proposed: a nonlinear

integral sliding mode control (ISMC) and a dynamic output feedback sub-optimal H∞ control.

The robust stability of each controller was obtained using two different techniques: Lyapunov-

based method for the nonlinear ISMC and µ-synthesis for the H∞ controller. These robust

stability conditions were then included in an optimization process in which the metaheuristic

particle swarm optimization mechanism was utilized to optimize a control criterion. Thus, the

minimization of the desired performance index and the robust stabilization of the closed-loop

system can simultaneously be guaranteed in a single framework.

� Chapter 3 pursues a solution to the time-optimal control problem to enhance the transfer pro-

ductivity of the skew rotation system in cranes. A computational optimal control scheme based

on a conjugate gradient method was applied, which monotonically converges to a (local) optimal

solution. Meanwhile, the optimality condition resulting from the PMP was satisfied. The main

idea of Chapter 3 is to use an additional binary actuator, especially an electro-mechanical clutch,

to reduce energy consumption without trading-off the sub-optimal transfer time. By intelligently

switching on and off the binary actuator, unnecessary energy usage can significantly be reduced,

since in a specific interval, the payload can rotate by its own momentum. As a result, a switched

optimal control problem must be addressed. The experimental results showed that, under a

similar minimum transfer time, the switched optimal control system was able to reduce energy

consumption by 25.49% and 61.70% in the medium and long transfer cases compared with the

no-switched optimal control system, respectively.

Part II of the thesis deals with the swing vibration control problem of cranes. In the first two chapters

(Chapters 4 and 5), some new results are presented to improve the performance of the existing swing

vibration control methods, and they are all feedforward types. In Chapter 6, a swing excitation control

problem was first proposed in the context of the bulk material transportation of an overhead crane

system. Then, it was solved using a resonance-based controller. Both simulation and experimental

results are provided in Chapter 4 and Chapter 6, whereas only simulation results are given in Chapter 5.

A brief summary of Chapters 4–6 of Part II is given as follows.
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� Chapter 4 establishes minimum-time zero-swing-vibration S-curve commands (in the position

level) for an overhead crane. The actuator limits, including the maximum velocity and accel-

eration, were explicitly taken into account in the design process. Based on a parameterized

bang-off-bang acceleration profile, two methods were proposed to build the swing suppression

capability. The first one is an embedding method that directly injects the essential terminal

conditions for swing-free transportation into the baseline S-curve command. The other one is

a shaping method inspired by the input shaping technique. Minimum-time solutions were suc-

cessfully obtained by solving constrained (discrete) nonlinear programs. An online trajectory

generation can be achieved using the proposed approach.

� Chapter 5 formulates a model reference input shaping control for a luffing dynamics of a rotary

crane system with a time-varying rope length. Unlike Chapter 4 in which a linear model was

utilized, the newly established input shaping technique in Chapter 5 can completely suppress the

swing oscillation for a highly nonlinear time-varying system. The fundamental idea is to match

the real swing oscillation of the nonlinear time-varying crane with that of a linear time-invariant

reference system on which the standard input shaping is applied.

� Chapter 6 introduces a new concept of swing excitation control in crane systems, which is named

tossing control. Bulk material transport has a unique feature that can be exploited, i.e., the

transferred material can be dropped or discharged while in the air. This allows the relaxation

of the terminal zero swing angle as found with the swing suppression control. To realize the

tossing control requirement, a resonance-based tossing controller is proposed to induce oscillation

with a periodically increasing amplitude. It was then evidently demonstrated that the resonance

tossing control is capable of breaking the time limitation of the minimum-time swing suppression

control—the fastest member of the swing suppression control group.

Finally, Chapter 7 draws the conclusions and the possible future developments of the thesis.

1.5 Contributions of the thesis

This thesis presents several original contributions to solve new problems relevant to both skew and

swing vibration controls in cranes. Since all the chapters are quite distinct, each chapter’ contribution

is separately elaborated as follows.

Skew vibration (suppression) control :
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� The robust control problem of the uncertain skew transfer process in cranes was not addressed

in the current literature. This problem is solved in Chapter 2 using two robust controllers whose

gains or weighting coefficients are automatically tuned using the particle swarm optimization

mechanism to ensure both robust stability and control performance. Especially, a new coupled

integral sliding function is proposed for the nonlinear ISMC to inject the swing oscillation in-

formation into the resultant control law as well as to cancel the reaching phase as found with

conventional sliding mode controllers.

� Using a binary actuator, a novel switched optimal control system was established for the skew

transfer process of cranes in Chapter 3. The proposed method was able to significantly reduce the

total energy consumption compared to no-switched control schemes, including the no-switched

optimal control, input shaping control, and nonlinear ISMC. The basic idea is to impose upon

the conservation of angular momentum to make the payload rotate with its own inertia over a

specific period of time.

Swing vibration control :

� A minimum-time zero-vibration solution of the class of bang-off-bang acceleration inputs subject

to both maximum velocity and maximum acceleration constraints is proposed for an overhead

crane in Chapter 4, which fills a gap in the literature. The proposed minimum-time trajectory

is considerably faster than related studies in the literature which use the same class of inputs.

� A new design of a model reference input shaping controller for a luffing dynamics of a rotary

crane system is introduced in Chapter 5. The newly established technique is able to completely

suppress the residual swing oscillation for a highly nonlinear time-varying system. This is not a

trivial result compared with the conventional input shaping control design.

� It is shown in Chapter 6 that the swing suppression control is not always the best option in every

circumstance. One example exists in the bulk material transportation where the zero terminal

swing angle constraint is not necessary. This allows us to use the swing excitation control rather

than the swing suppression control to further reduce the transfer time so as to improve the

transport productivity. In fact, the results in Chapter 6 demonstrate the possibility of breaking

the time limitation of the minimum-time swing suppression control—the fastest controller in the

swing suppression control family—by using a resonance-based swing excitation control.
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Chapter 2

Robust Control Designs

In this chapter, a robust nonlinear Integral Sliding Mode Control (ISMC) is proposed as a vibration

controller for the payload’s skew rotation process of a boom crane to cope with parametric uncertainties

in the system parameters. By using the indirect Lyapunov method, algebraic inequality constraints for

the ISMC gains are formulated to ensure the robust stability of the closed-loop system under the sliding

mode and in a context where the reaching phase is completely eliminated. Moreover, a robust output

feedback H∞ control is introduced as a benchmark to compare with the nonlinear ISMC. Specifically,

µ-synthesis is utilized to establish the robust stabilization for the H∞ controller. An optimization

routine based on the meta-heuristic Particle Swarm Optimization (PSO) mechanism is established,

which adopts the robust stability conditions with regard to each controller as the nonlinear constraints.

By means of the proposed optimization procedure, minimization of desirable performance index and

robust stabilization of the closed-loop system are guaranteed simultaneously in a single framework.

Through both random simulation and experimental results, ISMC shows its superiority to the H∞

control, hence ISMC is the preferable candidate for actual implementation on the real-size system in

use at the harbor.

2.1 Introduction

In Section 1.2.2, the importance of the skew adjustment process is demonstrated on an overhead crane.

Another example is subsequently given in the case of a boom crane system working at the harbor.

Skew mismatch between the container and the truck is often encountered in practice. For an example,

as shown in Fig. 2.1a, the boom crane must rotate the container at a skew angle of α in order to place

on the truck properly. If the landing angle of the container is not precise or oscillated, four oval holes

18
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Figure 2.1: Necessity of the container skew angle correction. In the left figure, the container should
be rotated α degrees clockwise, whilst in the right figure, the container should be turned 180◦ − α

degrees in counter-clockwise direction to make the container door at the rear end of the truck.
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Figure 2.2: Boom crane equipped with a rotary hook device at the harbor.1

in the corners of container cannot be inserted to the twistlocks fitted on the truck, and therefore the

loading/unloading process cannot be completed. Furthermore, in the case described in Fig. 2.1b, the

container skew angle must be corrected by an amount of 180◦ − α with the purpose of making the

container door locate at the rear end of the truck. In fact, in a transloading cycle, it takes significant

time for the crane operator to manually suppress the residual oscillation of the container at the end

of skew rotation.

In contrast with a complex trolley-spreader system used in the gantry crane which allows the container

orientation can be adjusted in either trim, list, or skew angles [4], in reality, the boom crane system

utilizes a simple device called rotary hook to rotate the container to any desired skew angle. The

1Source: https://www.konecranes.com
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structure of a rotary hook system is described in Fig. 2.2, where the spreader grips the container by

a twistlock mechanism and is also connected with a motor shaft which is mounted inside the housing

of the rotary hook. Finally, the rotary hook device is hung below the crane boom tip by ropes. Note

that the rotary hook device only enables the boom crane to adjust the skew angle of the container,

however it can be arbitrary (> 360 degrees). Nevertheless, after the rotation of the motor shaft drives

the payload to the desired angle, a large residual oscillation will appear because the whole system

(including payload and rotary hook device) has large inertia, low damping ratio and is suspended by

flexible ropes. In reality, because the rotary hook is an under-actuated system (i.e., the number of

actuators is less than the number of control outputs), the crane operator must possess substantial skill

and experience to perform multi-tasks simultaneously (i.e., driving the payload to the desired skew

angle and suppressing the residual skew oscillation), and as a consequence, the transfer process is not

particularly time efficient. Therefore in order to significantly reduce the workload on the crane operator

as well as the duty cycle time of the transshipment, an automatic controller should be developed for

the rotary hook system.

Despite urgent requirements from the harbor industry and in contrast to the well-established swing

suppression controls, there are only a few studies paying attention to design payload skew vibration

suppression controllers. In [77], modeling of the rotary hook system is derived, in conjunction with the

development of two controller types: open-loop time optimum control and closed-loop state feedback

control. However, the system natural frequency is assumed to be known in the design process, therefore

unrealistic in practice. The robustness of controllers are not sufficiently mentioned in the above

study. Recently, Schaper et al. [79] proposed a 2-DOF skew control with a novel trajectory tracking

controller which consists of both feed-forward and feedback paths. A state feedback control law is

utilized to compensate any deviation of the system outputs to the generated reference trajectory.

The performance of control system is verified with a test drive on a full-size mobile harbor crane.

Nevertheless, none of aforementioned studies thoroughly consider the robustness of controllers with

respect to the parametric uncertainties.

The actual specification of the rotary hook system in use at the harbor is characterized by wide

parametric uncertainties. Therefore, without a robustness consideration, the controller will likely

cause instability to the closed-loop system. The sliding mode control is known to be one of the most

powerful tool to deal with uncertain systems. In a conventional sliding mode controller, the reaching

phase exists, over which the convergence of controlled variables to their references cannot be claimed.

For this reason, the system should be forced to slide on the designated sliding surface in the very

beginning of time, which leads to the development of ISMC in this chapter. Since its first introduction

in [80], ISMC has been developed in various forms and applications [81–90]. In [91], a synthesized
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ISMC is proposed for controlling systems with both matched and unmatched uncertainty. The sliding

mode exists at the beginning, hence the system can reinforce the robustness against perturbations

more than other conventional SMC. Xu et al. [92] have employed the ISMC proposed in [91] to an

under-actuated unicycle vehicle. The comparison results between a LQR controller with nonlinear

compensation and the ISMC have been conducted. The experimental results of [92] is reported in

[93], where the ISMC consists of a state feedback nominal control law and switching terms. However,

the robust stability analysis of closed-loop system under sliding mode in the presence of parametric

uncertainties is not considered to an elaborated degree in the above researches.

H∞ robust control is one of the most elegant fashion to treat the uncertainties in a dynamical system

[94–97]. Therefore, in order to draw a comprehensive capability of the robust control theory in practical

application, H∞ controller will be introduced as a representative of linear method to compare with

the nonlinear ISMC. The conclusion of comparative study will suggest the preferable approach should

be utilized for the rotary hook system. Along with the rapid development of fundamental theory,

numerous practical applications employing the robust H∞ controller are reported [98–102]. However,

the major stumbling block in the design process of H∞ controller lies on the fact that there is not a

specific rule/procedure for choosing appropriate weighting functions. At the moment, the weighting

functions selection is mainly based on trial and error with the rule of thumb being simply that the

gains of weighting functions on tracking errors and disturbance attenuations should be high in the

low-frequency region (i.e., in the form of low-pass filter) and the opposite way is applied for the gain

of weighting functions on measurement noises or unmodeled dynamics [103–107].Especially, in order

to achieve a satisfactory control performance and robustness for a system which has large parametric

uncertainties such as rotary hook, it would be very exhausting and time consuming if only trial and

error strategies are performed.

To address the remaining problems in the above discussions, the following contributions are presented

in the chapter. Firstly, the robust stability analysis of ISMC in the presence of parametric uncertainties

is systematically established. By using the indirect Lyapunov method, algebraic inequality constraints

of ISMC gains are exploited to guarantee the robustness of the closed-loop system in the context where

the reaching phase is eliminated. Secondly, to draw a fair comparison between ISMC and H∞ control,

a new optimization routine is proposed. Parameters of each controller will be automatically obtained

by the optimization procedure to ensure both minimization of one desirable performance index and

the closed-loop robust stability conditions in a unified framework.

The remainder of this chapter is organized as follows. In Section 2.2, a mathematical model of the

rotary hook system is provided and validated on the experimental testbed. Next, an ISMC law
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is formulated and robust stability analysis of the closed-loop system is carried out in Section 2.3.

Moreover, an optimization routine using particle swarm mechanism for the ISMC gains is proposed

which employs the robust stability conditions as nonlinear constraints. In Section 2.4, a robust output

feedback sub-optimal H∞ control is configured and designed, therein weighting matrices are optimized

to obtain both minimization of performance index and robust stabilization. The superiority of ISMC

to the H∞ control is shown by random simulation results and explained thoroughly in Section 2.5.

Experimental studies of the robust controllers are provided in Section 2.6. It is later shown that

performances of controllers are satisfactory without any gains tuning activity. Finally, some conclusions

will be discussed in Section 2.7.

2.2 Mathematical modeling validation

2.2.1 Mathematical model

This section provides a brief description on modeling of the rotary hook system which consists of a

rotary hook device, payload, ropes, and boom tip. The skew residual oscillation of the rotary hook

system resulting from the rotation of payload is depicted in Fig. 2.3, where ϕ(t) denotes the relative

angle between the load and the hook, whilst θ(t) represents the absolute angle between the hook versus

x axis. Table 2.1 provides the definitions of all system parameters. The mathematical modeling of

rotary hook system is given as follows

θ̈ = f + bu, (2.1)

where

f =
1

IL + IH +
mR4 sin2 θ

a2

×

[
−mR2 sin θ

a

(
R4θ̇2 sin2 θ

a3
+
R2θ̇2 cos θ

a
+ g

)
− cθ̇

]

b =
IL

IL + IH +
mR4sin2 θ

a2

u = ϕ̈,

and a =
(
l2 − 2R2 (1− cos θ)

)1/2
is the holonomic constraint due to inelastic rope. Linearized model

of the rotary hook system, which will be employed in the H∞ controller design process, is described
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Figure 2.3: Modeling of the skew rotation system.

Table 2.1: Parameters of the uncertain skew rotation system.

Symbol Description Variation range

IL Inertia of the payload (kgm2) [2.64, 41.89]

IH Inertia of the hook (kgm2) [1, 1.5]

m Total mass of the load and the hook (kg) [77.39, 207]

R Skewing radius (m) 0.25

l Rope length (m) [2.5, 5.5]

c Friction coefficient (Ns/rad) [0.1, 0.5]

g Gravity acceleration (m/s2) 9.81

by the following linear differential equation:

θ̈ =
−mgR2

l (IL + IH)
θ − c

IL + IH
θ̇ +

IL
IL + IH

u. (2.2)

Note that the system has only one control input (i.e., ϕ̈ generated by a servo motor) and two control

outputs (i.e., ϕ → ϕd and θ → 0 where ϕd is the reference skew angle of the payload). The under-

actuated characteristic of the rotary hook system makes the ISMC implementation not straightforward,

however it becomes trivial in the H∞ controller design process.
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Figure 2.4: Experimental testbed structure. The payload mass and inertia can be adjusted by
adding/reducing the number of payload disks installed on the hanger. The rope can be changed
manually to a different length. Moreover, the angle ϕ(t) can be measured by the encoder attached at

the end of servo motor. A high accuracy 9-DOF IMU is utilized to measure the angle θ(t).

2.2.2 Experimental apparatus

Structure of the experimental testbed is illustrated in Fig. 2.4. The control input limitation provided

by the servo motor is given as |u|max = 0.5 rad/s2. In order to verify the effectiveness and robustness

of the proposed controllers, the experimental apparatus is designed in such a way that the system

parameters can be varied accordingly. The variation ranges of all system parameters are given in

Table 2.1. Note that, the nominal values of total mass m, payload inertia IL, hook inertia IH , viscous

damping c, and rope length l are chosen at the average of their variation intervals and are denoted as

m̂, ÎL, ÎH , ĉ, and l̂ respectively. Generally, all of the actual system parameters cannot be measured in

practice thus the robust controllers should be designed to have sufficient robustness under parametric

uncertainty conditions described in Table 2.1. It should be clarified that “maximum case” refers to

the case where the maximum number of payload disks are installed on the hanger thus m and IL

achieve their maximum values, similarly “minimum case” refers to the case that none of payload disk

is installed hence m and IL adopt their minimum values (in above discussed cases, all other parameters

remain at their nominal values), and finally “nominal case” corresponds to the case that all of system

parameters are at their nominal values.
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Figure 2.5: Model validation in the nominal case (left) and in the maximum case (right): the
experiment data have a strong agreement with the nonlinear model (2.1) whilst there are significant

lags in hook skew angle θ(t) between experiment data and the linear model (2.2).

2.2.3 Modeling validation

The rotary hook modeling will be validated in two cases: nominal and maximum case. In these

cases, the amplitude of the hook skew angle θ(t) is sufficiently large which violates the assumption for

derivation of the linearized model (2.2), hence advantage of the nonlinear model (2.1) can be revealed.

In each case, the actual parameters of the experimental testbed will be feed for both nonlinear model

(2.1) and linear model (2.2) in the simulations. The model validation results are shown in Fig. 2.5. It

is observed that the nonlinear model (2.1) surpasses the linear model (2.2) in describing the dynamic

of the rotary hook system, and this advantage will benefit the performance of ISMC which employs

the nonlinear model (2.1) in comparison with the H∞ controller which utilizes the linear model (2.2).

2.3 Robust integral sliding mode control design

2.3.1 Control law design and robust stability analysis

Without loss of generality, the tracking problem is considered in this chapter. Denoting the reference

trajectory of the payload angle as ϕd(t), thus the tracking error term can be expressed as e(t) =
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ϕ(t)− ϕd(t). The coupled integral sliding function is proposed as follows

σ = β1ė+ β2e+

∫ t

0
(β3e(τ) + β4θ(τ)) dτ + β5θ + β6, (2.3)

where β1, . . . , β6 ∈ R and they will be bounded in the robust stability analysis process (see Theorem

1). By adding the constant term β6 into the sliding function, it is expected to completely cancel the

reaching phase (i.e., force the system to slide on the sliding surface at the very beginning of time),

therefore the constraint σ(t = 0) = 0 should be satisfied which implies that

β6 = −β1ė(0)− β2e(0)− β5θ(0). (2.4)

Note that all initial conditions of the system at the beginning of the motion can be always measured

by the sensors (see Section 2.2.2), thus the value of β6 in (2.4) can be easily established. By letting

σ̇ = −Ksgn(σ) where K is a strictly positive real number satisfying K > |β1||ϕ̈d|max + η and η > 0 (η

can be arbitrarily small), the sliding mode control law can be obtained as

uI = −β−1
1

(
β2ė+ β3e+ β4θ + β5θ̇ +Ksgn (σ)

)
. (2.5)

In order to verify the ability of the control law (2.5) in maintaining the sliding mode, a conventional

Lyapunov function V = 1
2σ

2 is employed, hence we have V̇ = σ̇σ ≤ −η|σ|. Therefore the sliding

condition is ensured [108, p. 280], and as a consequence, the sliding surface σ = 0 becomes an

invariant set. Note that with the choice of β6 as in (2.4) and the usage of the sliding mode control

law (2.5), the system will be attracted to the invariant set σ = 0 at t = 0 thus the reaching phase is

actually eliminated.

Next, robust stability analysis of the proposed ISMC will be carried out. Since the sliding surface

σ = 0 is coupled thus under the sliding mode, the convergence of tracking error e(t) and skew angle

θ(t) to their references, cannot be ensured automatically, especially with the presence of parametric

uncertainties in the system parameters. Therefore, the following theorem will be proposed.

Theorem 1. For the under-actuated rotary hook system described by (2.1), by using the sliding

mode control law (2.5) with an integral sliding function (2.3), the sufficient condition for all controlled

variables to asymptotically converge to their references (i.e., ϕ→ ϕd, ϕ̇→ ϕ̇d, θ → 0, θ̇ → 0) regardless

of parametric uncertainties in all system parameters is

β1 > 0, β2 > 0, β3 > 0, β4 > 0, β5 > 0, β2β4 − β3β5 > 0.
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Proof. On the sliding surface σ = 0, the equation σ̇ = 0 also holds, hence by defining the state variables

as x1 = θ, x2 = θ̇, x3 = ϕ − ϕd, x4 = ϕ̇ − ϕ̇d, the closed-loop system under sliding mode is governed

as follows 
ẋ1 = x2

ẋ2 = f − bβ−1
1 (β4x1 + β5x2 + β3x3 + β2x4)

ẋ3 = x4

ẋ4 = −β−1
1 (β4x1 + β5x2 + β3x3 + β2x4).

(2.6)

It is observed that when the integral sliding surface (2.3) is used, under the sliding mode, the closed-

loop system (2.6) remains the same order with the original system (2.1). Next, define the state vector

as x = [x1 x2 x3 x4]>, linearized model of the nonlinear autonomous system (2.6) around the

equilibrium point x = 0 can be described as

ẋ = Ax, (2.7)

where

A =


0 1 0 0

−µ1 −µ2 −µ3 −µ4

0 0 0 1

−β−1
1 β4 −β−1

1 β5 −β−1
1 β3 −β−1

1 β2

 , (2.8)

therein µ1 = ω2
n + b̄β−1

1 β4, µ2 = cN + b̄β−1
1 β5, µ3 = b̄β−1

1 β3, µ4 = b̄β−1
1 β2, where cN = c/ (IL + IH),

b̄ = IL/(IL + IH), and ω2
n = (mgR2)/(l(IL + IH)).

The characteristic equation of the linear system (2.7) is determined as det (λI −A) = 0, which yields

λ4 + h1λ
3 + h2λ

2 + h3λ+ h4 = 0, (2.9)

where

h1 = µ2 + β−1
1 β2

h2 = µ1 + µ2β
−1
1 β2 + β−1

1 β3 − µ4β
−1
1 β5

h3 = µ1β
−1
1 β2 + µ2β

−1
1 β3 − µ3β

−1
1 β5 − µ4β

−1
1 β4

h4 = µ1β
−1
1 β3 − µ3β

−1
1 β4.
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According to the Hurwitz stability criterion, sufficient condition for the uncertain linear system (2.7)

to be asymptotically stable is given by
hi > 0 (i = 1, . . . , 4)

h1h2 − h3 > 0

h1h2h3 − h2
3 − h2

1h4 > 0.

(2.10)

It is straightforward to show that, by choosing β1 > 0, β2 > 0, β3 > 0, β4 > 0, β5 > 0, and β2β4 > β3β5,

all of inequalities in (2.10) will be satisfied. Therefore, based on the indirect (or linearization) Lyapunov

method [108, p. 55], the nonlinear autonomous system (2.6) is asymptotically stable at the equilibrium

point x = 0, thus the proof now can be completed.

Remark 1. The integral term in the sliding function (2.3) is essential in the sense that it will ensure

both load angle ϕ and load speed ϕ̇ to track the reference trajectory (i.e., ϕ → ϕd and ϕ̇ → ϕ̇d)

simultaneously. To clarify this claim, consider the case that the integral term does not involve in the

sliding function (2.3) (i.e., β3 = β4 = 0), which yields

σ = β1ė+ β2e+ β5θ + β6, (2.11)

where β6 still follows the constraint (2.4) in order to cancel the reaching phase. Therefore, the control

law (2.5) now can be described by (2.12)

uI = −β−1
1

(
β2ė+ β5θ̇ +Ksgn(σ)

)
. (2.12)

It is easily to show that the control law (2.12) will maintain the system (2.1) to slide on the sliding

surface σ = 0 (here, σ refers to (2.11)) in the very beginning of time. However, in this case, the

closed-loop system under the sliding mode reduces the order and is minimally realized by

ẋr = Fxr, (2.13)

where xr = [θ θ̇ ϕ̇− ϕ̇d]> and

F =


θ̇

f − bβ−1
1

(
β5θ̇ + β2(ϕ̇− ϕ̇d)

)
−β−1

1

(
β5θ̇ + β2(ϕ̇− ϕ̇d)

)
 .

By performing the remaining steps similarly to the proof of Theorem 1, the constraints on β1, β2, and

β5 can be obtained to guarantee the robust stability of the closed-loop system (2.13). Consequently,
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xr approaches zero asymptotically, namely θ → 0, θ̇ → 0, and ϕ̇ → ϕ̇d. As a result, the control

law (2.12) is only able to track the velocity of reference trajectory (i.e., only ensures ϕ̇ → ϕ̇d). Note

that the control law (2.12) cannot be used when the load reference is in a step form (i.e., in the case

that ϕ̇d = 0). From above discussions, obviously, the tracking performance of the control law (2.5)

(with integral sliding surface) will outperform to the control law (2.12) whose integral term is absent

in the sliding surface. It should be emphasized that the method in this chapter results in the algebraic

inequality constraints for ISMC gains, which is different from LMI constraints formulated in [109].

Note that, the LMI optimization would sometimes fail to provide a feasible solution if the relevant

weighing terms are not chosen appropriately.

Remark 2. To reduce the chattering in the control signal, the signum function sgn(σ) in (2.5) should

be replaced by a saturation function sat(σ) which is defined in (2.14), therein ε is a constant related

to the thickness of the boundary layer [108]

sat(σ) =


1 if σ/ε > 1

−1 if σ/ε < −1

σ/ε if |σ/ε| < 1.

(2.14)

Remark 3. In order to ensure the payload motion sufficiently smooth, a 3rd order reference trajectory

ϕd(t) is proposed as in (2.15), by which the first and second derivatives of ϕd(t) are ensured continuous.

ϕd(t) =



2ψ

3tf
t3 + ϕ(0), t ∈ T1

−2ψ

3tf
t3 + ψt2 −

ψtf
4
t2 +

ψt2f
48

+ ϕ(0), t ∈ T2

2ψ

3tf
t3 − 2ψt2 + 2ψtf t−

13

24
ψt2f + ϕ(0), t ∈ T3

ϕf , t ∈ T4,

(2.15)

where tf =
√

8 [ϕf − ϕ(0)]/ψ, T1 = [0, tf/4), T2 = [tf/4, 3tf/4), T3 = [3tf/4, tf ), and T4 =

[tf ,+∞). In (2.15), ϕf is the final target angle (i.e., ϕ(tf ) = ϕf ) and

ψ =

|ϕ̈d|max , if ϕf > ϕ(0)

−|ϕ̈d|max , if ϕf ≤ ϕ(0).
(2.16)

By choosing ϕf and |ϕ̈d|max, the reference trajectory is established. To this end, ϕd(t) described in

(2.15) is employed for all simulation and experiment studies with ϕf = 90 degrees (or π/2 rads) and
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|ϕ̈d|max = |u|max = 0.5 rad/s2. Furthermore, without loss of generality, the system initial conditions

are assumed as ϕ(0) = 0 (rad), ϕ̇(0) = 0 (rad/s), θ(0) = 0 (rad), and θ̇(0) = 0 (rad/s) hereafter,

namely the system motion begins from rest.

2.3.2 Optimization of the ISMC gains

Two control objectives should be achieved for the concerning system: driving the payload to desired

skew angle and suppressing the skew vibration simultaneously. Performance of each controller in

accomplishing two aforementioned targets is measured by settling time tset and vibration suppression

time tsup. The settling time tset is defined as the time for the response curve of the payload angle ϕ(t)

to reach and maintain within a range ζ% of the final target angle ϕf , namely

tset = min{t :(1− ζsgn(ϕf ))ϕf < ϕ(t+ ∆t) <

(1 + ζsgn(ϕf ))ϕf ,∀∆t > 0}, (2.17)

where ζ% is chosen as 1%. Moreover, the vibration suppressing time is expressed as

tsup = min {t : |θ(t+ ∆t)| < |θ(t)| ≤ θtol, ∀∆t > 0} , (2.18)

where θtol is selected as 0.25 degree. At the time when both (2.17) and (2.18) are satisfied, the transfer

process is said to be completed. That instant is termed as the complete time which is simply defined

as follows

tcomp = max{tset, tsup}. (2.19)

The complete time will be used as the performance index in the optimization routine.

In theory, it is preferable to evaluate the complete time tcomp at each possible combination of the

uncertain parameters. However, an infinite computation of the performance index will be gener-

ated. Therefore, in the optimization procedure, three cases will be considered when all of the system

parameters are at their: (1) minimum boundaries, (2) maximum boundaries, (3) average of the vari-

ation ranges (see Table 2.2). The complete time of each above-mentioned case is denoted as (tcomp)j ,

(j = 1, 2, 3) respectively.
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Table 2.2: Three cases whose complete times are evaluated in the optimization routines.

Case Values of the system parameters

(1) IL = 2.64, IH = 1, m = 77.39, R = 0.25, l = 2.5, c = 0.1

(2) IL = 41.89, IH = 1.5, m = 207, R = 0.25, l = 5.5, c = 0.5

(3) IL = 22.27, IH = 1.25, m = 142.2, R = 0.25, l = 4, c = 0.3

Now, the optimization problem of the ISMC gains is described as follows

min
βi,K

J = max {(tcomp)j} , j = 1, 2, 3 (2.20)

s.t. βi > 0 (i = 1, . . . , 5)

β2β4 > β3β5

K > β1 |ϕ̈d|max .

It is noted that the constraint terms in (2.20) are reflected by the robust stability conditions of

closed-loop system posed in Theorem 1. Therefore, the proposed optimization routine simultaneously

considers the control system performance and the robust stabilization in a single framework.

Since the optimization problem (2.20) is generally non-smooth therefore the traditional gradient-based

techniques [110] are usually inapplicable. Moreover, these methods often result in local extremums

hence undesirable solutions might be reported. Recently, Genetic Algorithm (GA) [111] and Particle

Swarm Optimization (PSO) [112], which are among of population-based methods have been received

considerable attentions due to theirs ability in solving the global searching problems without making

assumptions in differentiability as well as continuity of the search space. In the modern heuristic

optimization theory, PSO algorithm is relatively newer than the GA. Moreover, in comparison with GA,

many superior properties of PSO are acknowledged: faster convergence rate and lower computational

time [113, 114]. Therefore, the PSO algorithm will be employed to solve the non-traditional and non-

smooth optimization problem (2.20). However, the configuration described in (2.20) is not suitable

for the PSO mechanism, thus (2.20) will be converted to the nonlinear-constraint-free optimization

problem (2.21) by augmenting an additional penalty term as follows

min
βi,K

J = max {(tcomp)j}+ κ>Ωκ︸ ︷︷ ︸
Penalty term

, j = 1, 2, 3 (2.21)

s.t. βi > 0 (i = 1, . . . , 5)

K > 0,
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Algorithm 1: Optimization procedure for the ISMC gains.

Step 1 Obtain a particle (β1, . . . , β5,K) from the PSO mechanism, go to Step 2.

Step 2 If β2β4 ≤ β3β5 or K ≤ β1 |ϕ̈d|max, then go to Step 3, otherwise go to step 4.

Step 3 The robust stabilization cannot be drawn, hence set J = +∞ and go to Step 5.

Step 4 Evaluate (tcomp)j=1,2,3 , set J = max{(tcomp)j} and go to Step 5.

Step 5 Repeat Step 1 – Step 4 until the PSO mechanism is converged.

Iteration
0 5 10 15 20 25 30 35 40

J
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)
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10
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ISMC

Figure 2.6: Cost function history over iteration of ISMC gains optimization.

where κ = [β2β4 − β3β5 K − β1 |ϕ̈d|max]>, Ω = diag(ω1, ω2), and

ω1 =

0 , if β2β4 > β3β5

+∞ , if β2β4 ≤ β3β5,

ω2 =

0 , if K > β1 |ϕ̈d|max

+∞ , if K ≤ β1 |ϕ̈d|max .

It is noted that whenever the constraints covered by the penalty term in (2.21) are violated, the

value of the cost function J is infinity which indicates that the particle is “unhealthy” and it will be

excluded from consideration of the future swarm. The PSO mechanism provided by particleswarm

routine in the Global Optimization Toolbox of MATLAB is utilized. Algorithm 1 is given to solve the

optimization problem (2.21).



Chapter 2. Robust Control Designs 33

The optimization result is shown in Fig. 2.6. After 37 iterations, the solution of (2.21) is converged

at β1 = 1.988, β2 = 10.258, β3 = 0.0058, β4 = 14.136, β5 = 1.058, and K = 3.726 with the minimum

cost function is Jmin = 9.85 seconds. The optimization time is 8519 seconds on a personal computer

with 2.5-GHz Intel Core i5-3210M and 8GB of RAM.

Remark 4. The computational time is defined as the preparation time to compute the controller for

a given configuration in the actual implementation. Although the optimization process for the ISMC

gains requires a long time to compute (i.e., 8195 seconds), it is not counted as the preparation time

in the actual implementation. The reason is that the optimized gains of the ISMC is computed one

and only one time beforehand in the simulation. These optimized gains are afterward used for any

given configuration in the actual implementation of the controller. Therefore, the ISMC does not

need any preparatory computational time. Alternatively, the ISMC retrieves data from the sensors in

real-time to do the necessary computations, because it is a feedback controller. On the other hand, for

each given configuration, the optimal control and the input shaping control (see Chapter 3) require

long preparation times to compute the control input of the entire operation, since they belong to the

feed-forward control category, which is unlike the ISMC. In summary, since the control gains of the

ISMC are optimized offline, such a long optimization time is not an issue. A similar conclusion can

be made for the H∞ controller in Section 2.4.

2.4 Robust H∞ control design

2.4.1 Output feedback sub-optimal H∞ control configuration

The uncertain transfer functions between the control input u and two control outputs ϕ and θ are

described in (2.22) and (2.23) respectively. To draw the distinction, in the case of H∞ controller, the

notation u will be replaced by u∞ hereafter.

G1(s) =
Φ(s)

U(s)
= 1/s2 (2.22)

G2(s) =
Θ(s)

U(s)
=

IL

(IL + IH) s2 + cs+
mgR2

l

. (2.23)

It is worth mentioning that the parametric uncertainties in the system parameters only enters G2(s),

whilst G1(s) is simply a double integrator. The nominal system which is utilized in the H∞ control
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Figure 2.7: The closed-loop system augmented with weighting matrices: Wp on tracking errors, Wt

on control outputs, and Wu on control input.

design process is given as Gn = [G1 Gn2]>, where nominal subsystem Gn2 of the uncertain transfer

function G2 can be obtained by substituting the nominal system parameters m̂, ÎL, ÎH , ĉ, and l̂ into

corresponding uncertain parameters in (2.23).

Fig. 2.7 illustrates the closed-loop system augmented by weighting matrices Wp, Wt, Wu on tracking

errors er, control outputs y, and control input u∞ respectively. Note that r = [ϕd 0]>, y = [ϕ θ]>,

and er = r−y. The objective of sub-optimal H∞ controller K(s) is to internally stabilize the closed-

loop system whilst make the H∞ norm of transfer matrices between the interest variables z1, z2, z3

and the exogenous input r less than a predefined positive value γ. Mathematically, it is written as

K(s)
stabilizing

:

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
WpSo

WuKSo

WtTo

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∞

< γ. (2.24)

In (2.24), the output complementary sensitivity matrix is denoted as To = GnK (I +GnK)−1. The

output sensitivity matrix So is given as So = I − To.

The main problem in optimizing the weighting matrix Wp, Wt, and Wu to ensure both minimization

of performance index and closed-loop robust stability will be discussed in Section 2.4.3.

Remark 5. Since G1(s) is simply a double integrator hence it has two poles lying on the imaginary

axis which violates the very first assumption of the sub-optimal H∞ controller solution [94, p. 270].

To deal with this issue, the poles of the original system are shifted away from imaginary axis by using
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Figure 2.8: The uncertain rotary hook system modeled by structured uncertainties. The normalized
uncertainty δm, δL, δH , δl, δc (i.e., −1 ≤ δm, δL, δH , δl, δc ≤ 1) are pulled out of nominal parts by LFT
method. Based on Table 2.1, the variation percentage pm, pL, pH , pl, pc of total mass, payload inertia,
hook inertia, rope length, and viscous damping are 45.6%, 88.1%, 20%, 37.5% and 66.67% respectively.

the following bilinear transformation [115]

s(s̃) =
s̃+ p1

1 + s̃/p2
, (2.25)

where the function s(s̃) maps the imaginary axis in the s-plane into the circle in the complex s̃-plane

having diameter [−p1 − p2]. The H∞ controller will be designed in the s̃-plane and afterward, it is

shifted back to s-plane. Here, p1 = −15 and p2 = −0.002 are chosen.

2.4.2 Uncertainty modeling and robust stability formulation

In order not to overestimate the uncertainties in the system, the parametric uncertainties are modeled

as a structured perturbation. Robust stability of the closed-loop system is then established by using

µ-synthesis.

Fig. 2.8 illustrates the uncertain rotary hook system, where each element in the block diagram of

the uncertain rotary hook system will be decomposed into a nominal part and a normalized un-

certainty part based on the Linear Fractional Transformation (LFT) technique [94, p. 165]. As

an example, for the uncertain block m in Fig. 2.8, it can be written that m = m̂ (1 + δmpm),

where m̂ and pm are the nominal value and variation percentage of m respectively. By letting
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m = m̄22 + m̄21δm (I − m̄11δm)−1 m̄12, the uncertain block m can be represented in the sense

of an upper LFT as m = FU (m̄, δm) where m̄ =

[
0 m̂

pm m̂

]
. In the similar manner, the nominal

components of all uncertain blocks in Fig. 2.8 are given by

Ī =
−1

ÎL + ÎH


ÎLpL ÎHpH −1

ÎLpL ÎHpH −1

ÎLpL ÎHpH −1

 , ĪL =

[
0 ÎL

pL ÎL

]
, c̄ =

[
0 ĉ

pc ĉ

]
, l̄ =

[
−pl 1/l̂

−pl 1/l̂

]
. (2.26)

By pulling out all of normalized uncertainties, the uncertain rotary hook system now can be expressed

in an upper LFT FU (Gs, δ), therein δ = diag (δL, δL, δH , δc, δl, δm) and the nominal plant Gs is

established as follows. As shown in Fig. 2.8, denote x1s = ϕ, x2s = ϕ̇, x3s = θ, x4s = θ̇, vI = [vI1 vI2 ]>,

uI = [uI1 uI2 ]>, y1 = ϕ, and y2 = θ, the nominal plant Gs can be expressed as in (2.27).



ẋ1s

ẋ2s

ẋ3s

ẋ4s

vL

vI1
vI2
vc

vl

vm

y1

y2



=



0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0

0 0 −
m̂gR2

l̂(ÎL + ÎH)
−

ĉ

ÎL + ÎH

pL

ÎL + ÎH
−

ÎLpL

ÎL + ÎH
−

ÎHpH

ÎL + ÎH
−

pc

ÎL + ÎH

plgR
2

ÎL + ÎH
−

pmgR2

l̂(ÎL + ÎH)

ÎL

ÎL + ÎH
0 0 0 0 0 0 0 0 0 0 ÎL

0 0 −
m̂gR2

l̂(ÎL + ÎH)
−

ĉ

ÎL + ÎH

pL

ÎL + ÎH
−

ÎLpL

ÎL + ÎH
−

ÎHpH

ÎL + ÎH
−

pc

ÎL + ÎH

plgR
2

ÎL + ÎH
−

pmgR2

l̂(ÎL + ÎH)

ÎL

ÎL + ÎH

0 0 −
m̂gR2

l̂(ÎL + ÎH)
−

ĉ

ÎL + ÎH

pL

ÎL + ÎH
−

ÎLpL

ÎL + ÎH
−

ÎHpH

ÎL + ÎH
−

pc

ÎL + ÎH

plgR
2

ÎL + ÎH
−

pmgR2

l̂(ÎL + ÎH)

ÎL

ÎL + ÎH
0 0 0 ĉ 0 0 0 0 0 0 0

0 0 m̂/l̂ 0 0 0 0 0 −pl pm/l̂ 0

0 0 m̂ 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0





x1s

x2s

x3s

x4s

uL

uI1
uI2
uc

ul

um

u



(2.27)

Finally, the uncertain rotary hook system in the LFT form will be plugged into the closed-loop system

to conduct the robust stability analysis. In Fig. 2.9, the plant P can be established by using sysic

command of MATLAB to interconnect the H∞ controller K(s) with the nominal plant Gs in a

closed-loop fashion.

Theorem 2 (Small SSV theorem [96, p. 28]). Let P (s) denote the transfer matrix of the nominal

plant P and assuming P (s) is stable, define the Struture Singular Value (SSV) of P –δ closed-loop

system shown in Fig. 2.9 as

µδ(P (s)) = sup
ω∈R+

[
min
δ∈δ

{
σ̄(δ) : det(I − P (jω)δ) = 0

}]−1

,
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Figure 2.9: The uncertain rotary hook system, which is modeled by a structured uncertainty δ and
a nominal plant Gs, is plugged into the loop.

where σ̄(δ) represents the largest singular value of the matrix δ, then the perturbed system illustrated

in Fig. 2.9 is robustly stable, with respect to δ, if and only if µδ(P (s)) < 1.

In Theorem 2, the SSV µδ(P ) cannot be computed exactly [116]. However, the lower bound and

upper bound of µδ(P ) can be satisfactorily estimated. Therefore, the robust stability condition posed

in Theorem 2 can be replaced as µ̄δ(P ) < 1, where µ̄δ(P ) is the upper bound of µδ(P ). The mussv

routine of MATLAB Robust Control Toolbox is employed to numerically compute µ̄δ(P ). At this

point, H∞ sub-optimal control design configuration for the nominal plant and the robust stability

for the uncertain closed-loop system are formulated. In the next section, an optimization routine

is proposed to obtain a H∞ controller which achieves both desirable performance index and robust

stabilization in one framework.

2.4.3 Optimization setup and result

The weighting matrices Wp, Wt, and Wu described in the Section 2.4.1 are configured as follows

Wp =


a1

s+ a2
0

0
b1

s+ b2

 , Wt =


c1

s+ c2
0

0
d1

s+ d2

 , Wu = ρ, (2.28)

where ρ, ai, bi, ci > 0, (i = 1, 2). In similar to the optimization routine of ISMC gains (Section 2.3.2),

the performance index is chosen as J = max{(tcomp)j}, j = 1, 2, 3, where (tcomp)j is the complete time

of the jth case shown in Table 2.2. By considering the robust stability condition, the constrained
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Figure 2.10: Cost function over iteration of the weighting matrices optimization for the H∞ control.

optimization problem is posed as follows

min
ai,bi,ci,di,ρ

J = max {(tcomp)j} , j = 1, 2, 3

s.t. ρ > 0, ai > 0, bi > 0, ci > 0, di > 0, (i = 1, 2)

µ̄δ(P ) < 1. (2.29)

Since (2.29) is not appropriate for the PSO mechanism, it will be converted to a nonlinear-constraint-

free optimization problem as shown in (2.30)

min
ai,bi,ci,di,ρ

J = max {(tcomp)j=1,2,3}+

Penalty term︷ ︸︸ ︷
ω∞ (µ̄δ(P )− 1)2

s.t. ρ > 0, ai > 0, bi > 0, ci > 0, di > 0, (i = 1, 2), (2.30)

where

ω∞ =

0 , if µ̄δ(P ) < 1

+∞ , if µ̄δ(P ) ≥ 1.

In (2.30), when a particle violates the nonlinear constraint µ̄δ(P ) < 1, the cost function J will be set

to infinity which forces the PSO routine to discard that particle from future swarm evaluation. Note
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Algorithm 2: Optimization procedure for the weighting matrices of the H∞ control.

Step 1 Obtain a particle (ρ, ai, bi, ci, di), i = 1, 2 from the PSO mechanism particleswarm and go
to Step 2.

Step 2 Based on the configuration (2.24), design the sub-optimal H∞ controller by hinfsyn routine
of MATLAB in s̃-plane. Shifting the resultant H∞ controller back to the s-plane by inversion
of the bilinear transformation (2.25), go to Step 3.

Step 3 Establish the closed-loop system (shown in Section 2.4.2). Computing µ̄δ(P ) by mussv rou-
tine. If µ̄δ(P ) < 1 then go to Step 4, otherwise go to Step 5.

Step 4 Evaluate (tcomp)j=1,2,3 , set J = max{(tcomp)j} and go to Step 6.

Step 5 The robust stabilization cannot be drawn, hence set J = +∞ and go to Step 6.

Step 6 Repeat Step 1 – Step 5 until the PSO mechanism is converged.

that if the robust stability of the H∞ control and the ISMC are satisfied by their optimum solutions,

the cost function J corresponding to the ISMC in (2.21) and to the H∞ control in (2.30) are similar.

Algorithm 2 is provided to solve the optimization problem (2.30).

Fig. 2.10 shows the optimization result of the Algorithm 2. After 36 iterations, the solution converges

at a1 = 1.114, a2 = 0.0045, b1 = 6.211, b2 = 50.369, c1 = 29.403, c2 = 1.701, d1 = 20.781, d2 = 1.031,

and ρ = 0.0088 with the optimized cost function is Jmin = 16.52 seconds. The optimization time is

21943 seconds on a personal computer with 2.5-GHz Intel Core i5-3210M and 8GB of RAM. The detail

comparison between two optimized results of the H∞ controller and ISMC is given in Section 2.5. The

7th order H∞ controller K(s) corresponding to the optimized weighting matrices is given in (2.31).

K(s) =


67.626(s+ 15)(s+ 1.53)(s+ 0.9394)(s+ 0.005248)(s+ 0.002926)(s2 + 0.2408s+ 0.923)

(s+ 14.98)(s+ 1.922)(s+ 0.9823)(s+ 0.6724)(s+ 0.006547)(s2 + 22.36s+ 317.8)
−230.63(s+ 15)(s+ 1.53)(s+ 0.9394)(s− 0.8811)(s+ 0.00842)(s− 0.0004701)

(s+ 14.98)(s+ 1.922)(s+ 0.9823)(s+ 0.6724)(s2 + 22.36s+ 317.8)


>

(2.31)

In practice, the order ofK(s) should be reduced as smallest as possible. The controller order reduction

will be carried out by means of the command reduce of MATLAB, in which the balanced model

truncation via square root method is employed. Denote the reduced order controller of K(s) as

Kr(s). The order of Kr(s) will be chosen based on the H∞ norm of additive model error (i.e.,

||K(s) −Kr(s)||∞). According to Table 2.3, the lowest order of Kr(s) can be chosen as 5th. The
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Table 2.3: Additive error of the controller order reductions

Order of Kr(s)

2 3 4 5 6

||K(s)−Kr(s)||∞ 1.352 0.059 0.011 2.67 × 10−4 2.66× 10−4

state space form of the resultant controller Kr(s) is given as below{
ẋ∞ = A∞x∞ +B∞er

u∞ = C∞x∞ +D∞er,
(2.32)

where

A∞ =



−11.180 13.885 0 0 0

−13.885 −11.180 0 0 0

0 0 −15.075 0 0

0 0 0 −1.907 0

0 0 0 0 −0.697


B∞ =

[
10.426 12.849 −0.670 −0.389 −0.202

−39.019 −43.910 2.425 1.714 0.604

]>
C∞ =

[
−72.642 −63.246 −2.322 1.662 0.629

]
D∞ =

[
67.626 −230.628

]
er =

[
ϕd − ϕ −θ

]>
.

The structured singular value of the uncertain closed-loop system is given for the reduce order controller

Kr(s) by Fig. 2.11, in which it can be recognized that µ̄δ(P ) < 1. Furthermore, by means of (2.24),

Kr(s) internally stabilizes the nominal plant P hence according to Theorem 2, the uncertain closed

loop system is robustly stable. Note that, in the experiment, the H∞ control law u∞ formed by

(2.32) can be solved by any fixed-step ODE solver. Furthermore, the state space representation of the

controller Kr(s) should be in a canonical form to reduce the mathematical operations of the on-board

computational process.

It is worth mentioning that in order to directly take the parametric uncertainties account into the

robust control design process, one can use µ-synthesis (see [94, 96]). However, the µ-controller resulted

from a heuristic D-K iteration process often has very high order. Even if the controller order reduction
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Figure 2.11: Structured singular value of the P –δ closed-loop system corresponding to the reduced
order H∞ controller Kr(s).

is conducted, the complexity of µ-controller cannot be afforded in our low-cost oriented experimental

apparatus, thus it is not a suitable candidate in practice.

2.5 Discussions and simulation results

Two optimized results of ISMC and H∞ controller are summarized in Table 2.4. It is observed that

Jmin in the case of ISMC (9.85 seconds) is much lower than the case of H∞ controller (16.52 seconds).

Therefore, the performance of ISMC is superior to the H∞ controller. This fact can be explained as

follows. Firstly, ISMC guarantees the system responses to track not only their reference trajectories

but also the velocity of reference trajectories (i.e., ensures ϕ → ϕd, θ → 0 and ϕ̇ → ϕ̇d, θ̇ → 0,

see Theorem 1). On the other hand, output feedback H∞ controller only guarantees outputs of the

system to follow their references (i.e., only ensures ϕ→ ϕd and θ → 0). Secondly, the robust stability

condition presented by SSV in the case of H∞ control could be more conservative than ISMC case

since SSV cannot computed exactly (only lower and upper bound can be obtained). From the above

explanations, obviously, ISMC outperforms the output feedback sub-optimal H∞ controller.

The optimization time of the ISMC gains (8195 seconds) is also much smaller than the H∞ control

case (21967 seconds). It can be easily explained by the fact that in the H∞ control case, numerical

computations of both H∞ controller and SSV upper bound µ̄δ(P ) are required which significantly
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Table 2.4: Optimization and random simulation results of ISMC and H∞ control

ISMC H∞ control

Optimization result
Jmin 9.85 s 16.52 s

Computation time 8195 s 21967 s

Random sim. result tcomp
Mean 9.97 s 15.80 s

Std. deviation 0.631 s 0.328 s

The sampling time in simulations is 28 ms.
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Figure 2.12: Random simulation result of the ISMC (left) and the H∞ controller (right). It is
observed that ISMC performs faster than the H∞ control in completing the transfer process.

lengthen the overall process, whereas the control law as well as the robust stability conditions of

ISMC are given analytically.

In reality, the system parameters are generally unknown hence it is reasonable to conduct a random

simulation to evaluate the performance of robust controllers in uncertain condition. Specifically, 30

random sets of system parameters will be utilized. These sets of system parameters are randomly

sampled within the domains given in Table 2.1, and thus the simulation study could be realized in the

manner of the Monte Carlo framework. The control performance of the ISMC and the H∞ controller

will be accessed by both mean value and standard deviation of the complete time tcomp. The simulation

results of ISMC and H∞ controller are shown in Fig. 2.12 where the 3rd order reference trajectory in

(2.15) is employed (with ϕf = 90 degrees and |ϕ̈d|max = 0.5 rad/s2). Note that in the experiments,

due to the limitation of hardware computational speed, the sampling time in the case of ISMC and

H∞ controller are 28 ms and 57 ms respectively. Therefore, to draw a fair comparison, the simulation
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studies of all controllers will be conducted in both 28 ms and 57 ms sampling time. Nevertheless, the

results are same between two cases (i.e., 28 ms and 57 ms). Table 2.4 summarizes the mean values

and standard deviations of complete time for both controllers.

As shown in Table 2.4, in agreement with the previous conclusion, ISMC outperforms the H∞ control

in the random simulation study according to the mean of tcomp. However, it is observed that the

standard deviation of tcomp in the case of H∞ control (0.328s) is only half of the ISMC case (0.631s)

which shows that H∞ control seems more consistent in ensuring the control performance for various

cases. Nevertheless, this fact actually brings disadvantage to the H∞ control. As our observation,

the lower the payload inertia is, the faster the ISMC law pushes the payload to track the reference

trajectory since in these cases, physically, the payload can be easily braked without a large overshoot.

Because ISMC performs faster transfer time thus in comparison with the H∞ control, a larger vibration

peak and control signal are observed. However, it is not a matter since our highest priority is to drive

the payload to the target angle and suppress the vibration as fast as possible, which is reflected by

the choice of tcomp as the performance index in the optimization routines (see (2.21) and (2.30)).

2.6 Experimental results

The designed robust controllers now will be applied on the experimental apparatus in three cases:

minimum, nominal and maximum case. The control structures of both ISMC and H∞ controller are

implemented in the C environment. The Motion Designer software platform provided by TAMAGAWA

SEIKI CO., LTD is utilized to compose the executing C code. Note that the controller gains of ISMC

used in the simulation will be directly employed on the experimental testbed, in the other words, there

is not any gains tuning process in our experiments. Moreover, in order to solve the ODE equations set

(2.32) to obtain the H∞ control law u∞, a second order Runge-Kutta fixed-step ODE solver (or Heun

method) [117] will be employed. It is recommended that, with such a long sampling period when the

H∞ controller is implemented (i.e., 57 ms), high order Runge-Kutta solver should not be used because

they require interpolation values of measurement data which may be very inaccurate.

It is observed that the experimental results of the ISMC (Fig. 2.13) have strong agreements with

the simulation results in all cases. Moreover, despite the fluctuation in the control input, the sliding

functions are kept inside the neighborhood of zero bounded by the designated boundary layer with a

thickness of ε. Due to the effect of inertia, peak of the skew vibration θ(t) is smallest in the minimum

case and largest in the maximum case, which adheres to the common physical sense.
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Table 2.5: Complete time of ISMC and H∞ control in the experiments.

ISMC H∞ control

tcomp

Minimum case 9.67 s 14.76 s

Nominal case 11.03 s 15.34 s

Maximum case 8.24 s 15.21 s
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Figure 2.13: Experimental result of the ISMC in the: minimum case (left), nominal case (middle),
and maximum case (right). Experimental data are in complete agreements with the simulation results.
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Figure 2.14: Experimental result of the H∞ controller in the: minimum case (left), nominal case
(middle), and maximum case (right). Some variations between the experimental data and the simula-

tions are observed.

In contrast to ISMC, there are slight differences between the experimental and simulation results in

the case of H∞ controller (Fig. 2.14). In detail, the experiment response curve of the load angle ϕ(t)

always perform some variations compared with the simulation. The reason possibly comes from the

accumulated error in the ODE fixed-step solver computational process. In particular, the solution of

ODEs set (2.32) at the time instant t0 + h (h is sampling period) can be written as x∞(t0 + h) =

x∞(t0) + γh, where γ is weighted average slope approximation [117]. Therefore, the solution at the

time instance t0 +h is dependent on the solution of previous time step t0, hence if the sampling period

h is large, the accumulated error can be considerable even if the fluctuation in the measurement data



Chapter 2. Robust Control Designs 45

and control input are small.

Table 2.5 summarizes the complete time of ISMC and H∞ controller in the experiment studies. It is

observed that tcomp of ISMC are much smaller in all cases. Therefore, ISMC shows its superiority to

the H∞ controller not only in the simulation but also in the practical implementation.

In the experimental results, the control signal of ISMC is more fluctuated than the H∞ controller. It

can be explained by the fact that in practice, there always exist modeling errors caused by actuator

dynamic omittance, gear hysteresis, etc., hence the switching control term in the ISMC law (2.5) is

activated to compensate such mentioned errors.

Remark 6. The skew dynamical behavior of the payload is explained as follows. During the transfer

process, the payload exhibits the skew oscillation in both cases, i.e., with and without the controllers.

The reason is that the system is underactuated and the load inertia cannot be negligible. However,

without the vibration controllers, the skew oscillation continues when the payload reaches its target

skew angle (see Fig. 2.5). On the other hand, if the vibration controllers are employed, the residual

skew oscillation is completely suppressed when the payload approaches its desire skew reference. This

also demonstrates the effectiveness of the proposed ISMC and H∞ controllers.

2.7 Summary

In this chapter, a robust nonlinear ISMC and a robust linear output feedback H∞ controller have been

proposed for an under-actuated rotary hook system in order to deal with parametric uncertainties in

the system parameters. By eliminating the reaching phase, dynamic ambiguity in the transient state

forwarding to the sliding mode can be avoided completely. Robust stability of each controller is

investigated thoroughly. Optimization routines are proposed for both ISMC and H∞ controller, which

adopt the robust stability conditions of the closed-loop system as the nonlinear constraints. To be

able to solve the nonlinear constraint optimization problem by a particle swarm mechanism, penalty

functions are augmented to the original cost function. By means of the proposed algorithm, the control

performance and robust stabilization can be achieved simultaneously in a single framework. Through

both simulation and experimental results, ISMC shows its superiority to the H∞ control. Specifically,

H∞ controller requires much larger computational resources than ISMC because of the fixed-step ODE

solver operation. Moreover, the performance of ISMC is better than H∞ controller in the experimental

studies hence it is concluded that ISMC is the preferable candidate for actual implementation on the

real rotary hook system in use at harbor.



Chapter 3

Switched Optimal Control Design

This chapter pursues a time-optimal skew transfer process with no-vibration and less energy con-

sumption, so nonlinear optimal control schemes are proposed. The main objective is to reduce energy

consumption of the system without trading-off the sub-optimal transfer time. The novel idea is to use a

binary actuator—an electro-mechanical clutch in particular—to intelligently disengage the connection

between the motor and the payload during the motion such that the payload can continue rotat-

ing only by its own momentum. As a result, a switched optimal control problem must be realized.

Two solutions, namely particular and general schemes are proposed in the chapter, where physical

constraints of the actuator including bounded velocity and bounded acceleration are explicitly taken

into account. Both simulation and experimental results are provided to prove the effectiveness of the

proposed optimal control systems. The established schemes can be directly applied to transfer the

payload to a desirable skew orientation without any residual oscillation, or can be utilized as a sub-

optimal-time reference trajectory planner of the skewing control module in either overhead or rotary

crane systems. Furthermore, the hybrid rotation process presented in this chapter, which is driven by

the engaging/disengaging event of the clutch, can be served as a theoretical benchmark for any newly

established switched optimal control method.

3.1 Introduction

In most existing studies, including the robust control designs presented in Chapter 2, a sub-optimal-

time transfer process (subject to the physical constraints of a real rotary hook device) was not consid-

ered, and hence transfer productivity is not optimum. Furthermore, the feedback controllers always

46
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require a sophisticated and expensive sensor system. For those reasons, in this chapter, feedforward

control schemes based on the nonlinear optimal control technique will be formulated to obtain a low-

cost control system while maintaining a precise skew transferring and an effective residual oscillation

suppression. The problem in saving energy without sacrificing the sub-optimal transferring time will

be elaborately considered by employing the switched optimal control approach with the aid of a binary

actuator, which is an electro-mechanical clutch.

In the literature, a clutch is usually used in the vehicle transmission control [118–121]. The main

functionality of the clutch in a powertrain system is to allow the car to both change speed and to

completely stop without turning off the engine. However, in contrast to the existing researches, this

chapter will introduce a new application aspect of the electro-mechanical clutch, which is installed

inside the rotary hook device, in reducing energy consumption for the skew transferring process of

crane systems.

In this chapter, indoor application for the overhead crane system is adopted as the context in which

the rotary hook system is employed hence external disturbances can be neglected. Simple operations

of the clutch, namely engaging and disengaging, will result in a hybrid system dynamic which can

be obtained by the Euler-Lagrange approach. The key idea is to disengage the clutch and turn off

the motor simultaneously in a specific interval during the transferring process such that the payload

can travel only by its own inertial movement. In order to find appropriate switching instants at

which the clutch is disengaged or engaged as well as the optimal control input during the actuated

intervals, a switched optimal control approach is utilized. To solve the problem, both particular

and general solutions are proposed. A particular solution is established by imposing specific state

constraints at the switching instants so that the original problem can be transformed to the no-

switched domain. On the other hand, the general solution views the switched optimal control problem

in its original perspective, namely both switching instants and control inputs need to be optimized. In

comparison with the general solution, the particular solution provides better control performance and

computational efficiency. By employing the switched optimal control system, the energy consumptions

are reduced up to 25.49% and 61.70% in the medium and long transferring cases respectively, without

any influence on the sub-optimal transferring time obtained in the no-switched optimal control scheme.

The remainders of this chapter are organized as follows. Section 3.2 introduces the internal structure

of the rotary hook device with an electro-mechanical clutch as well as the experimental apparatus. In

Section 3.3, modeling of the hybrid rotary hook system is established in theory and validated in ex-

periments. A brief review of the clipping-off Conjugate Gradient (CG) method is given in Section 3.4.

Section 3.5 formulates an optimal control scheme for the no-switched system in which the clutch is
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engaged during the entire transferring process. Switched optimal controls are then presented in Sec-

tion 3.6 with both particular and general solutions. Section 3.7 provides simulation and experimental

results of the switched optimal control system. Discussions and comparisons between switched and

no-switched scenarios in terms of transferring time and energy consumption are given in Section 3.8.

Moreover, input shaping and integral sliding mode controls are also applied on the system to highlight

advantages of the switched optimal control system. Finally, some conclusions and future works are

presented in Section 3.9.

3.2 Structure of the switched skew rotation system with an electro-

mechanical clutch

Fig. 3.1 shows the internal structure of the rotary hook system with an electro-mechanical clutch. The

clutch is comprised of two parts. The rotor (upper part) is connected with the servo motor shaft and

the armature (lower part) is attached to a transmission gear system whose end of effector is the payload.

When the current is applied, the clutch is engaged which means that the upper and lower portions

are connected with each other thus the servo motor can transmit the motion to the payload. On the

other hand, removing the current will cause two parts of the clutch to separate, hence the payload

cannot be actuated by the servo motor—the clutch is said to be in the disengaging state. In this case,

the system is constituted of two autonomous subsystems, namely the hook device and the payload. If

the initial absolute velocity of the payload in the disengaging period is not identical to zero then the

payload will continue rotating relying upon its own momentum, whereas the hook keeps oscillating

with a higher natural frequency than in the engaging case due to the reduction of overall moment of

inertia. In order to verify the effectiveness of the proposed control schemes, an experimental apparatus

is built, whose configuration is illustrated in Fig. 3.2. The actuator is a TAMAGAWA TS4738 servo

motor equipped with a 100:1 gearbox. The incremental encoder attached at the end of the motor

has a resolution of 2048 pulses/rev. For safety reasons as well as according to the motor and gear

transmission ratio specifications, the maximum speed of the servo motor is given by vmmax = 2000 rpm

= 209.44 rad/s and the limitation torque of the servo motor actuating on the payload is τmax = 6.6

(Nm). Note that when the clutch is disengaged, the position of the payload cannot be measured by

the encoder attached at the end of servo motor. Therefore, an auxiliary encoder with a resolution

of 2048 pulses/rev is installed to retrieve the rotation information of the payload in the disengaging

state.
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Figure 3.1: Internal structure of the rotary hook system with a clutch.
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Figure 3.2: Experimental testbed configuration with a clutch. In a similar way to Chapter 2, a high
accuracy 9-DOF IMU is utilized to measure the skew oscillation angle θ(t). The relative angle ϕ(t) are

measured by means of the encoders.

3.3 Mathematical modeling of the switched skew rotation process

3.3.1 Mathematical modeling

This section is devoted to formulating a modeling of the rotary hook system which consists of a

rotary hook device equipped with a clutch, payload, ropes, and crane tip. The skew residual oscillation

resulting from the rotation of the payload is depicted in Fig. 3.3, where ϕ(t) denotes the relative angle

between the payload and the hook, whereas θ(t) and γ(t) represent the absolute angles between the

hook and the payload versus x axis respectively. Note that two control objectives, namely driving
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Figure 3.3: Modeling of the rotary hook system.

Table 3.1: Parameters of the miniature rotary hook system.

Symbol Description Value

IL Inertia of the payload (kgm2) 16.5

IH Inertia of the hook (kgm2) 1.25

m Total mass of the load and the hook (kg) 142.2

R Skewing radius (m) 0.25

l Rope length (m) 4

g Gravity acceleration (m/s2) 9.81

the payload to a reference skew angle γd (γ(t) → γd and γ̇(t) → 0) without any vibration (θ(t) → 0

and θ̇(t)→ 0) are utilized to establish the cost functionals in the subsequent optimal control designs.

Note that, when the clutch is engaged, the system dynamics is identical to which has been introduced

in Section 2.2 of Chapter 2. The difference only occurs when the clutched is disengaged. However,

to make the content of this chapter self-contained, some details of Section 2.2 in Chapter 2 are also

presented here. Table 3.1 describes the definitions of all system parameters used in this chapter.

In Fig. 3.3, P refers to the conjunction point of the load and the hook. Denote the length of OP line

as a. The steel ropes are assumed to be inelastic thus following holonomic constraint must hold

a2 = l2 − 2R2(1− cos θ). (3.1)
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The total kinetic energy of the system comprises of the rotation energies of the payload and the hook

as well as the translation energy of the overall mass along the vertical direction. Therefore, it can be

written by

T =
1

2
ILγ̇

2 +
1

2
IH θ̇

2 +
1

2
mȧ2. (3.2)

The potential energy of the system is given as

V = −mga. (3.3)

Therefore, the Lagrangian function can be established by

L = T − V =
1

2
ILγ̇

2 +
1

2
IH θ̇

2 +
1

2
mȧ2 +mga. (3.4)

The generalized coordinate vector of the system is chosen as q = [γ(t) θ(t)]>. Applying the Euler-

Lagrange equation on the first generalized coordinate θ(t) yields

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0. (3.5)

Note that γ(t) = ϕ(t)− θ(t). By developing (3.5) using (3.1) and (3.4), it can be obtained that

(
IH +

mR4 sin2 θ

a2

)
θ̈ = −mR

2 sin θ

a

(
R4θ̇2 sin2 θ

a3
+
R2

a
θ̇2 cos θ + g

)
+ ILγ̈. (3.6)

Denote τ(t) as the net torque exerting on the payload. Employing the Euler-Lagrange equation on

the actuated generalized coordinate γ(t) results in

d

dt

(
∂L

∂γ̇

)
− ∂L

∂γ
= τ. (3.7)

By developing (3.7), the second dynamic equation can be adopted. By (3.4), following results can be

easily obtained

d

dt

(
∂L

∂γ̇

)
= ILγ̈,

∂L

∂γ
= 0. (3.8)

Substituting (3.8) into (3.7), it can be obtained that

ILγ̈ = τ. (3.9)
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It is noted that one can either use the acceleration γ̈(t) or the torque τ(t) as the control input for

the system since they just relate to each other through a constant IL. However, the problematic

frictional forces presented in τ(t) can be avoided by choosing the acceleration γ̈(t) as the control

input. Therefore, the system dynamic during the engaging period of the clutch is described by (3.6)

in which the control input is the acceleration γ̈(t) generated from the servo motor.

When the clutch is disengaged, there are two subsystem motions exist, namely the free-running payload

and the free-oscillating hook device. Note that the clutch is placed at the motor output shaft (see

Fig. 3.1), thus it is safe to assume that the friction acting on the payload during the disengaging

period is sufficiently small because the gearbox attached to the servo motor is the only high frictional

source. Therefore, the torque acting on the payload is zero, namely τ = 0, hence the free motion of

the payload during the disengaging period of the clutch is governed by

ILγ̈ = 0. (3.10)

Note that (3.10) is equivalent to the result of angular momentum conservation principle, and it is

only used when the clutch is disengaged. Since the payload inertia IL does not vary with time; hence,

from (3.10), the payload will travel with a constant angular velocity. In addition, the free oscillating

movement of the rotary hook device can be depicted by substituting (3.10) into (3.6).

It is worth mentioning that from (3.9), by neglecting the friction forces, one can easily compute umax

as umax := |γ̈|max = τmax/IL = 0.4 (rad/s2). Furthermore, denote the speed of the servo motor as

ϕ̇m(t) (|ϕ̇m(t)| ≤ vmmax = 209.44 (rad/s)). Based on the transmission ratio of the gearbox and the

auxiliary gear system (see Fig. 3.1), it holds that ϕ̇ = ϕ̇m/rg (rg = 400) when the clutch is engaged.

Therefore vmax := |ϕ̇|max = vmmax/rg = 0.524 (rad/s) during the engaging state of the clutch. Note

that when the clutch is disengaged, generally ϕ̇ 6= ϕ̇m/rg.

In summary, the state of the electro-mechanical clutch, that is to say engaging and disengaging, will

determine the dynamic of the switched rotary hook system which falls into either of the following

configurations

Engaging:

{
γ̈ = u

θ̈ = f(θ, θ̇) + b(θ)u,
(3.11)

Disengaging:

{
γ̈ = 0

θ̈ = f(θ, θ̇),
(3.12)
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where

f(θ, θ̇) =
1

IH +
mR4 sin2 θ

a2

[
−mR

2 sin θ

a

(
R4θ̇2 sin2 θ

a3
+
R2θ̇2 cos θ

a
+ g

)]
, (3.13)

b(θ) =
IL

IH +
mR4 sin2 θ

a2

. (3.14)

Note that the nonlinear system (3.12) which describes the free motions of the load and the hook is

always autonomous since no control input can be applied when the clutch is disengaging.

Remark 7. No-switched system refers to the configuration of the rotary hook system in the context

where the clutch is engaged in entire transferring process. On the other hand, the switched system

corresponds to the case that the clutch is disengaged at least once during the motion.

Remark 8. The only dimension that can be directly controlled by the servo motor is related to the

relative angle ϕ(t), namely ϕ̇(t) and ϕ̈(t), thus the chosen control input u(t) = γ̈(t) must be regarded

as a virtual quantity. In the actual experiment, the virtual optimal control input will be replaced

by a profile of the payload’s relative speed ϕ̇(t) which is obtained in the simulation. In the other

words, the feed-forward speed command will be generated by the simulating trajectory of ϕ̇(t). More

specifically, once the optimal profile of the virtual control input γ̈(t) is found, it can be plugged into

(3.6) to numerically compute θ̇(t) by any ODE solver (e.g., 4th Runge-Kutta method). In addition,

γ̇(t) can be adopted by integrating γ̈(t). Therefore, one can compute the profile of ϕ̇(t) by using the

relation ϕ̇(t) = γ̇(t) + θ̇(t). The actual velocity command to the servo motor can be easily obtained

by using ϕ̇m = rgϕ̇ where rg = 400.

Remark 9. The backlash phenomenon is inevitable when gear systems are used, and it can affect the

measurement accuracy of the encoders. However, crane systems generally do not require particularly

high positioning accuracy, and therefore it is not necessary to perform measures to compensate for the

backlash phenomenon.

3.3.2 Modeling validation

In order to verify the correctness of the established mathematical modeling of the hybrid nonlinear

rotary hook system, experimental validations are conducted in the following cases
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Figure 3.4: Model validation in the scenario of Case 1: no-switched system.
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Figure 3.5: Model validation in the scenario of Case 2: switched system, switching period is 2 seconds.

� Case 1: The clutch is engaged in the entire process, namely the no-switched system dynamic is

put into consideration.
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� Case 2: During the transferring process, the clutch is engaged and disengaged alternatively at

an interval of 2 seconds. By means of this experiment, the established switched system dynamic

can be verified.

In all cases, the actual system parameters of the experimental testbed given in Table 3.1 will be

utilized for the nonlinear models (3.11) and (3.12) in the simulations. A reference velocity profile of

ϕ̇m(t) is fed to the servo motor and all of system states are measured. Specifically, in Case 1 where

the no-switched system is examined, a trapezoidal trajectory of ϕ̇m(t) is employed. Moreover, in Case

2 where the switched system is under consideration, motion of the servo motor is kept constantly at

1500 rpm. Meanwhile, the clutch is engaged and disengaged alternatively with a period of 2 seconds.

Results of the model validation in two cases are shown in Fig. 3.4 and Fig. 3.5 respectively. In each

figure, “0” value of the clutch state graph indicates the disengaging interval whereas “1” implies the

engaging period of the clutch. Note that the measurement data in Fig. 3.5 is more fluctuated than

Fig. 3.4 of the no-switched case. This observation can be explained as follows. In Case 2, for the

sake of consistency, the payload position information is entirely measured by the auxiliary encoder

whereas in Case 1, these data can be obtained by the encoder attached at the end of the servo motor.

Furthermore, the noise level of the auxiliary encoder is much heavier than the encoder of the servo

motor due to effect of the motor gearbox.

It is recognized that in all cases, experimental data strongly agrees with the mathematical model

given in (3.11) and (3.12). Therefore it can be concluded that the formulated modeling accurately

describes the dynamic behavior of the switched rotary hook system. Note that as shown in Fig. 3.5,

the reduction of the payload velocity γ̇(t) during the disengaged stage of the clutch (2 - 4 seconds and

6 - 8 seconds) is very small. It indicates that the small friction coefficient assumption is reasonable.

In the real application, the internal structure of the hook device is placed inside a closed shield, which

protects it from effects of the environment. Therefore, the friction of the system could be guaranteed

small without a frequent maintenance.

At this point, the mathematical modeling of the hybrid rotary hook system is successfully estab-

lished. The optimal control designs for both no-switched and switched systems will be discussed in

Sections 3.5 and 3.6 respectively. In practice, the physical constraints of the actuator must taken

into account, thus in this chapter, both control input and state constraints will be considered in the

optimal control formulations. Generally, it is almost impossible to obtain an analytical solution of the

constrained optimal control problem for a nonlinear system except in some simple cases [55, 56, 122].

Therefore, a numerical method will be adopted.
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3.4 Preliminary of the clipping-off conjugate gradient method

In the domain of numerical approaches to solve a constrained optimal control problem, direct [123–

125] and indirect [126–128] methods can be found in the literature. However, the indirect techniques

always result in a faster convergence rate and better cost performance index [122, 129], thus it will

be employed in this chapter. Quintana and Davison [128] introduced a novel conjugate gradient

method in conjunction with a clipping-off operator to effectively solve the bounded optimal control

problem. This technique elegantly incorporates the classical conjugate gradient method (for solving

an unconstrained optimization problem) and the clipping-off operator to enforce the local optimizer

satisfying the necessary condition of optimality subjected to the control input constraints. For the

sake of convenience in following presentations, the algorithm of [128] will be briefly reviewed in this

section.

Consider the following class of nonlinear systems

ẋ(t) = f(x,u), x(t0) = x0, (3.15)

where f is a nonlinear n-dimensional vector function of n-dimensional state vector x and r-dimensional

control input u = [u1 . . . ur]
> (i.e., f ∈ Rn, x ∈ Rn, u ∈ Rr). Denote t0 and tf as the initial and

terminal time respectively, which are assumed to be known. The optimal control problem with a fixed

terminal time tf is given as

min
u

J(u) = φ(x(tf ), tf ) +

∫ tf

t0

L(x,u)dt (3.16)

s.t. ẋ = f(x,u)

u ∈ Ω,

therein the admissible control set Ω is defined as

Ω
∆
= {uj : |uj | ≤ umax} , j = 1, 2, . . . , r. (3.17)

Denote H as the Hamiltonian function

H(x,λ,u)
∆
= λ>f(x,u) + L(x,u), (3.18)



Chapter 3. Switched Optimal Control Design 57

where the n-dimensional costate vector λ(t) must satisfy

λ̇(t) = −
(
∂H

∂x

)>
and λ(tf ) =

(
∂φ(x(tf ), tf )

∂x(tf )

)>
. (3.19)

In (3.16), φ (x(tf ), tf ) is the component related to the terminal condition, whereas L(x,u) is corre-

sponding to the accumulating cost performance of the system as the time proceeding. Note that (3.16)

is a general optimal control problem, which is only used for a purpose of briefly reviewing the CG

gradient method. Concrete optimal control problems for the no-switched and switched rotary hook

system are posed in (3.21), (3.27), and (3.31).

Let g(t) = (∂H/∂u)> = [∂H/∂u1 . . . ∂H/∂ur]
> ∆

= [g1(t) . . . gr(t)]
>, following control input

constraints must be fulfilled in order to guarantee the necessary condition for optimal solution [130]

uj = umax if
∂H

∂uj
< 0

−umax ≤ uj ≤ umax if
∂H

∂uj
= 0

uj = −umax if
∂H

∂uj
> 0

, j = 1, . . . , r. (3.20)

Basically, the clipping-off CG method of [128] iteratively compute the control input u from an initial

guess until a local optimum solution is reached. The key point is that the search direction of each

iteration is forced to be conjugate to all previous search directions, which makes it more efficient than

the steepest descent method since additional information can be obtained. Moreover, the resultant

local minimizer of (3.16) will satisfy all of the necessary conditions for optimality given in (3.19) and

(3.20). Further details are greatly explained in [128]. It is highly recommended for interest readers.

3.5 Optimal control of no-switched system

In this section, an optimal control scheme will be formulated for the rotary hook system when the

clutch is always kept engaged during the transferring process. Two control objectives, namely driving

the payload to the desired skew angle and suppressing the skew oscillation simultaneously (i.e., forcing

γ(t) → γd, γ̇(t) → 0, θ(t) → 0, and θ̇ → 0) are the basics to establish the cost functional. A fixed

terminal time optimal control problem is firstly formulated and then a sub-optimal-time solution can

be obtained by gradually reducing the terminal time through a bisection method.
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3.5.1 Problem formulation and algorithm

Denote a state vector of the control system as x = [x1 x2 x3 x4]> = [γ(t) γ̇(t) θ(t) θ̇(t)]>. Note

that the system is assumed to start from rest, namely x(t0) = 0. By taking the physical limitations of

the servo motor including the maximum velocity vmax and maximum acceleration umax into account,

the optimal control problem for the no-switched rotary hook system can be posed as

min
u

J = ω1 (x1(tf )− γd)2 + ω2x
2
2(tf ) + ω3x

2
3(tf ) + ω4x

2
4(tf )

s.t. ẋ = f(x) + b(x)u, x(t0) = 0

(x2 + x4)2 ≤ v2
max

|u| ≤ umax. (3.21)

In (3.21), tf is a fixed terminal time and it will be determined by Algorithm 3. The weighting

coefficients are chosen as ω1 = . . . = ω4 = 106. As discussed in Section 3.2, umax = |γ̈|max = 0.4

(rad/s2) and vmax = |ϕ̇|max = |x2 + x4|max = 0.524 (rad/s). The system modeling in the engaging

state of the clutch given by (3.11) is employed, thus

f(x) = [x2 0 x4 f ]> and b(x) = [0 1 0 b]>, (3.22)

where f and b terms are given in (3.13). Note that the optimal control problem (3.21) is involved by

both control input and state constraints. As discussed in Section 3.4, control input constraint can be

efficiently solved by the clipping-off CG method. To eliminate the state constraint, the original cost

functional J will be augmented by a step penalty function. The state-constraint-free optimal control

problem of the no-switched rotary hook system can be further described as

min
u

Js = J +

∫ tf

t0

k1φ
2
1dt︸ ︷︷ ︸

Penalty term

(3.23)

s.t. ẋ = f(x) + b(x)u, x(t0) = 0

|u| ≤ umax

φ1 = v2
max − (x2 + x4)2

k1 =

0 if φ1 ≥ 0

µ1 if φ1 < 0,
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Algorithm 3: Bisection method to solve the sub-optimal-time problem.

Step 1 Let tf = γd/(αvmax), a1 ← 0, and a2 ← tf . Obtaining the optimal control input u?(tf ). If
Js(u

?, tf ) < Jtol then to step 2, otherwise go to step 3.

Step 2 Let tf ← (a1 + a2)/2. Retrieving u?(tf ). If J(u?, tf ) < Jtol then a2 ← tf , otherwise a1 ← tf ,
go to Step 4.

Step 3 Let a1 ← a2, a2 ← 2a2, and tf ← a2. Calculating u?(tf ). If Js(u
?, tf ) > Jtol then repeat Step

3, otherwise go to Step 2.

Step 4 If a2 − a1 > ∆t then go to Step 2. Otherwise, go to Step 5.

Step 5 If Js(tf = a1) < Jtol then tf ← a1, otherwise tf ← a2. Output u?(tf ) as the optimal control
input corresponding to the sub-optimal transferring time tf .

where µ1 = 106. Note that the penalty coefficient k1 is activated whenever the state constraint

associated with φ1 is violated.

Remark 10. It is easy to reduce the energy consumption of the transferring process by adding the

control input to the integral term of (3.23). However, it is well-known that such treatment will signifi-

cantly lengthen the transferring time. In the other words, an unfavorable trade-off will be encountered.

Alternatively, Section 3.6 will propose a method to save energy of the overall process without influ-

encing the sub-optimal transferring time by employing the switched optimal control approach.

Denote u?(tf ) as the resultant optimal control input of (3.23) with respect to the fixed terminal time tf .

The sub-optimal-time control problem can be solved by extending (3.23) through a bisection method

[60] by means of Algorithm 3. Note that u?(tf ) in Algorithm 3 is always obtained by the clipping-off

CG method shown in Section 3.4.

In Algorithm 3, α relates to the initial value of the terminal time tf . Typically, it can be chosen that

α = 0.5. Moreover, Jtol specifies the requirements corresponding to the transfer accuracy, residual

vibration suppression, and state constraint assurance. With the large weighting coefficients (ω1 = . . . =

ω4 = 106), it can be heuristically chosen that Jtol = 1 to sufficiently fulfill the control performance. The

terminated condition of Algorithm 3 is determined by the tolerance ∆t which regards to the minimum

distance between two consecutive trial terminal time points. Here, ∆t = 0.1 second is adopted. It is

important to remark that the initial guess of the optimal control input for the present terminal time

tf should be taken from that of the previous successive iteration. Such choice can significantly reduce

the computational effort.
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Table 3.2: Computation results of the no-switched optimal controls.

Case min(tf ) Js Compt. time max(−φ1(t))

γd = 30◦ 3.13 s 0.6651 35.1 s 0.0170

γd = 90◦ 5.06 s 0.8060 61.7 s 0.0093

γd = 180◦ 7.97 s 0.4165 85.2 s 0.0072

Compt. time: Computational time.
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Figure 3.6: Simulation and experimental results in the short transferring case (γd = 30 degs): no-
switched optimal control scenario.

3.5.2 Simulation and experimental results

By employing Algorithm 3, optimal control with both input and state constraints will be computed for

three cases: short (γd = 30 degrees), medium (γd = 90 degrees), and long transferring case (γd = 180

degrees). An initial guess of the optimal control input in the clipping-off CG algorithm is given by

u(t) = 0, t0 ≤ t ≤ tf . The computation is conducted on a personal computer with 2.5-GHz Intel Core

i5-3210M and 8 GB of RAM. The computational results for all cases are summarized in Table 3.2.

Note that the clipping-off CG method is restarted every 2 iterations.

The simulation and experimental results in three cases are shown in Figs. 3.6–3.8 respectively. It

can be recognized that with the computed optimal control inputs, the payload accurately reaches
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Figure 3.7: Simulation and experimental results in the medium transferring case (γd = 90 degs):
no-switched optimal control scenario.
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Figure 3.8: Simulation and experimental results in the long transferring case (γd = 180 degs): no-
switched optimal control scenario.
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the desired skew angle as well as the skew oscillation nearly vanishes after the motion. Both control

input and state constraints are sufficiently assured by the resultant optimal solutions. Therefore, it is

concluded that effectiveness of the proposed no-switched optimal control system is verified.

3.6 Optimal control of switched system

3.6.1 Motivation and problem formulation

Consider the motor speed profile ϕ̇(t) of the long transferring case as shown in Fig. 3.8, one can

recognize that the motor speed residents on its upper constraint in the middle of transferring process.

The motor must maintain a constant maximum speed during this uniform interval, thus the energy

is considerably consumed. Therefore, the basic idea is to remove the above-mentioned undesirable

interval by imposing upon the movement generated by the inertia of the payload itself. Specifically,

consider the free motion of the payload subsystem when the clutch is disengaged as in (3.12), namely

γ̈(t) = 0 whose solution is γ̇(t) = constant. It is recognized that the motion of payload in this case

has the same property with the unfavorable interval encountered in the no-switched optimal control

solution. In the other words, motion of the motor should be replaced by the inertial movement of the

payload by disengaging the clutch in a specified period of the entire transferring process to reduce the

energy consumption.

By the above observation, the whole time span T = {t : t ∈ [t0 tf ]} of the payload motion can be di-

vided into three sub-intervals: T1 = {t : t ∈ [t0 t1]}, T2 = {t : t ∈ [t1 t2]}, and T3 = {t : t ∈ [t2 tf ]}.
In the first interval T1, the control input generated by the motor is applied to accelerate the payload

until the time variable t reaches the time instant t1. At t1, the clutch is disengaged in the second

interval T2 to force the payload travel with a constant speed only by its own inertia. Finally, in the

third interval T3, the clutch is engaged again, the control input is put into operation to complete the

entire motion. By means of the above discussion, subsystems and their activated intervals can be

described as

Subsystem 1: ẋ = f1(x) + b1(x)u1 , t ∈ T1.

Subsystem 2: ẋ = f2(x) , t ∈ T2.

Subsystem 3: ẋ = f3(x) + b3(x)u3 , t ∈ T3.

(3.24)

In (3.24), f1(x) = f2(x) = f3(x) = f(x) and b1(x) = b3(x) = b(x), where f(x) and b(x) are given

in (3.22). Note that the subsystem 2 is an autonomous system without control input.
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Here, there are two switching instants, namely t1 and t2 hence it can be termed as a 2-switched control

system. Obviously, one can generate N -switched system by engaging and disengaging the clutch N

times in which N = 2k (k ∈ N+) since at the end of the transferring process, the clutch must be in

the engaging state. However, a large number of switchings within a short time possibly cause damage

to the clutch. Therefore, a 2-switched control system is reasonably adopted in practice. Note that,

the speed profile ϕ̇(t) of Fig. 3.8 obtained in the no-switched scenario is only employed for a purpose

of illustrating the underlying motivation. In the other words, the switching instants as well as the

optimal control input for the switched system will be computed in light of the particular solution

(Section 3.6.2) or the general solution (Section 3.6.3).

Remark 11. For a mechanical system, physically, it is not feasible to reduce both maneuver time

and energy consumption simultaneously. Therefore, the best circumstance can be expected is that, by

using the switched optimal control system, the sub-optimal transferring time is reserved whereas the

energy consumption is reduced in comparison with the no-switched scenario. In order to reflect such

understanding, two above-mentioned objectives are distributed into three sub-intervals of the transfer-

ring process. Specifically, the goal in retaining the sub-optimal transferring time and suppressing the

residual vibration will be carried out by two intervals, namely acceleration and deceleration stages.

Note that, in these two stages, the clutch is engaged so that the computed optimal control input can

be applied; hence, the energy is consumed. On the other hands, the objective in reducing the energy

consumption is shaped into the free-run interval, in which the clutch is disengaged and the payload

travels by its own angular momentum generated by the previous acceleration stage; therefore, no en-

ergy consumption happens in the free-run interval. By combining three aforementioned sub-intervals,

the main purpose in retaining the sub-optimal transferring time, suppressing the residual vibration,

and reducing the energy consumption can be achieved.

At this point, it is recognized that in conjunction to the task in computing optimal control inputs

for the actuating intervals, one must determine two switching instants t1 and t2 at which the clutch

is disengaged and engaged respectively. One solution to this problem is to impose specific state

constraints at the first switching instant t1 so that the original switched optimal control problem

can be transformed to the no-switched domain, which leads to the particular solution. On the other

hands, if the system state at t1 and t2 are allowed to be free then the switching instants need to be

optimized, which results in the general solution. Overview and relation between two types of solutions

are illustrated in Fig. 3.9.
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Solution of the 
switched optimal 
control problem

Particular solution 
(Section 3.6.2)

General solution 
(Section 3.6.3)

• Transformed to no-switched 
domain.

• System states at the switching 
instants are constrained.

• Switching instants are 
determined by bisection method.

• Is a special case of the general 
solution.

• Based on 2-stage decomposition 
concept.

• System states at the switching 
instants are free.

• Switching instants are optimized.

Figure 3.9: Two solutions of the switched optimal control problem.

3.6.2 Particular solution

The basic concept of the particular solution is to artificially impose the state constraints (3.25) at the

switching instant t1

γ̇(t1) = vmax, θ(t1) = 0, θ̇(t1) = 0. (3.25)

The constraint (3.25) applies for the case that the reference angle γd > 0. For γd < 0, γ̇(t1) = −vmax

should be made. However, the two above cases are symmetric. Thus it only needs to compute the

optimal control input for one case, the other can be obtained by sign reverse. A graphical illustration

of the particular solution is shown in Fig. 3.10. The optimal trajectory of the payload speed γ̇(t) is

partitioned into three intervals: acceleration, free-run, and deceleration, with a set of state constraints

at the end of acceleration stage. Note that, in the particular solution, the control input of jth interval

will be denoted as ũj (j = 1, 3) whose optimums are ũ?j (t).

In order to further explain the choice of the constraints made in (3.25), recall the subsystem dynamic

when the clutch is disengaged as follows γ̈(t) = 0

θ̈(t) = f
(
θ(t), θ̇(t)

)
.

(3.26)
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Figure 3.10: Particular solution: profile of the payload speed γ̇(t) with specified state constraints at
the switching instant t1.

According to (3.25) and (3.26), it is guaranteed that γ̇(t2) = vmax, θ(t2) = 0, and θ̇(t2) = 0. Therefore,

when the bounded optimal control input ũ?1 is found in the acceleration interval in order to bring the

system from the initial condition to the intermediate state specified in (3.25), then the optimal control

input ũ?3 of the deceleration stage can be simply flipped and sign reversed. Note that, by (3.25), thus

ϕ̇(t1) = γ̇(t1) + θ̇(t1) = vmax + 0 = vmax. This means that the motor will use its maximum velocity at

the end of the acceleration stage to “throw” the payload.

By pre-specifying the system states at the switching instant t1 by (3.25), the optimal control problem

for the switched system can be now reduced to the following problem of finding the bounded optimal

control input for the acceleration stage which is actually no-switched:

min
ũ1

Jp = φp (x(t1)) +

∫ t1

t0

k1φ
2
1dt︸ ︷︷ ︸

penalty term

(3.27)

s.t. ẋ = f1(x) + b1(x)ũ1, x(t0) = 0

|ũ1| ≤ umax

φp = ω2 (x2(t1)− vmax)2 + ω3x
2
3(t1) + ω4x

2
4(t1)

φ1 = v2
max − (x2 + x4)2

k1 =

0 if φ1 ≥ 0

µ1 if φ1 < 0,
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Figure 3.11: Control input and state trajectories at the optimum obtained by the particular solution.

where φ1 is associated with the state constraint due to the maximum of the servo motor speed. The

weighting coefficients are similar to those used in the no-switched scenario, namely ω2 = ω3 = ω4 =

µ1 = 106. The optimal control problem (3.27) can be solved by means of the conventional clipping-off

CG method described in Section 3.4, where the initial guess of the optimal control input is chosen as

ũ0
1(t) = umax, ∀t ∈ T1.

The switching instant t1 is specified as the sub-optimal time which is successfully found such that

∃ũ?1(t1) : Jp(ũ
?
1(t1)) < Jtol by using the bisection method in a similar manner with Algorithm 3. Note

that the starting value of t1 in the bisection iteration can be chosen as vmax/umax. Once the optimal

control input ũ?1(t) and the first switching instant t1 are found, the second switching instant t2 can be

automatically determined by

t2 =

γd − 2

t1∫∫
0

ũ?1(t)dt

vmax
+ t1. (3.28)

The computation is conducted on a personal computer with 2.5-GHz Intel Core i5-3210M and 8 GB

of RAM. It takes 24.6 seconds for the particular solution to converge at the optimum. The optimal
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Figure 3.12: Cost function history over iterations of the particular solution at the resultant switching
instant t1 = 1.88 seconds.

control input ũ?1(t) and the correspondent state trajectories are shown in Fig. 3.11. The resultant sub-

optimal switching instant and cost functional are given as t?1 = 1.88 seconds and Jp(ũ
?
1(t?1)) = 0.2571

respectively. From Fig. 3.11, one can easily compute the profile of ϕ̇(t) which is then fed to the servo

motor as a velocity command. The implementation of the switched optimal control system using the

particular solution is provided in Section 3.7. The cost functional history over iterations at t1 = 1.88

seconds is shown in Fig. 3.12. It can be observed that the clipping-off CG method improves the cost

functional of the initial guess Jp(ũ
0
1) = 3.87 × 106 to the optimum Jp(ũ

?
1) = 0.2571 in only a few

iterations. The requirements of the control performance is fulfilled since Jp(ũ
?
1) < Jtol, (Jtol = 1).

Consequently, the particular solution is feasible to solve the switched optimal control problem for the

rotary hook system.

Remark 12. Since the acceleration and deceleration intervals are explicitly partitioned in the partic-

ular solution hence one needs to determine the lower bound of γd for which the particular solution is

applicable. This lower bound of is given as

γd = 2

t1∫∫
0

ũ?1(t)dt. (3.29)
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Algorithm 4: General solution of the switched optimal control problem for the rotary hook system
by means of the two-stage decomposition concept.

Step 1 Set the incremental index i = 0. Choose an initial switching instants vector t0 = [t01 t02]>.

Step 2 -Stage (a)- Solving the optimal control problem for the system with respect to the switching
instant vector ti. Obtain Jg(t

i). Go to step 3.

Step 3 -Stage (b)- By using Jg(t
i), update the switching instants vector by solving the following

constrained optimization problem

min
0<t1<t2<tf

Jg(t1, t2) (3.30)

By means of a nonlinear programming method, the switching instants can be updated. Denote
the updated value of ti as ti+1. If the nonlinear programmer converges to a local optimum
then terminate. Otherwise, let i = i+ 1 and repeat step 2.

Based on the optimal control input ũ?1 shown in Fig. 3.11, it can be numerically computed as γd = 49.8

degrees. Implication of the lower bound γd is given in the Section 3.8. Note that for any target skewing

angle γd satisfying the condition γd > γd then the optimal solution shown in Fig. 3.11 can be reusable.

The only parameter that needs to be recomputed is the switching instant t2 which can be easily

obtained by (3.28).

In summary, the total optimal control input for the whole transferring process in the case of the

particular solution is denoted as ũ?(t), in which ũ?(t) = ũ?1(t) (t ∈ T1), ũ?(t) = 0 (t ∈ T2), and

ũ?(t) = ũ?3(t) (t ∈ T3).

3.6.3 General solution

As noted in Remark 12, the particular solution is only applicable when the reference skewing angle

is sufficiently large, namely γd > γd = 49.8 degrees. Therefore, in this section, an attempt is made

to derive a general solution to overcome the above-mentioned limitation of the particular solution. In

order to do so, the state constraints (3.25) at the switching instant t1 will be nullified and the switching

instants will be optimized. Note that, to draw a distinction with the particular solution, the control

input of jth interval in the general solution will be denoted as uj (j = 1, 3) whose optimums are u?j (t).

Now, the switching instants optimization problem arises together with the common problem in com-

puting the bounded optimal control input with state constraints. As usual, to eliminate the state
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constraint, a step penalty function is employed. Therefore, the optimal control problem with a fixed

terminal time for the switched rotary hook system is stated as follows

min
u1,u3,t1,t2

Jg = φg (x(tf )) +

∫ tf

t0

L(x)dt︸ ︷︷ ︸
Penalty term

(3.31)

s.t.

ẋ =

{
fk(x) + bk(x)uk, if t ∈ Tk (k = 1, 3)

fk(x), if t ∈ Tk (k = 2)
, x(t0) = 0

φg (x(tf )) = ω1 [x1(tf )− γd]2 + ω2x
2
2(tf ) + ω3x

2
3(tf ) + ω4x

2
4(tf )

L(x) = k1φ
2
1

|u1| ≤ umax, |u3| ≤ umax

φ1 = v2
max − (x2 + x4)2

k1 =

0 if φ1 ≥ 0

µ1 if φ1 < 0,

In (3.31), the weighting coefficients are ω1 = . . . = ω4 = µ1 = 106. As can be seen from (3.31),

one needs to compute not only bounded optimal control inputs with state constraints but also the

optimal switching instants t1 and t2. For this reason, a general solution to (3.31) will be formulated

based on a concept of two-stage decomposition, namely optimal control seeking stage (stage (a))

and optimal switching instants seeking stage (stage (b)) [131, 132]. In stage (a), switching instants

are assumed to be fixed thus the main task is to compute the bounded optimal control input with

state constraints. By means of this stage, one can obtain the cost functional Jg corresponding to the

current switching instants. In stage (b), the switching instants are updated by employing the cost

functional Jg obtained in stage (a) through any constrained nonlinear programming technique. The

conceptual procedure is illustrated in Algorithm 4. Details of both stage (a) and stage (b) will be

briefly explained as follows. To solve stage (b), the interior point technique provided by the fmincon

routine of MATLAB will be straightforwardly employed. However, in order to solve stage (a) in which

the control input constraints present, an extension of the clipping-off CG method needs to be further

developed to suit for the nonlinear switched system context. In the first step, necessary conditions for

a control input to be optimal in respect of a switched system with known switching instants must be

formulated. In [131], such necessary conditions are derived only for a switched system without control

input constraints. In this chapter, it will be extended for a switched system with bounded control
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inputs by means of Lemma 2 (Appendix A). Based on Lemma 2, an extended clipping-off CG scheme

is proposed in Algorithm 5 of the same appendix. By using Algorithm 5, the switched optimal control

problem, subject to the fixed switching instants posed in stage (a), can be solved. The convergence

analysis of Algorithm 5 is given in Appendix B.

In the general solution, the sub-optimal transferring time can also be achieved by extending the fixed

terminal time switched optimal control problem (3.31) by using the bisection method in a similar

manner to Algorithm 3. However, one cannot expect a faster transferring time compared with the no-

switched control system (see Remark 11). Therefore, it is rational to utilize the successive sub-optimal

transferring time found in the no-switched optimal control solution shown in the Section 3.5 as the

target terminal time for the general solution.

Now, it is ready to solve the switched optimal control problem (3.31) by the general solution. As

the above discussions, the target terminal time tf for the switched control system is given by the

successive sub-optimal transferring time found in the no-switched scenario, e.g., tf = 5.06 seconds for

the medium transferring case (γd = 90 degrees) and tf = 7.97 seconds in the long transferring case

(γd = 180 degrees). To start the procedure, initial guesses of the necessary terms are given as

u0
1(t) = umax, ∀t ∈ T1 and u0

3(t) = −umax,∀t ∈ T3.

t0 =
[
t01, t

0
2

]>
= [tf/3, 2tf/3]> .

Let u0(t) =
[
u0

1(t), u0
2(t)
]>

and denote the resultant optimal control input of the general solution

as u?(t) = [u?1(t), u?2(t)]>. In the medium transferring case, it takes more than 40 minutes (in 42

iterations) for the general solution given by Algorithm 4 to converge. The optimized switching instants

are achieved as t? = [t?1, t
?
2]> = [1.72, 3.48]> seconds. The cost functional is improved from initial

value Jg
(
u0(t), t0

)
= 7.2× 104 to the local minimum Jg (u?(t), t?) = 289.2. Note that the converged

solution cannot satisfy the required performance since Jg (u?(t), t?) > Jtol = 1. Similar situations are

encountered in the short and long transferring cases.

Following discussions are provided to clarify the unsatisfactory results obtained by the general solution.

Firstly, the undesirable performance index can be explained by the fact that both clipping-off CG

method in the stage (a) and nonlinear programming in the stage (b) only result in local optimum,

thus the converged cost functional Jg (u?(t), t?) is conservative. Secondly, the long computational time

is due to the switching instants optimization (stage (b)), which significantly increase the computational

burden since the stage (a) must be restarted all over again in each iteration when the switching instants

are updated.
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Table 3.3: Computational results of the particular solution for the switched control system.

Case SW instants Transfer time Compt. time

γd = 90◦
t1 = 1.88 s

4.95 s 24.6 s
t2 = 3.07 s

γd = 180◦
t1 = 1.88 s

7.94 s 24.6 s
t2 = 6.06 s
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Figure 3.13: Simulation and experimental results of the switched control system in the medium
transfer. In the clutch graph, “1” denotes the engagement whereas “0” represents the disengagement.

From the above unsatisfactory result of the proposed general solution in the chapter, it opens some

possibilities in improving the performance of the general solution to extend the feasibility of energy

saving by using the switched optimal control system in practice.

3.7 Experimental results of the switched control system

Effectiveness of the switched optimal control system is now verified on the experimental apparatus.

Two cases, namely medium transferring (γd = 90 degrees) and long tranferring (γd = 180 degrees),
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Figure 3.14: Simulation and experimental results of the switched control system in the long transfer.
In the clutch graph, “1” denotes the engagement whereas “0” represents the disengagement.

will be validated in the experiments. By means of the particular solution, computational results are

given in the Table 3.3. It is worth mentioning that during the free-run interval, namely when clutch

is disengaged, the motor is actually turned off.

Experimental results of the switched control system are shown in Fig. 3.13 and Fig. 3.14. Note

that in each figure, the clutch state are presented in which “1” and “0” represent the engaging and

disengaging configuration respectively. It is recognized that the experimental results in all cases are in

total agreement with the simulation results. The payload precisely arrives at the desired skew angle

whilst the skew oscillation is nearly suppressed at the end of the motion. Therefore, performance of

the switched optimal control system employing the particular solution is confirmed.

3.8 Comparison between switched and no-switched control systems

In this section, two scenarios namely switched and no-switched control systems will be compared in

terms of the transferring time and overall energy consumption. The actual energy consumption of

the servo motor will be employed to quantitatively access the energy usage of each control system.
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Specifically, the power utilized by the servo motor is given by P (t) = τmϕ̇m(t), where τm(t) is the

motor torque. Furthermore, τm(t) is related to the actual motor current im(t) by a torque constant

kt = 0.0152 (Nm/A), therefore P (t) = ktim(t)ϕ̇m(t). Energy consumption of the servo motor is just

an integration of the power over the operating time, namely

E = kt

∫ tf

0
im(t)ϕ̇m(t)dt

∣∣∣∣
im(t)ϕ̇m(t)≥0

. (3.32)

Note that the regions where P (t) = ktim(t)ϕ̇m(t) < 0 are the regenerative braking intervals. In these

intervals, the power flows back to the system and a dumped resistor is used to dissipate this power into

heat. Therefore, the motor does not use energy hence the regenerative braking periods are excluded

in (3.32). In the experiments, the actual current im(t) and the velocity ϕ̇m(t) are measured for each

switched/no-switched control system. Therefore, the energy consumption E for each controller can be

numerically computed by (3.32).

In the experimental studies, the transferring time tc is defined as the time instant which satisfies two

conditions: a) the response curve of the payload’s absolute angle γ(t) reaches and maintains within a

range ζ% of the final target angle γd, b) the vibration nearly vanishes; that is to say

tc = min {t : ∀∆t > 0 s.t. (3.34) and (3.35) are fufilled} . (3.33)

The conditions (3.34) and (3.35) are defined as follows

(1− ζsgn(γd))γd < γ(t+ ∆t) < (1 + ζsgn(γd))γd, (3.34)

|θ(t+ ∆t)| < |θ(t)| ≤ θtol. (3.35)

Here, it is chosen that ζ = 1%, θtol = 1 degree. Note that “sgn” represents a usual signum function.

Comparative results between the switched and no-switched optimal controls in the medium and long

transferring cases are shown in Fig. 3.15 and Fig. 3.16 respectively. Their transferring times and

energy consumptions are summarized in Table 3.4. According to Table 3.4, the switched optimal

control system is able to retain the sub-optimal transferring times provided by the no-switched optimal

solution. For instance, in the long transferring case (γd = 180◦), the sub-optimal transferring time of

the switched and no-switched schemes are 7.91 seconds and 7.93 seconds respectively. Furthermore,

when the switched optimal control system is employed, the energy consumption is respectively reduced

up to 25.49% and 61.70% in the medium and long transferring cases compared with the no-switched
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Table 3.4: Transferring time and energy consumption of switched and no-switched control systems.

Trans. time tc Energy E Comp. time

γd = 90◦

SWa 4.83 s 3.04 J 24.6 s

NSWb 4.89 s 4.08 J 61.7 s

ISc 5.78 s 3.82 J 4.2 s

ISMCd 6.91 s 3.37 J —

γd = 180◦

SW 7.91 s 3.11 J 24.6 s

NSW 7.93 s 8.12 J 85.2 s

IS 11.74 s 7.10 J 5.4 s

ISMC 10.61 s 7.18 J —
a Switched optimal control,
b No-switched optimal control,
c Input shaping control,
d Integral sliding mode control.
— Real Time.

0 2 4 6 8 10 12 14 16 18 20

.
(r

ad
)

0

1

2

SW NSW IS ISMC

0 2 4 6 8 10 12 14 16 18 20

3
(r

ad
)

-0.5

0

0.5

0 2 4 6 8 10 12 14 16 18 20

_'
m

(r
ad

/s
)

0

200

vm
max

Time (s)
0 2 4 6 8 10 12 14 16 18 20

i m
(A

)

-1

0

1

Figure 3.15: Comparative experimental results of the switched optimal, no-switched optimal, input
shaping, and integral sliding mode controllers (γd = 90◦).

counterpart. Therefore, our purpose in saving energy for the rotary hook system is achieved without

any influence to the total transferring time by employing the switched optimal control approach.
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Figure 3.16: Comparative experimental results of the switched optimal, no-switched optimal, input
shaping, and integral sliding mode controllers (γd = 180◦).

It should be noted that the particular solution is only applicable when the target skew angle γd

satisfies the condition that γd > γd, namely γd needs to be sufficiently large. Therefore, in practice,

no-switched and switched optimal control systems will be used in a complementary manner. For the

short transferring cases, namely γd < γd = 49.8 degrees, no-switched scenario is put into operation.

Otherwise, the switched optimal control system will take place to reduce the energy consumption.

Such operation is rational since in the short transferring contexts, the amount of energy saving is not

significant. Furthermore, in these cases, switching within a small period of time will possibly causes

damage to the clutch.

In order to clarify the effectiveness of the proposed switched optimal control scheme in reducing both

transferring time and energy consumption, feed-forward Input Shaping (IS) control and Integral Sliding

Mode Control (ISMC) are intentionally applied in the context where the clutch is entirely engaged

during the motion. The ISMC is used in an exact manner to Chapter 2 whereas in the input shaping

scheme, the fastest ZV input shaper [46] is employed. Since the damping ratio of the rotary hook

system is not considered, magnitude Ai and time location τi (i = 1, 2) of each impulse in the ZV input
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shaper are given as follows

[
Ai

τi

]
=

0.5 0.5

0
π

ωn

 , (3.36)

where ωn denotes the angular natural frequency of the system. By linearizing the nonlinear system

(3.6) around the equilibrium point, it can be found that ωn =
√
mgR2/(l × IH) and by using the

values in Table 3.1, it can be obtained that ωn = 4.175 (rad/s). Therefore, the ZV input shaper

in (3.36) is now specified. In order to ensure a smooth motion, following second order trajectory is

planned as the original command for the input shaping control

rIS(t) =



4γd
ρ2

t2

2
if 0 ≤ t ≤ ρ/2

γd
ρ2

(
−2t2 + 4ρt− ρ2

)
if ρ/2 ≤ t ≤ ρ

γd if t ≥ ρ.

(3.37)

In (3.37), ρ regards to the terminal time at which the reference trajectory rIS(t) reaches the target skew

angle γd. By gradually reducing ρ in a similar manner to the bisection method shown in Algorithm 3,

the smallest transferring time (in case of the input shaping control) subjected to the state constraint

|ϕ̇(t)| ≤ vmax and the control input constraint |u(t)| ≤ umax can be achieved. Note that the starting

value of ρ in the bisection iteration can be chosen as 2γd/vmax.

The experimental results of the input shaping control and ISMC are shown in Figs. 3.15–3.16 for

the medium and long transferring case respectively. The transferring time, energy consumption, and

computational time of all control methods are aggregated in Table 3.4. It can be seen that by using

the switched optimal control system, when γd = 90◦, the transferring time and energy consumption

are respectively reduced up to 16.4% and 20.4% compared to IS control, whereas those are 30.1% and

9.8% in the case of ISMC. Similarly, when γd = 180◦, the switched optimal control system saves 32.6%

and 56.2% in the transferring time and energy consumption compared to IS control, whilst 25.4% and

56.7% are obtained in the case of ISMC. Note that the energy reduction percentage does not depend

on the torque constant kt. In summary, it is concluded that the proposed switched optimal controller

performs a faster transferring process with a smaller energy consumption.

It should be remarked that the optimal controllers proposed in this chapter are actually feed-forward

schemes. Therefore, if the working environment is surrounded by various sources of disturbances such

as wind, collision, etc., the proposed optimal controllers can serve as a sub-optimal-time reference
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trajectory planner for combining with a feedback controller in a 2-DOF control system to enhance

overall performance. Furthermore, in the case that system parameters do not significantly vary, namely

the parametric uncertainties are small, the proposed scheme is proved to be an effective method to

reduce both transferring time and energy consumption for the payload’s skew rotation system.

3.9 Summary

In this chapter, nonlinear dynamic of a hybrid rotary hook system is formulated in theory and validated

in experiments. Two types of optimal control systems, namely switched and no-switched, are proposed

to drive the payload to a desirable skew orientation without any residual vibration. The novelty of

the switched optimal controller lies in the fact that it is able to reduce energy consumption without

trading-off the sub-optimal transferring time. The key point is to use an electro-mechanical clutch to

generate a free motion of the payload imposing upon its own inertial movement. To resolve the switched

optimal control problem, both general and particular solutions are proposed in which the particular

solution is shown to be advantageous over the general solution. The basic idea of the particular

solution is to transform the original switched optimal control problem to the no-switched domain by

imposing the state constraints at the switching instants. In comparison to other candidates, namely

input shaping and integral siding mode controllers, the proposed switched optimal control scheme

shows its advantages in reducing both transferring time and energy consumption. Effectiveness of the

optimal control systems are demonstrated on an experimental apparatus and their validities have been

shown.
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Swing Vibration Control of Cranes
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Chapter 4

Minimum-time Zero Vibration S-curve

Command Designs

In the previous two chapters, skew vibration controllers were formulated. The rest of this thesis will

focus on the swing vibration control designs. In particular, this chapter introduces minimum-time S-

curve commands to realize vibration-free transportation for an overhead crane in the presence actuator

limits. S-curve commands are ubiquitous in servo drives owing to their simplicity and smoothness.

Nevertheless, they need to be adapted for use in flexible systems, where the problem of residual vibra-

tion must be addressed. This chapter proposes a simple motion planning method for the vibration-free

transfer process of an overhead crane using S-curve commands. Based on a position baseline S-curve,

which is generated from a bang-off-bang acceleration profile, two approaches are proposed to build

the vibration suppression capability. One is an embedding method that injects the essential terminal

conditions for vibration-free transportation into the baseline S-curve command without altering its

original form. The other is a shaping method inspired from the input shaping technique. In both

schemes, the baseline S-curve is parameterized to establish minimum-time optimization problems, in

which maximum velocity and maximum acceleration of the actuator are explicitly taken into con-

sideration. The minimum-time solutions are successfully obtained by solving constrained (discrete)

nonlinear programs. An online trajectory generation can be realized using the proposed approach.

Both simulation and experimental results are given to verify the effectiveness of the proposed method.

79
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4.1 Introduction

Overhead cranes are widely considered the most important means of transportation in various places

such as factories, harbors, etc. to transfer heavy payloads point-to-point within the workspace. The

payload is suspended under the trolley by rope and its height can be adjusted by a hoisting motion. The

trolley actuator relocates the payload. This is always a linear motion, and for this reason, the overhead

crane is usually described in a Cartesian coordinate. As the rope is flexible, the payload exhibits

residual vibration during and after transportation. This undesirable oscillation significantly reduces the

safety and productivity of the overhead crane system in practice. Consequently, the control objectives

for this system are bringing the trolley to its destination and suppressing the swing movement of the

payload. This is a challenging task since the overhead crane is an underactuated system—it has only

one control input (trolley actuation) and two control outputs. Therefore, considerable interests were

mounting on the vibration control for the overhead crane system. They can be classified into two

main categories: feedback and feedforward controls. These types can be combined to obtain a 2-DOF

control system to improve control performance.

An extensive background can be found in the feedback control category. Naturally, the vibration

control of overhead cranes has evolved along with the development of control theory. New designs

of the linear controls and model predictive controls have been promptly employed on the overhead

cranes [12, 14, 37, 38, 133]. Feedback linearization and differential-flatness based methodology [16],

which aims at transforming a nonlinear model to a linear one to utilize well-established linear con-

trols, have also been widely applied [19, 20]. The main disadvantage of the feedback linearization

method is that it is not robust to parametric uncertainties and unmodeled dynamics. In order to

deal with such circumstances, sliding-mode based controls [23, 24], adaptive controls [25, 27, 28, 134],

energy and passivity based nonlinear controls [33, 135, 136] are preferable. Intelligence—fuzzy and

neural network—controls have also been successfully implemented on crane systems [76, 137, 138]. To

sum up, feedback control techniques show excellent properties in handling parametric uncertainties

and external disturbances. However, they demand a sophisticated and costly sensor structure that

requires regular maintenance, and thus feedback controllers are still not popular in practical cranes.

In numerous contexts, feedforward controls are preferable in industry due to their simplicity and ease

of implementation, as well as no additional measurement system being required.

Minimum-time trajectory planning is a crucial means to enhance transportation productivity of over-

head crane systems. To obtain a universal minimum-time Zero Vibration (ZV) reference trajectory

in the presence of both state and control input constraints, one can employ indirect [59, 60] or direct

methods [63, 64, 71, 139]. Indirect approaches utilize the necessary condition for time-optimality based
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Figure 4.1: Description of the embedding (a) and the shaping (b) methods. The operator ∗ denotes
the convolution between two signals.

on the Pontryagin Minimum Principle, whereas direct methods discretize the system to formulate and

solve linear/nonlinear programs by means of optimization solvers. However, the above-mentioned

techniques require high computational effort, and thus they can barely generate motion trajectories in

an online fashion. To address this issue, one can limit the attention to a certain class of control inputs

and establish an analytical minimum-time solution for that class. In this way, an online trajectory

generation can be achieved. The class of bang-off-bang acceleration control inputs [65, 140, 141] is the

most basic and commonly used in industrial servo drives compared to other classes such as B-splines

[72], trigonometric [68, 140], jerk-limited [70], etc. In [65], a S-curve position command generated from

a bang-off-bang acceleration profile was proposed to suppress vibration for a flexible system. The exci-

tation energy of the input forcing function was minimized by using frequency analysis. Unfortunately,

the actuator limits were omitted in the design process. Recently, [140] proposed a three-segment (i.e.,

bang-off-bang) acceleration profile and its modified versions for a 2D overhead crane. A geometric

approach, based on the system phase portrait, is employed to derive vibration suppression conditions

for the S-curve profile. [141] introduced a similar approach as [140] and extended those results by

considering a family of acceleration profiles in a stair form. A minimum-time solution, however, was

not considered in the above-mentioned studies. In summary, to date, none of the existing studies have

solved the minimum transferring time problem for ZV S-curve commands generated from the class of

bang-off-bang acceleration profiles under restrictions imposed by actuator limitations.

The present study aims to obtain a low-cost crane system with enhanced productivity, while main-

taining a precise payload positioning and the vibration suppression capability. Therefore, in response

to the previous discussions, this chapter will establish minimum-time solutions for the ZV S-curve

position commands for an overhead crane system considering both maximum velocity and maximum
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acceleration of the actuator. In this chapter, the S-curve command is understood in the position

level and it is created from a bang-off-bang acceleration trajectory. Two approaches will be intro-

duced to enable the S-curve to admit the vibration cancellation capability. The embedding method

directly injects the vibration suppression conditions at the end of maneuver into the baseline S-curve

command. Consequently, the resultant S-curve command—named S-curve–Vibration Suppression

Embedded (SC–VSE)—has internal constraints on the duration of acceleration, uniform, and decel-

eration intervals that strongly relate to the natural frequency of the system. On the other hand, the

shaping method does not impose those internal constraints on the baseline S-curve but will use some

add-on tools to modulate the original (baseline/unshaped) S-curve command to gain vibration-free

transportation. The most well-known add-on—ZV input shaper [44, 46, 49]—will be employed to

convolute with the baseline S-curve. For clarification, the resultant S-curve command of the shap-

ing method is termed S-curve–Input Shaped (SC–IS). Illustrations of the embedding and the shaping

methods are shown in Fig. 4.1. In the SC–VSE establishment, the conditions of zero residual vibra-

tion are deficient, which leads to an underdetermined issue (see Section 4.3.1). This matter is resolved

together with the minimum transferring time problem by formulating constrained discrete nonlinear

programs (see Sections 4.3.2–4.3.3). The main challenge is to obtain a global optimal solution of those

optimization problems in closed form, with which the computational effort is low, and thus online

command generation can be realized. In addition, the design of the baseline S-curve command for

the SC–IS scheme—to fulfill both minimum-time and actuator limits requirements—is not a trivial

task because the convolution process may change the shape as well as the magnitude of the baseline

S-curve. As a result, the main difficulty needing to be solved in the minimum-time SC–IS case is to

enumerate all feasible shaped families, which is the crucial step to establish a sequence of optimization

problems (see Section 4.4.1).

To sum up, in comparison with previous studies, the contributions of this thesis are as follows:

1. The minimum-time solution of the class of bang-off-bang acceleration inputs subject to both

maximum velocity and maximum acceleration constraints is resolved, which fills a gap in the

literature. Therefore, compared with the related studies in [140] and [141], the proposed ZV

reference trajectory is faster.

2. The proposed minimum-time ZV motion profile can be easily computed online, which is a strong

advantage compared to universal minimum-time solutions (e.g., in [59, 64]).

3. When infinite actuator limits are allowed, this chapter shows that the SC–VSE is only two times

slower than a discontinuous command formed by a step function and the ZV input shaper (or

SC–IS in equivalence), not four times as suggested by [67].
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Figure 4.2: Mathematical model of the overhead crane system.

4.2 Problem formulation

Swinging motion of the payload resulted from the trolley actuation is illustrated in Fig. 4.2, in which

x(t) (m) and θ(t) (rad) are the trolley position and the swing angle. The net force driving the trolley

is denoted as F (t). Furthermore, m (kg), M (kg), l (m), and g (= 9.81 m/s2) represents the payload

mass, trolley mass, rope length, and gravitational acceleration respectively. The following assumptions

are made to establish the dynamical model of the overhead crane system: the payload is considered

as a point mass, the rope is assumed to be a rigid rod, and the air resistance to the payload could

be negligible. Note that, the rigid rope assumption is reasonable and it is commonly used in the

literature due to the fact that the elasticity modulus of the wire rope is very high. In other words, the

axial elasticity effect of the rope is minor and could be negligible. The Euler–Lagrange method will

be employed to establish the system dynamic. From Fig. 4.2, horizontal and vertical positions of the

payload can be computed by

xp(t) = x(t)− l sin θ(t) (4.1)

yp(t) = l cos θ(t). (4.2)

By differentiating (4.1) and (4.2), horizontal and vertical velocities of the payload are

ẋp(t) = ẋ(t)− lθ̇(t) cos θ(t) (4.3)

ẏp(t) = −lθ̇(t) sin θ(t). (4.4)
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The total kinetic energy of the system comprises translation energies of the trolley and the payload,

and thus it can be written by

K =
1

2
Mẋ2 +

1

2
m
(
ẋ2
p + ẏ2

p

)
. (4.5)

The potential energy of the system is given as V = −mgyp. Therefore, the Lagrangian function can

be established by

L = K − V =
1

2
Mẋ2 +

1

2
m
(
ẋ2
p + ẏ2

p

)
+mgl cos θ. (4.6)

The Euler–Lagrange equation applying to the actuated coordinate x(t) and the unactuated coordinate

θ(t) reads:

d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

= F. (4.7)

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0. (4.8)

By developing (4.7) and (4.8) using (4.3), (4.4) and (4.6), the mathematical model of the overhead

crane system is governed by

(M +m) ẍ−mlθ̈ cos θ +mlθ̇2 sin θ = F (4.9)

lθ̈ + g sin θ = cos θẍ. (4.10)

From (4.9) and (4.10), it is recognized that one can either use F (t) or ẍ(t) as the control input.

For the motion planning task, ẍ(t) is the more appropriate choice for the following reasons: i) the

problematic frictional forces presented in F (t) can be avoided, ii) the first and second integration of

ẍ(t) will result in the velocity ẋ(t) and the position x(t) commands, which can be easily realized by

ubiquitous servo drives, iii) the system dynamic is only dependent on the rope length l, which can

be easily measured in practice. Therefore, the dynamical equation (4.10) is employed in the control

design, in which the control input is ẍ(t). Note that, by choosing such a control signal, it is assumed

that the servo motor can satisfactorily track the planned reference trajectory, which is an ordinary

requirement for most industrial servo drives. Since the control input is chosen to be ẍ(t), (4.10) is the

only dynamical equation considered in the subsequent control design and analysis. By using the small

angle approximation [72, 140, 141], (4.10) can be linearized as

lθ̈(t) + gθ(t) = ẍ(t). (4.11)
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From (4.11), the angular natural frequency ω0 (rad/s) and the natural period T (s) of the overhead

crane system are given by ω0 =
√
g/l and T = 2π/ω0. Note that the model (4.11) will be employed

to design the minimum-time SC–VSE and the minimum-time SC–IS in Section 4.3 and Section 4.4

respectively. Throughout this chapter, it is assumed that the payload starts from rest, namely x(0) =

ẋ(0) = θ(0) = θ̇(0) = 0 [68, 70, 140, 141]. Moreover, to realize a vibration-free transportation, the

following terminal conditions must be fulfilled:

x(tf ) = xr, ẋ(tf ) = 0, θ(tf ) = 0, θ̇(tf ) = 0. (4.12)

In (4.12), xr (m) is the reference value of the trolley position. Without loss of generality, xr is a positive

constant, namely xr > 0. The terminal time tf will be minimized to enhance the transportation

productivity (see Section 4.3 and Section 4.4).

The following maximum velocity and acceleration constraints of the actuator must be strictly kept:

|ẋ(t)| ≤ vmax, |ẍ(t)| ≤ amax, (4.13)

where vmax > 0 and amax > 0. In the following section, the minimum-time SC–VSE will be formulated.

4.3 Design of the minimum-time SC–VSE

In this section, by embedding the conditions in (4.12) for vibration-free transportation into the baseline

S-curve, the SC–VSE can be formed. It will be later shown that the no-residual-swing conditions

θ(tf ) = θ̇(tf ) = 0 are deficient, which leads to an underdetermined issue. This can be solved together

with the minimum-time problem by establishing constrained discrete nonlinear programs. Simulation

results are provided for various maneuvers with different values of vmax and amax to verify the proposed

minimum-time solution.

a

a−

x��

t
1
t

2
t

3
t

Figure 4.3: Parameterized bang-off-bang acceleration profile of the trolley.
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The position baseline S-curve trajectory is generated by integrating twice the bang-off-bang accelera-

tion profile as depicted in Fig. 4.3. This piece-wise continuous function can be expressed by1

ẍ(t) =


a, 0 ≤ t < t1

0, t1 ≤ t < t1 + t2

−a, t1 + t2 ≤ t ≤ tf (:= t1 + t2 + t3) .

(4.14)

In (4.14), all of the parameters a, t1, t2, and t3 are unknowns, whose pre-conditions are given as

0 < a ≤ amax, t1 > 0, t2 ≥ 0, and t3 > 0. Furthermore, it is easy to see that the baseline S-curve

obtained from (4.14) reaches its highest velocity (= at1) at t = t1. Therefore, the maximum velocity

constraint |ẋ(t)| ≤ vmax becomes at1 ≤ vmax. The following subsection will establish additional

constraints for these unknown variables to actively gain a vibration-free transferring process.

4.3.1 Embedding vibration-free transportation conditions

By exploiting the vibration-free transportation condition (4.12), essential constraints on a, t1, t2, and

t3 can be further obtained. First, response of the system (4.11) under the action of the control input

(4.14) will be derived.

During the acceleration interval, namely 0 ≤ t < t1, by substituting ẍ(t) = a into (4.11) and solving

the second-order differential equation with a constant excitation, the following result is obtained:

θ(t) =
a

g
(1− cosω0t) , θ̇(t) =

aω0

g
sinω0t

x(t) = 0.5at2, ẋ(t) = at.

(4.15)

Similarly, when t1 ≤ t < t1 + t2 (i.e., uniform interval), ẍ(t) = 0 holds. Therefore

θ(t) =
a

g
[cos (ω0 (t− t1))− cosω0t]

θ̇(t) = −aω0

g
[sin (ω0 (t− t1))− sinω0t]

x(t) = at1t− 0.5at21

ẋ(t) = at1.

(4.16)

1Although the acceleration profile of the motion is only piece-wise continuous, the resultant position S-curve command
is continuously differentiable. Consequently, the motion’s smoothness is ensured.
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Finally, when t1 + t2 ≤ t ≤ tf (i.e., deceleration interval), ẍ(t) = −a. Hence

θ(t) =
a

g

 2∑
i=1

cos

ω0

t− i∑
j=1

tj

− cosω0t− 1


θ̇(t) =

−aω0

g

 2∑
i=1

sin

ω0

t− i∑
j=1

tj

− sinω0t


x(t) = −1

2
at2 + a (2t1 + t2) t− a

(
t21 + t1t2 +

1

2
t22

)
ẋ(t) = a (−t+ 2t1 + t2) .

(4.17)

From (4.17), the zero velocity condition of the trolley at tf—ẋ (tf ) = 0—gives a (−tf + 2t1 + t2) = 0,

which can be easily developed to tf − 2t1 − t2 = 0 since a > 0. Note that tf = t1 + t2 + t3; thus,

t1 = t3. This means that the duration of the acceleration and deceleration periods must be similar.

Using this result, the condition on the target trolley position, namely x (tf ) = xr, can be exploited as

at1 (t1 + t2) = xr. (4.18)

The condition of zero swing angle at tf can be further developed by setting θ (tf ) = 0 (in (4.17)).

Consequently, it yields

cos (ω0 (t1 + t2)) + cosω0t1 = 1 + cos (ω0 (2t1 + t2)) . (4.19)

Using the cosine sum-to-product trigonometric identity cos p+cos q = 2 cos ((p+ q) /2) cos ((p− q) /2)

on the left-hand-side (LHS) and cos 2p = 2 cos2 p− 1 on the right-hand-side (RHS) of (4.19) results in

cos

(
ω0 (2t1 + t2)

2

)[
cos

(
ω0t2

2

)
− cos

(
ω0 (2t1 + t2)

2

)]
= 0. (4.20)

Let N+ represent the set of positive integers. The solution of (4.20) can be found as
t1 = k1T

t1 + t2 = k1T

2t1 + t2 = (k1 − 0.5)T

, k1 ∈ N+. (4.21)

Lastly, to ensure the zero swing rate condition θ̇ (tf ) = 0, from (4.17), it needs

sin (ω0 (t1 + t2)) + sinω0t1 = sin (ω0 (2t1 + t2)) . (4.22)
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The solution of (4.22) can be similarly obtained as follows:
t1 = k2T

t1 + t2 = k2T

2t1 + t2 = k2T

, k2 ∈ N+. (4.23)

In sum, the zero residual vibration conditions θ (tf ) = θ̇ (tf ) = 0 can be obtained by subsuming (4.21)

and (4.23). By using the set associative, commutative, and distributive laws [142], the subsumption

of (4.21) and (4.23) leads to either of the following cases:

t1 = k1T, k1 ∈ N+ (4.24)

or t1 + t2 = k2T, k2 ∈ N+. (4.25)

According to the above analysis, two equations θ (tf ) = 0 and θ̇ (tf ) = 0 are reduced to a single

equation—either (4.24) or (4.25). Therefore, there are now only two equations ((4.18)&(4.24) or

(4.18)&(4.25)) to solve for the three unknowns a, t1, and t2, which is clearly an underdetermined

problem. Furthermore, the actuator limits represented by vmax and amax must be taken into ac-

count. In order to resolve the above-mentioned underdetermined issue, the common strategy in the

literature is to fix a specific quantity and utilize the constraints |ẋ(t)| ≤ vmax and |ẍ(t)| ≤ amax to

determine the value of a. For instance, Sun et al. [140] set k1 (in (4.24)) to k1 = 1, namely t1 = T .

Then, a is calculated by a = v/T where the velocity of the uniform interval v is determined by

v = min {vmax, Tamax, xr/T}. In contrast, Hoang et al. [141] fixed v = vmax and varied the index

k1 until the maximum acceleration constraint is fulfilled. These solutions, however, do not guarantee

a time-optimal choice (see comparative results in Section 4.3.5). Therefore, constrained discrete non-

linear programs will be established to solve both underdetermined and time-optimal problems while

ensuring that the actuator limits are complied with. The results of these optimization problems are

admitted in closed form, and thus no intensive computation is required. The following subsection will

discuss the optimal solution for the first case (i.e., t1 = k1T, k1 ∈ N+).

4.3.2 Case I of SC–VSE: t1 = k1T, k1 ∈ N+

To begin, the essential equality and inequality constraints needing to be taken into account are sum-

marized as follows: 1) trajectory constraints: t1 > 0 and t2 ≥ 0, 2) actuator limits: 0 < a ≤ amax and

at1 ≤ vmax, and 3) vibration-free transportation conditions: t1 = k1T , k1 ∈ N+ and at1 (t1 + t2) = xr

(see Section 4.3.1). By considering all of the above constraints and taking the total transferring time
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tf as the cost function, the following optimization problem can be established:

min
a,t1,t2

tf = 2t1 + t2 (4.26)

s.t. at1 (t1 + t2) = xr

t1 = k1T (k1 ∈ N+), t2 ≥ 0

0 < a ≤ amax, at1 ≤ vmax.

Note that (4.26) is a discrete nonlinear program since t1 can only be a multiple of the natural period

T , whereas a and t2 are continuous. Eliminating the two variables t1 and t2 using two equalities,

(4.26) becomes the following mixed nonlinear–integer program:

min
a,k1

tf = k1T +
xr
ak1T

(4.27)

s.t. k1 ∈ N+

0 < a ≤ amax, a ≤
xr

(k1T )2 , a ≤
vmax

k1T
.

In (4.27), the inequality constraint a ≤ xr/ (k1T )2 is a result of the condition t2 ≥ 0 in (4.26) applied

to t2 = xr/ (ak1T ) − k1T . For a fixed k1, (4.27) is actually a quasi-linear program, i.e., the original

nonlinear optimization problem (4.27) can be converted to a linear one through a suitable variable

substitution (see the proof of Lemma 1). Denote a set ∆ (k1) as below

∆(k1) =

{
k1T,

xr
k1Tamax

,
xr
vmax

}
. (4.28)

In the first step, the optimal solution of (4.27) is established for each k1 ∈ N+ by the following lemma:

Lemma 1. Consider the mixed nonlinear–integer optimization problem (4.27). For a fixed k1 (k1 ∈
N+), the minimizer a†(k1) and the optimum cost function t†f (k1) of (4.27) are given by

a†(k1) =
xr

k1T max ∆ (k1)
and t†f (k1) = k1T + max ∆ (k1).

Proof. By assigning z = xr/ (ak1T ), the original nonlinear program (4.27) can be transformed to a

linear optimization problem (4.29), where R+ is the set of positive real numbers.

min
z∈R+

tf = k1T + z (4.29)

s.t. z ≥ k1T, z ≥
xr

k1Tamax
, z ≥ xr

vmax
.
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Figure 4.4: Optimal solution of the linear optimization problem (4.29).

It can be seen that the feasible region of (4.29) is z ≥ max ∆ (k1), so based on Fig. 4.4, the minimizer

of (4.29) is z† = max ∆ (k1) and t†f = k1T + z†. Using the relation z = xr/ (ak1T ) leads to the results

a† (k1) = xr/ (k1T max ∆ (k1)) and t†f (k1) = k1T + max ∆ (k1). This completes the proof.

In fact, through Lemma 1, the first step will provide all local minima of the optimization problem

(4.27), which are infinite in number. In the second step, these local minima will be compared to each

other to determine the global optimum one. The result of the second step is summarized in Theorem 3.

Theorem 3. The global minimizer k?1 and a? of the mixed nonlinear–integer program (4.27) are

k?1 =


1 if k̄1 = 1

k̄1 if k̄1 > 1 & µ < 0

k̄1 − 1 if k̄1 > 1 & µ ≥ 0

; a? =
xr

k?1T max ∆ (k?1)
,

in which µ = T+max ∆
(
k̄1

)
−max ∆

(
k̄1 − 1

)
. The pivotal index is k̄1 = 1 if max ∆(1) 6= xr/ (Tamax).

Otherwise, namely max ∆(1) = xr/ (Tamax), k̄1 is given by

k̄1 = max

{
k1 ∈ N+ : max ∆ (k1) =

xr
k1Tamax

}
+ 1.

Moreover, the global minimum cost function is

t?f (k?1) = k?1T + max ∆ (k?1).

Proof. Based on the condition of the pivotal index k̄1, the proof is divided into two cases: max ∆(1) 6=
xr/(Tamax) and max ∆(1) = xr/(Tamax) as follows.
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A. Case 1: max ∆(1) 6= xr/(Tamax)

Since max ∆(1) 6= xr/(Tamax), it is true that either max ∆(1) = T or max ∆(1) = xr/vmax. In the case

max ∆(1) = T , it holds that T ≥ xr/vmax and T ≥ xr/(Tamax). Therefore, xr/vmax ≤ T < 2T < . . .

and . . . < xr/(2Tamax) < xr/(Tamax) ≤ T < 2T < . . ., and thus max ∆(k1) = k1T , which by Lemma 1

results in

t†f (k1) = k1T + max ∆(k1) = k1T + k1T = 2k1T. (4.30)

From (4.30), since k1 ∈ N+, t†f (k1 = 1) < t†f (k1 = 2) < t†f (k1 = 3) < . . .. Consequently, k?1 = 1.

For the remaining case, namely max ∆(1) = xr/vmax, the result xr/vmax ≥ xr/(Tamax) holds. As a con-

sequence, xr/vmax ≥ xr/(Tamax) > xr/(2Tamax) > . . .. Therefore, max ∆(k1) = max {k1T, xr/vmax}
can be obtained. From that, for every n ∈ N+

t†f (k1 = 1 + n)− t†f (k1 = 1)

= nT + max

{
(1 + n)T,

xr
vmax

}
− xr
vmax

.
(4.31)

From (4.31), if max {(1 + n)T, xr/vmax} = xr/vmax, then t†f (k1 = 1 + n) − t†f (k1 = 1) = nT > 0.

Otherwise, max {(1 + n)T, xr/vmax} = (1 + n)T , and the result t†f (k1 = 1 + n) − t†f (k1 = 1) =

nT + (1 +n)T −xr/vmax holds. But in this circumstance, max {(1 + n)T, xr/vmax} = (1 +n)T , hence

(1+n)T ≥ xr/vmax; therefore, t†f (k1 = 1+n)−t†f (k1 = 1) ≥ nT > 0. Consequently, it is concluded that

when max ∆(1) = xr/vmax, the result k?1 = 1 is also true. Summarizing from the above arguments,

k?1 = 1 whenever max ∆(1) 6= xr/(Tamax).

B. Case 2: max ∆(1) = xr/(Tamax)

Flow of the proof for this case is briefly explained as follows. First, it will be proven that the local

minimum transferring times t†f (k1) (see Lemma 1) is a strictly decreasing sequence with respect to k1

when k1 ≤ k̄1−1. Second, it will be shown that the sequence t†f (k1) strictly increases for k̄1 ≤ k1 < +∞.

Finally, among t†f (k1 = k̄1 − 1) and t†f (k1 = k̄1), the smaller one is the global minimum.

Subcase 1 : k1 ≤ k̄1 − 1 (k1 ∈ N+)

By definition (see Theorem 3)

k̄1 − 1 = max

{
k1 ∈ N+ : max ∆(k1) =

xr
k1Tamax

}
. (4.32)
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From (4.32), it can be seen that k̄1 ≥ 2. Moreover, max ∆(k̄1 − 1) = xr/
(
(k̄1 − 1)Tamax

)
. From this,

it can be obtained that

xr(
k̄1 − 1

)
Tamax

≥ xr
vmax

(4.33)

xr(
k̄1 − 1

)
Tamax

≥
(
k̄1 − 1

)
T. (4.34)

The inequality (4.33) results in xr/(Tamax) > xr/(2Tamax) > . . . > xr/
(
(k̄1 − 1)Tamax

)
≥ xr/vmax.

Furthermore, (4.34) gives xr/(Tamax) > xr/(2Tamax) > . . . > xr/
(
(k̄1 − 1)Tamax

)
≥ (k̄1 − 1)T >

(k̄1 − 2)T > . . . > 2T > T . Therefore, max ∆(k1) = xr/(k1Tamax). Since k1 = 0 is not a legitimate

index, t†f (k1 = 0) = +∞ is defined for the sake of convenience. Therefore, t†f (k1)− t†f (k1 − 1)
∣∣∣
k1=1

< 0.

In the case that k1 ≥ 2, by using Lemma 1, it yields

t†f (k1)− t†f (k1 − 1) =

k1T +
xr

k1Tamax
− (k1 − 1)T − xr

(k1 − 1)Tamax
.

(4.35)

The result of (4.35) can be simplified to

t†f (k1)− t†f (k1 − 1) = T − xr
k1(k1 − 1)Tamax

. (4.36)

Since max ∆(k1) = xr/(k1Tamax), ∀k1 ≤ k̄1 − 1, it holds that xr/(k1Tamax) ≥ k1T ; therefore,

xr/(k1Tamax) > (k1−1)T , so T < xr/ (k1(k1 − 1)Tamax). Hence, (4.36) results in t†f (k1)−t†f (k1−1) <

0. In summary

t†f (k1) < t†f (k1 − 1), ∀k1 ≤ k̄1 − 1
(
k1 ∈ N+

)
. (4.37)

The result in (4.37) implies that the sequence t†f (k1) of local minimum transferring times strictly

decreases when k1 ≤ k̄1 − 1.

Subcase 2 : k̄1 ≤ k1 < +∞ (k1 ∈ N+)

From the definition of k̄1 (see (4.32)), it is true that max ∆(k̄1) 6= xr/(k̄1Tamax), namely max ∆(k̄1) =

max
{
k̄1T, xr/vmax

}
. From this, we have

xr
k̄1Tamax

≤ k̄1T and
xr

k̄1Tamax
≤ xr
vmax

. (4.38)
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From (4.38), the following results are obtained:

. . . <
xr

(k̄1 + 1)Tamax
<

xr
k̄1Tamax

≤ k̄1T < (k̄1 + 1)T < . . . (4.39)

. . . <
xr

(k̄1 + 1)Tamax
<

xr
k̄1Tamax

≤ xr
vmax

. (4.40)

It can be immediately seen from (4.39) and (4.40) that

max ∆(k1) = max

{
k1T,

xr
vmax

}
, ∀k1 ≥ k̄1. (4.41)

Therefore, ∀k1 ≥ k̄1 (k1 ∈ N+), by using Lemma 1

t†f (k1 + 1)− t†f (k1) = T

+ max

{
(k1 + 1)T,

xr
vmax

}
−max

{
k1T,

xr
vmax

}
.

(4.42)

From (4.42), two possibilities can be classified: max {k1T, xr/vmax} = k1T and max {k1T, xr/vmax} =

xr/vmax. For the first possibility, that is to say, max {k1T, xr/vmax} = k1T , the inequality xr/vmax ≤
k1T < (k1 + 1)T holds, and thus max {(k1 + 1)T, xr/vmax} = (k1 + 1)T . Therefore, (4.42) becomes

t†f (k1 + 1)− t†f (k1) = T + (k1 + 1)T − k1T = 2T > 0. (4.43)

For the second possibility, that max {k1T, xr/vmax} = xr/vmax, (4.42) can be simplified to

t†f (k1 + 1)− t†f (k1) =

T + max

{
(k1 + 1)T,

xr
vmax

}
− xr
vmax

.
(4.44)

From (4.44), it is not difficult to show that

t†f (k1 + 1)− t†f (k1) ≥ T > 0. (4.45)

From (4.43) and (4.45), the conclusion is

t†f (k1 + 1) > t†f (k1), ∀k1 ≥ k̄1

(
k1 ∈ N+

)
. (4.46)

The result of (4.46) implies that the local minimum transferring times t†f (k1) is a strictly increasing

sequence with respect to k1 when k̄1 ≤ k1 < +∞.
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Summarizing the results in (4.37) and (4.46) givest
†
f (k1) < t†f (k1 − 1), ∀k1 ≤ k̄1 − 1

t†f (k1) < t†f (k1 + 1), ∀k1 ≥ k̄1

, k1 ∈ N+. (4.47)

Therefore, the global optimal index of the mixed nonlinear–integer program (4.27) is the one among

k̄1 − 1 and k̄1, which produces a smaller transferring time. Using the result of Lemma 1 results in

t†f (k1 = k̄1)− t†f (k1 = k̄1 − 1) =

T + max ∆(k̄1)−max ∆(k̄1 − 1).
(4.48)

By utilizing the definition of µ in Theorem 3 and (4.48), the conclusion is that when µ ≥ 0, namely

t†f (k1 = k̄1) ≥ t†f (k1 = k̄1 − 1), the global optimal index of (4.27) is k?1 = k̄1 − 1. Otherwise, namely

µ < 0, the result k?1 = k̄1 holds. This completes the proof.

The computation of the global optimal solution (for Case I) based on Theorem 3 should begin from the

determination of the pivotal index k̄1, and then µ can be computed. From k̄1 and µ, the global optimum

index k?1 can be determined. Finally, the optimal acceleration a? and the minimum transferring time

t?f (k?1) can be calculated. The optimal values of t1 and t2 are computed by t?1 = k?1T and t?2 = t?f − 2t?1

respectively. Now the global minimum-time solution of SC–VSE in Case I has been established. Next,

Case II (t1 + t2 = k2T, k2 ∈ N+) will be investigated.

Remark 13. In the first step of solving the mixed nonlinear–integer program (4.27), it was chosen to

find the local minimum for each k1 ∈ N+ rather than for each a. If the latter strategy is employed, the

optimization problem needing to be solved in the second step becomes much more complex. Therefore,

fixing k1 first is the more reasonable approach.

4.3.3 Case II of SC–VSE: t1 + t2 = k2T, k2 ∈ N+

In order to draw a distinction with Case I, in Case II, the unknown parameters a, t1, t2, and tf

are denoted as ã, t̃1, t̃2, and t̃f respectively. Similar to Case I, by gathering all essential trajectory,

actuator limits, and vibration-free transportation constraints and taking the total transferring time as
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the cost function, the following discrete nonlinear program can be established:

min
ã,t̃1,t̃2

t̃f = 2t̃1 + t̃2 (4.49)

s.t. ãt̃1
(
t̃1 + t̃2

)
= xr

t̃1 + t̃2 = k2T (k2 ∈ N+), t̃1 > 0, t̃2 ≥ 0

0 < ã ≤ amax, ãt̃1 ≤ vmax.

By using the equality constraints, the two variables t̃1 and t̃2 can be eliminated, and thus (4.49) can

be transformed into the following mixed nonlinear–integer program:

min
ã,k2

t̃f = k2T +
xr
ãk2T

(4.50)

s.t. k2 ≥
xr

Tvmax
, k2 ≥

1

T

√
xr
amax

, k2 ∈ N+

xr

(k2T )2 ≤ ã ≤ amax.

By conducting an analogous procedure to Case I, the solution of the optimization problem (4.50) is

stated in Theorem 4. To begin, a new set β (k2) is denoted as follows:

β (k2) =

{
k2,

xr
Tvmax

,
1

T

√
xr
amax

}
. (4.51)

Theorem 4. The global optimal solution of the mixed nonlinear–integer program (4.50) is

k?2 = min
{
k2 ∈ N+ : maxβ (k2) = k2

}
ã? = amax.

Moreover, the global minimum cost function is given by

t̃?f (k?2) = k?2T +
xr

k?2Tamax
.

Proof. The first step of the proof is to find the local optimal solutions of (4.50) for each k2 ∈ N+

satisfying k2 ≥ max
{
xr/(Tvmax), (1/T )

√
xr/amax)

}
The second step compares all the local minima

provided by the first step (which are infinite in number) to justify the global optimum.

In the first step, for a fixed k2 ∈ N+ satisfying k2 ≥ max
{
xr/(Tvmax), (1/T )

√
xr/amax

}
, by in-

troducing a new variable z̃ = xr/(ãk2T ), (4.50) can be transformed into the following simple linear
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optimization problem:

min
z̃∈R+

t̃f = k2T + z̃ (4.52)

s.t.
xr

k2Tamax
≤ z̃ ≤ k2T.

It is easy to show that the minimizer z̃† and the minimum cost function t̃ †f of (4.52) are z̃†(k2) =

xr/(k2Tamax) and t̃ †f (k2) = k2T + z̃†(k2). Using the relation z̃ = xr/(ãk2T ) results in ã†(k2) = amax

and t̃ †f = k2T + xr/(k2Tamax).

Now, the second step can be proceeded by solving the following optimization problem:

min
k2∈N+

t̃ †f (k2) = k2T +
xr

k2Tamax
(4.53)

s.t. k2 ≥ max

{
xr

Tvmax
,

1

T

√
xr
amax

}
.

Considering a function t̃ †f (y) where y ∈ R+, y ≥ max
{
xr/(Tvmax), (1/T )

√
xr/amax

}
. Taking the

first derivative of t̃ †f (y) with respect to y results in

dt̃ †f (y)

dy
= T − xr

y2Tamax
. (4.54)

However, the feasible region of y gives y ≥ (1/T )
√
xr/amax, and thus T ≥ xr/

(
y2Tamax

)
. By

applying this result on (4.54), dt̃ †f (y)/dy ≥ 0 can be obtained, which means that the function t̃ †f (y)

monotonically increases with respect to y. By performing the substitution y = k2, it can also be

concluded that the function t̃ †f (k2) monotonically increases with respect to k2. Therefore, the global

optimal index k?2 of (4.53) is the minimum integer satisfying k?2 ≥ max
{
xr/(Tvmax), (1/T )

√
xr/amax

}
.

In the set notation, the above result is equivalent to k?2 = min {k2 ∈ N+ : maxβ(k2) = k2}. The proof

is therefore completed.

By using the result of Theorem 4, the global optimal solution of SC–VSE in Case II can be computed.

The optimum values of t̃1 and t̃2 are determined by t̃?1 = t̃?f − k?2T and t̃?2 = 2k?2T − t̃?f respectively.

4.3.4 Comparison between Case I and Case II

Although Case I (t1 = k1T ) and Case II (t1 + t2 = k2T ) will both result in a vibration-free transferring

process, they exhibit some fundamentally distinct properties, which will be clarified in the following
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discussion. In Case I, by substituting t1 = k1T (k1 ∈ N+) into (4.16), it yields

θ (t) = θ̇ (t) = 0, ∀t ∈ [t1, t1 + t2) . (4.55)

The condition of (4.55) implies that, in Case I, there is never any residual vibration during the uniform

interval (i.e., t1 ≤ t < t1 + t2). In contrast, no similar property is present in Case II except when the

resultant t̃?f is also a multiple of the natural period T .

The second different property between Case I and Case II can be revealed by letting vmax → +∞
and amax → +∞, namely, when infinite maximum velocity and maximum acceleration are allowed. In

such a context, for Case I, the following can be obtained:

lim
λ→+∞

max

{
T,

xr
Tamax

,
xr
vmax

}
= T, (4.56)

where λ is defined by λ = min {vmax, amax}. Therefore, lim
λ→+∞

max ∆(1) = T . Consequently, according

to Theorem 3, k?1 = 1 as λ→ +∞, and hence

lim
λ→+∞

t?f (k?1) = T + T = 2T. (4.57)

Similarly, for Case II, it can be shown that lim
λ→+∞

maxβ (k2) = k2. Therefore, k?2 = 1 as λ→ +∞. As

a result, based on Theorem 4

lim
λ→+∞

t̃?f (k?2) = T. (4.58)

The results of (4.57) and (4.58) can be interpreted as follows: with infinite velocity and acceleration

limits, the minimum transfer time for Case I is twice the natural period T , whereas it only requires

one natural period for Case II. In other words, it is not possible to obtain a transfer time less than

one natural period in the case of SC–VSE.

The vibration-free transportation using SC–VSE has two candidates: Case I and Case II. Therefore,

in practice, the SC–VSE scheme will choose the one which produces a smaller optimal transferring

time. For instance, as vmax → +∞ and amax → +∞, it holds that t?f (→ 2T ) > t̃?f (→ T ), and thus

Case II should be selected. Note that, Singhose et al. [67] stated that the position S-curve (including

both triangular and trapezoidal velocity profiles) must be four times longer than a command formed

by shaping a step function with a ZV input shaper. The previous discussion showed that the above

conclusion is not generally true, namely that it is only correct for Case I, but not for Case II. This can

be explained as follows. When a step position command is employed as in [67], it automatically implies
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Table 4.1: Configuration of testcases (TCs).

TC# vmax amax Rope length Natural period

A1 0.25 m/s 0.05 m/s2 l = 1.4 m T = 2.37 s

A2 0.25 m/s 0.1 m/s2 l = 1 m T = 2.01 s

A3 0.5 m/s 0.5 m/s2 l = 1.4 m T = 2.37 s

Table 4.2: Computational results of the minimum-time SC–VSE.

TC# Selection a?|ã? t?1|t̃?1 t?2|t̃?2 k?1|k?2 t?f |t̃?f
A1 Case I 0.05 m/s2 4.75 s 3.68 s k?1 = 2 13.17 s

A2 Case II 0.1 m/s2 2.49 s 5.53 s k?2 = 4 10.52 s

A3 Case II 0.5 m/s2 0.84 s 3.90 s k?2 = 2 5.59 s

xr = 2 m. Case I: Section 4.3.2, Case II: Section 4.3.3.

that infinite velocity and acceleration can be admitted. The shaping process between a step position

command and the ZV input shaper therefore introduces a total transferring time of T/2. Under the

same conditions, Case II of SC–VSE can be selected, namely that a vibration-free transportation can

be guaranteed with a total time of T (see (4.58)), which is only two times longer. The shortcoming of

[67] stems from the fact that Case II is not fully considered in the analysis/design. In order to clearly

verify the above argument, the minimum-time SC–VSE is computed for the following configuration:

l = 1.4 m (T = 2.37 s), xr = 1 m, vmax = 5 m/s, and amax = 5 m/s2 (high maximum velocity and

maximum acceleration are allowed). By applying the results from Section 4.3.2 and Section 4.3.3,

Case II is finally selected. The optimal solution is t̃?1 = 0.084 s, t̃?2 = 2.289 s, ã? = 5 m/s2. The

minimum transferring time of SC–VSE is t̃?f = 2.458 s, which is only 2.071 times longer than T/2 (less

than four times).

4.3.5 Simulation results of the minimum-time SC–VSE

In this section, simulation results of the minimum-time SC–VSE and comparisons with the related

studies in [140] and [141] are given. In order to verify the established theoretical results, the simulation

study is conducted under various conditions of the actuator limits, i.e., both maximum velocity vmax

and maximum acceleration amax will be varied. The transferring distance is 2 meters (xr = 2 m).

Moreover, necessary parameters for all testcases are shown in Table 4.1. The computations are con-

ducted on a personal computer with 2.7-GHz Intel Core i5-4310M and 8 GB of RAM. Computational
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results of the minimum-time SC–VSE are aggregated in Table 4.2. On average, it takes 0.013 second

to compute the minimum-time SC–VSE for each testcase showing that online computation is feasible.

The simulation results of all testcases are illustrated in Figs. 4.5–4.7. It is recognized that the larger the

actuator limits, the smaller the total transferring time would be (with an increment of the peak value of

swing angle). In all testcases, the trolley precisely arrives at the desired destination with no vibration

after the transfer. Moreover, the maximum velocity and maximum acceleration constraints are strictly

complied with. Therefore, the effectiveness of the minimum-time SC–VSE scheme is confirmed.

The proposed minimum-time SC–VSE is now compared to the related studies [140, 141] in the same

bang-off-bang acceleration profile family. Note that, to draw a fair comparison, the constraint of

maximum allowable swing angle presented in [140] and [141] are relaxed (i.e., setting θub = +∞ in

[140] and θmax = +∞ in [141]). The comparative results are shown in Table 4.3 and Figs. 4.5–4.7.

It can be seen that the proposed minimum-time SC–VSE provides considerably smaller transfer time

than the existing studies. Specifically, it is 6.06 s and 1.95 s faster in testcase A1, 1.46 s and 1.49 s

faster in testcase A2, and 0.78 s and 0.78 s faster in testcase A3, in comparison with [140] and [141]

respectively. Thus, the proposed min-time SC–VSE showed its advantage in terms of transfer time.
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Figure 4.5: Simulation result of the minimum-time SC–VSE and its comparison with related studies
(testcase A1).
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Figure 4.6: Simulation result of the minimum-time SC–VSE and its comparison with related studies
(testcase A2).
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Figure 4.7: Simulation result of the minimum-time SC–VSE and its comparison with related studies
(testcase A3).
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Table 4.3: Comparison of the min-time SC–VSE with related studies.

TC#
Transferring time (xr = 2 m)

Proposed Sun et al. [140] Hoang et al. [141]

A1 13.17 s 19.23 s 15.12 s

A2 10.52 s 11.98 s 12.01 s

A3 5.59 s 6.37 s 6.37 s

4.4 Design of the minimum-time SC–IS

4.4.1 Formulation

In the SC–IS scheme, to gain a vibration-free transportation, the baseline S-curve is modulated by

convolving with the well-known ZV input shaper, which is given by [49]

I(t) = 0.5 [δ(t) + δ (t− T/2)] , (4.59)

where δ(.) is the Dirac’s delta generalized function. The position baseline S-curve is still generated

by integrating twice the bang-off-bang acceleration profile R̄(t), which takes a similar form of (4.14),

that is

R̄(t) =


ā, 0 ≤ t < t̄1

0, t̄1 ≤ t < t̄1 + t̄2

−ā, t̄1 + t̄2 ≤ t ≤ t̄f (:= 2t̄1 + t̄2) .

(4.60)

The convolution product between (4.60) and the ZV input shaper will result in a shaped acceleration

command, whose double integration is the SC–IS. As a matter of fact, the convolution process will

possibly change the shape as well as the magnitude of the original command. Therefore, the present

task is to design a baseline function in the form of (4.60), which ensures the resultant shaped com-

mand: 1) achieves a minimum transferring time and 2) respects the maximum allowable velocity and

acceleration. This design task for the SC–IS scheme is not trivial.

If Q̄(t) is denoted as the shaped acceleration function in time domain, it can be computed by

Q̄(t) = R̄(t) ∗ I(t), (4.61)
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Table 4.4: All possibilities of the shaped command Q̄(t) and optimization configurations of the
minimum-time SC–IS.

P# Q̄(t)
Optimization Configuration

Condition Acc. Constraint Vel. Constraint Equality Constraint Cost Function

P1

39

t

1 2t T+

maximum velocity maximum velocity

t

1 2t t+

maximum velocity

t

1 2t T+

a

a−

a

a−

a

a−

maximum velocity

t

1t

maximum velocity

t
1t

2a

2a 2a

a− a−

a

maximum velocity

t

1 2t t+

a

a−

2a

a

t̄1 ≥ T/2
t̄2 ≥ T/2

0 < ā ≤ amax āt̄1 ≤ vmax

āt̄1 (t̄1 + t̄2) = xr J̄ = 2t̄1 + t̄2 +
T

2

P2

39

t

1 2t T+

maximum velocity maximum velocity

t

1 2t t+

maximum velocity

t

1 2t T+

a

a−

a

a−

a

a−

maximum velocity

t

1t

maximum velocity

t
1t

2a

2a 2a

a− a−

a

maximum velocity

t

1 2t t+

a

a−

2a

a

t̄1 ≥ T/2
0 ≤ t̄2 ≤ T/2

0 < ā ≤ amax
ā

2

(
2t̄1 + t̄2 −

T

2

)
≤ vmax

P3

39

t

1 2t T+

maximum velocity maximum velocity

t

1 2t t+

maximum velocity

t

1 2t T+

a

a−

a

a−

a

a−

maximum velocity

t

1t

maximum velocity

t
1t

2a

2a 2a

a− a−

a

maximum velocity

t

1 2t t+

a

a−

2a

a

0 < t̄1 ≤ T/2
t̄1 + t̄2 ≥ T/2
t̄2 ≥ T/2

0 < ā ≤ 2amax āt̄1 ≤ vmax

P4

39

t

1 2t T+

maximum velocity maximum velocity

t

1 2t t+

maximum velocity

t

1 2t T+

a

a−

a

a−

a

a−

maximum velocity

t

1t

maximum velocity

t
1t

2a

2a 2a

a− a−

a

maximum velocity

t

1 2t t+

a

a−

2a

a

0 < t̄1 ≤ T/2
t̄1 + t̄2 ≥ T/2
0 ≤ t̄2 ≤ T/2

0 < ā ≤ 2amax
ā

2

(
2t̄1 + t̄2 −

T

2

)
≤ vmax

P5

39

t

1 2t T+

maximum velocity maximum velocity

t

1 2t t+

maximum velocity

t

1 2t T+

a

a−

a

a−

a

a−

maximum velocity

t

1t

maximum velocity

t
1t

2a

2a 2a

a− a−

a

maximum velocity

t

1 2t t+

a

a−

2a

a
0 < t̄1 ≤ T/2
t̄1 + t̄2 ≤ T/2

2t̄1 + t̄2 ≥ T/2
0 < ā ≤ 2amax āt̄1 ≤ 2vmax

P6

t

1 2t T+

maximum velocity maximum velocity

t

1 2t t+

maximum velocity

t

1 2t T+

a

a−

a

a−

a

a−

maximum velocity

t

1t

maximum velocity

t
1t

2a

2a 2a

a− a−

a

maximum velocity

t

1 2t t+

a

a−

2a

a
0 < t̄1 ≤ T/2
t̄1 + t̄2 ≤ T/2
2t̄1 + t̄2 ≤ T/2

0 < ā ≤ 2amax āt̄1 ≤ 2vmax

Light gray line: unshaped/baseline command R̄(t) (in (4.60)). Bold blue line: shaped command Q̄(t) (in (4.64)).

where I(t) and R̄(t) are given in (4.59) and (4.60) respectively. The operator ∗ denotes the convolution

between two signals. In the case of SC–IS scheme, the actual acceleration input feeding to the crane

system in (4.11) is ¨̄x(t) = Q̄(t), where ẍ(t) is replaced by ¨̄x(t) to draw a distinction with the SC–VSE

technique. To compute Q̄(t) in an explicit form, the Laplace transformation method is employed. The
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Laplace transform of the baseline function R̄(t) and the input shaper I(t) can be found as

R̄(s) =
−ā
s

(
e−st̄1 + e−s(t̄1+t̄2) − e−s(2t̄1+t̄2) − 1

)
(4.62)

I(s) = 0.5
(

1 + e−
T
2
s
)
. (4.63)

Performing the Laplace transform on both sides of (4.61) yields Q̄(s) = R̄(s)I(s). By taking the

inverse Laplace transform, Q̄(t) can be calculated by

Q̄(t) =
ā

2
[−H(t− t̄1)−H(t− t̄1 − t̄2)−H(t− t̄1 − T/2)

−H(t− t̄1 − t̄2 − T/2) +H(t− 2t̄1 − t̄2)

+H(t− T/2) +H(t− 2t̄1 − t̄2 − T/2) + 1] ,

(4.64)

where H(.) is the Heaviside function. According to (4.64) and the anti-symmetrical property of Q̄(t)

along the vertical line t = 0.5 (t̄f + T/2), all possibilities of Q̄(t) are listed in Table 4.4.

The classification of shaped families P1–P6 in Table 4.4 depends entirely on how large t̄1 and t̄2 of

the unshaped command R̄(t) compare with T/2 (half of the natural period). For instance, in the case

of P1 (t̄1 ≥ T/2 and t̄2 ≥ T/2), the shaped command Q̄(t) (bold blue line) reserves the maximum

magnitude ā of the baseline function R̄(t) (light gray line). Moreover, the shaped velocity—obtained

by integrating Q̄(t)—reaches its maximum value āt̄1 at t = t̄1 + T/2. On the other hand, in the

P4 family, the maximum value of Q̄(t) is reduced to half compared with the original command; the

peak of the shaped velocity attains at t = t̄1 + t̄2 with a magnitude of 0.5ā(2t̄1 + t̄2 − T/2). Such

a classification is needed because essential inequality constraints generated from the actuator limits

vmax and amax are different for each family of shapes.

For every family P1–P6, by letting the total transferring time of the shaped command as the cost

function and collecting all necessary equality and inequality constraints (shown in Table 4.4), an

optimization problem can be established to solve for unknowns ā, t̄1, and t̄2. Six nonlinear programs

are formulated, and then sequentially solved by the fmincon routine of MATLAB. In fact, the optimal

solutions of these nonlinear programs can also be analytically obtained by invoking the Karush-Kuhn-

Tucker (KKT) optimality condition. However, the present problem has a considerably large number

of families, and thus a numerical method is preferable. Finally, the (feasible) optimal solution of the

family which produces the smallest transferring time will be chosen as the eventual answer for the

minimum-time SC–IS scheme.
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Table 4.5: Comparative results of the minimum-time SC–IS and the minimum-time SC–VSE.

TC#
Minimum-time SC–IS (xr = 1 m) Minimum-time SC–VSE (xr = 1 m)

Selected family ā? t̄?1 t̄?2 J̄? Selection a?|ã? t?1|t̃?1 t?2|t̃?2 k?1 |k?2 t?f |t̃?f
A1 P2 0.05 m/s2 4.47 s 0 s 10.13 s Case II 0.05 m/s2 4.21 s 0.53 s k?2 = 2 8.96 s

A2 P3 0.2 m/s2 1.00 s 3.98 s 6.99 s Case II 0.1 m/s2 2.49 s 1.52 s k?2 = 2 6.50 s

A3 P5 1 m/s2 1.00 s 0 s 3.19 s Case II 0.5 m/s2 0.84 s 1.53 s k?2 = 1 3.22 s
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Figure 4.8: Simulation result of the minimum-time SC–IS and its comparison with the minimum-time
SC–VSE in testcase A1.

4.4.2 Simulation results of the minimum-time SC–IS

In an analogous manner to the SC–VSE scheme, simulation studies of the minimum-time SC–IS are

conducted in three testcases with different values of vmax and amax as shown in Table 4.1. In addition,

to facilitate the subsequent experiments in Section 4.5, where the running length of the trolley is

limited, the transferring distance is changed to 1 meter (i.e., xr = 1 m). Computational results of the

minimum-time SC–IS are summarized in Table 4.5, where (̄.)
?

denotes the resultant optimal value of

(̄.). On average, the computational time for each testcase is 0.26 second. Therefore, similar to the

minimum-time SC–VSE, the minimum-time SC–IS can also be computed online.
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Figure 4.9: Simulation result of the minimum-time SC–IS and its comparison with the minimum-time
SC–VSE in testcase A2.
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Figure 4.10: Simulation result of the minimum-time SC–IS and its comparison with the minimum-
time SC–VSE in testcase A3.
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Simulation results of the minimum-time SC–IS are depicted in Figs. 4.8–4.10 for all testcases. Like

the SC–VSE case, the total transfer time for the SC–IS scheme decreases when the values of vmax and

amax increase. The vibration is suppressed at the end of the transportation. All of the actuator limits

are strictly adhered to. Hence, the effectiveness of the minimum-time SC–IS is verified.

4.4.3 A brief comparison between SC–IS and SC–VSE

At the first glance, the SC–IS scheme seems to be a generalization of the SC–VSE. However, it is not

true. As a counterexample, no shape family (in Table 4.4) of the SC–IS can produce the SC–VSE in

the following configuration: t1 + t2 = 2T (Case II), vmax = 0.5 m/s, amax = 0.05 m/s2, l = 1.4 m,

and xr = 1 m. Thus, the SC–IS does not encompass the SC–VSE in general, namely that they are

complementary in relation.

Testcases A1–A2 and testcase A3, respectively, are the instances when the minimum-time SC–VSE

results in a faster and longer transferring time compared to the minimum-time SC–IS (see Table 4.5

and Figs. 4.8–4.10). Therefore, in practice, among SC–VSE and SC–IS, it is rational to pick the

one which provides a faster transferring time. This is the ultimate choice presented in this chapter.

Considering the case that infinite actuator limits are permitted (vmax → +∞ and amax → +∞), it is

easy to see that the position baseline S-curve command of the SC–IS scheme comes close to a step

function to realize the minimum-time solution. In such a circumstance, the minimum transferring

time of the SC–IS scheme approaches T/2, where the delay T/2 is caused by the ZV input shaper.

Therefore, the SC–IS is twice as fast as the SC–VSE when infinite actuator limits are allowed. Thus,

the SC–IS will be ultimately chosen.

Remark 14. Since both SC–VSE and SC–IS schemes only utilize the rope length l in their design

process, the robustness to parametric uncertainties is not an issue. This can be explained by the fact

that the rope length can be easily measured in practice.

Remark 15. The linearized model of a three-dimensional overhead crane system can be decoupled

into two independent linear subsystems in x and y directions [143]. Each of them is identical to

the model (3), which is used in the designs of the minimum-time ZV S-curve commands. Therefore,

the proposed schemes (SC–VSE and SC–IS) can be straightforwardly applied on a three-dimensional

overhead crane system.

Remark 16. The simplicity of S-curve commands is not a drawback, but it is actually an advantage

when it comes to industrial applications. The reason is that S-curve commands are ubiquitous, and
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Figure 4.11: Structure of the experimental overhead crane system.

they can easily be executed by any industrial servo drives. Moreover, their effectiveness in suppressing

the residual vibration has been shown to be satisfactory. Note also that although simplicity is the na-

ture of S-curve commands, obtaining the time-optimal solutions in the presence of actuator constraints

is not an easy task (as shown in the theoretical results of Sections 4.3–4.4).

4.5 Experimental results

The proposed motion planning schemes are now implemented on a real overhead crane system, which is

illustrated in Fig. 4.11. The actuator is a YASKAWA USAFED-09C2L1K AC servo motor operating in

position control mode. MATLAB/Simulink is utilized to compose the program and build the executing

file via Real Time Workshop. A Linux PC operates the executing file in real time with a sampling

period of 10 ms through Real Time Application Interface (RTAI). Moreover, a pair of laser sensors

KEYENCE VG-035 is used to measure the swing angle. Note that, the planned acceleration profile of

the minimum-time SC–VSE (or SC–IS) is integrated twice to obtain a reference in the position level.

The result is the actual feedforward command feeding to the servo driver to drive the trolley motion

via a built-in motor’s position controller provided by the motor manufacturer.

Three testcases A1–A3 (see Table 4.1) are employed to compute the minimum-time SC–VSE and the

minimum-time SC–IS. Following the discussion in Section 4.4.3, among SC–VSE and SC–IS, the one

which produces a smaller transferring time will be chosen. Hence, based on the computational results

in Table 4.5, the minimum-time SC–VSE is chosen for testcases A1 and A2, and the minimum-time

SC–IS is selected for testcase A3.
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Figure 4.12: Experimental result in testcase A1 (the minimum-time SC–VSE is chosen). Simulation
and experimental results are in a complete agreement.
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Figure 4.13: Experimental result in testcase A2 (the minimum-time SC–VSE is chosen). Simulation
and experimental results are in a complete agreement.
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Figure 4.14: Experimental result in testcase A3 (the minimum-time SC–IS is chosen). Simulation
and experimental results are in a complete agreement.

Figs. 4.12–4.14 depict the experimental results. In all testcases, it can be seen that the trolley pre-

cisely reaches the desired destination while the vibration is nearly suppressed. Moreover, the maximum

velocity and maximum acceleration constraints of the actuator are strictly complied with. The exper-

imental results strongly agree with the simulation results, which verifies the correctness of the entire

modeling and control design process. Therefore, the effectiveness of the proposed method is strongly

confirmed. Note that, there are slight differences between the simulations and the experimental results

due to the following: i) some physical factors (e.g., air friction, payload’s inertia) are neglected in the

model of the overhead crane system, ii) the actual rope lengths in practice are slightly different from

those used in the simulations because of small measurement errors, and iii) small tracking errors of

the computed position commands exist in the experiments (see subfigure x of Figs. 4.12–4.14). Nev-

ertheless, the differences are minor and the performances of the proposed minimum-time ZV S-curve

commands have been demonstrated. Thus, such an issue is not critical.

4.6 Summary

In this chapter, minimum-time S-curve commands were proposed to obtain vibration-free transporta-

tion of an overhead crane system. In order to build the vibration suppression capability, two techniques
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were systematically established, on the basis of a parameterized baseline S-curve command. The first

method directly embedded the terminal conditions of vibration-free transportation into the baseline

function, whereas the second method employed the input shaping methodology. Minimum-time so-

lutions were formulated for both schemes by solving constrained (discrete) nonlinear optimization

problems, in which maximum velocity and maximum acceleration of the actuator were elaborately

considered. A comparison with related studies verified the advantage of the proposed minimum-time

S-curve command in terms of transfer time, and thus the transportation productivity was enhanced.

It was also shown that the online command generation is feasible with the proposed schemes. Both

simulation and experimental results were provided to clarify the effectiveness of the proposed methods

and they are in a complete agreement.



Chapter 5

Model Reference Input Shaping

Control

In Chapter 4, two motion planning methods were established for a linearized model of an overhead

crane with constant rope length. Especially, in Section 4.4, a minimum-time input shaping-based

feedforward controller was formulated for a time-invariant linear dynamics of the overhead crane

system. In this chapter, an advanced version of the scheme shown in Section 4.4 will be introduced

for a luffing dynamics of a rotary crane system with time-varying rope length. The newly established

technique, named model reference input shaping (MRIS) control, is able to completely suppress the

residual vibration for a highly nonlinear time-varying system. The basic idea of the proposed approach

is to obtain a reference oscillation from a second-order time-invariant linear system, on which the

standard input shaping control is applied. The MRIS control law is then designed to exactly match

the real vibration of the system with the reference oscillation. By such a means, an exact zero vibration

suppression can be achieved for the actual system. The reference command is parameterized to cope

with control objectives other than the vibration suppression. Simulation results are provided to verify

the superiority of the MRIS controller over the standard robust input shaping control method.

5.1 Introduction

Rotary cranes are extensively used at harbors to transport large payloads—ranging from several hun-

dred kilograms to dozen of tons—one point to another in the workplace. There are three main motions

in a rotary crane system: slewing, luffing, and hoisting. The slewing motion rotates the entire base,

111
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whereas the luffing movement lowers/rises the boom. The payload is suspended under the boom tip

and its height can be adjusted by the hoisting motion. Both slewing and luffing motions are rotational;

thus, the rotary crane is usually described in the spherical coordinate system. The rotary crane can

also be considered as a robotic arm with two revolute joints and one prismatic joint. Due to the

fact that the rope is flexible, the payload will exhibit a residual vibration. This unwanted vibration

substantially lengthens the transportation as well as reduces safety of the system in practice. Since

the rotary crane is underactuated, the vibration suppression control of this system poses a signifi-

cant challenge. Therefore, considerable interests were mounting on vibration controls for rotary crane

systems. They can be classified into two main classes: feedback and feedforward controls.

Plenty of studies can be found in the feedback control category. In [144], a delayed feedback controller

was established to stabilize the sway angles for a ship-mounted crane. Uchiyama [13] formulated a

simple linear model of the 3D rotary crane dynamics and afterward, a constant gain partial state

feedback controller was designed to robustly stabilize the system for any rope length. Ouyang et al.

[145] proposed a nonlinear controller using only slewing motion to suppress both radial and tangential

swing angles. Recently, Sun et al. [146] and Lu et al. [147] introduced passivity-based nonlinear

controllers for rotary crane systems subject to roll and heave disturbances. Qian et al. [148] reported

a nonlinear controller for an offshore boom crane, which comprises an adaptive robust control law and

a learning strategy. To sum up, feedback control techniques demonstrated their excellent properties in

dealing with uncertainties and disturbances. However, they require a sophisticated and costly sensor

structure, which demands a frequent maintenance. This is the reason that the feedback controllers are

still not commonly used in practical cranes. In numerous contexts, feedforward controls are preferable

in industry due to their simplicity, ease of implementation, and no additional measurement system

being required.

Among the feedforward schemes [60, 68, 149], the input shaping control [43, 48] is the most widely

applied method. Its basic idea is to intelligently modulate the original reference command by con-

volving with a sequence of impulses called input shaper. The input shaper is designed in such a way

that the vibration induced by all impulses is self canceled. If the input shaper causes no vibration,

its convolution with any reference command also results in a zero vibration for the system. Danielson

[150] implemented a non-robust Zero Vibration (ZV) input shaper and two robust ones, including

Zero Vibration Derivative (ZVD) and Specified Insensitivity (SI), to a rotary crane with only luffing

motion. This study reported that performance of the robust input shapers are better than the ZV

input shaper, which is not robust to modeling errors. The same conclusion was made in [151], where

a double-pendulum rotary crane was considered. Recently, Newman and Vaughan [152] proposed a

specially designed input shaper that can suppress the vibration under non-initial conditions. However,
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Table 5.1: System parameters.

Parameter Description Value

LB Boom length (m) 30

d1 Length of the FJ line (m) 9.157

α1 Auxiliary angle (rad) 1.45

b1 Radius of the luffing drum (m) 0.3

g Gravitational acceleration (m/s2) 9.81

the above-mentioned studies cannot completely suppress vibration for the rotary crane system, that

is to say, only a vibration reduction is guaranteed. Furthermore, the time-varying rope length sce-

nario was not yet considered to an elaborate degree since the standard input shaping control, which

is originally designed for a second-order time-invariant linear plant, cannot be trivially applied to a

time-varying nonlinear system. Those are the problems needing to be overcome.

In order to address the aforementioned challenges, a new model reference input shaping controller for

the luffing motion of the rotary crane will be formulated in this chapter. The proposed technique can

handle a highly nonlinear luffing pendulum dynamics with an arbitrary (known) time-varying rope

length. The newly established input shaping control law enables us to use the non-robust ZV input

shaper to completely suppress the vibration; thus, the transferring time is significantly faster than

standard robust input shapers, which are slow and cannot provide an exact zero vibration cancellation.

5.2 Mathematical modeling of luffing dynamics

The swinging motion of the payload induced from the luffing actuation is illustrated in Fig. 5.1, where

ϕ(t), θ(t), and l(t) are the luffing angle, swing angle, and rope length respectively. In order to vary

the luffing angle, a servo motor is attached at the point A to rotate the luffing drum, which connects

to the points F and T by ropes (see Fig. 5.1). The rotation angle of the luffing motor is denoted as

ϕM (t). All essential parameters of the system are summarized in Table 5.1.

By using the Euler-Lagrange method, the nonlinear luffing dynamics of the rotary crane system with

a time-varying rope length can be described as follows:

lθ̈ + 2l̇θ̇ + g sin θ = u(t), (5.1)
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Figure 5.1: Mathematical modeling of the luffing dynamics.

where u(t) = LBϕ̈ sin (ϕ− θ) + LBϕ̇
2 cos (ϕ− θ). The hoisting profile l(t) can be arbitrary. However,

l(t) is supposed to be known and l̇(t) is continuous. It is also commonly assumed that the system

starts from rest (see [60, 68, 151]), namely ϕ̇(0) = l̇(0) = θ(0) = θ̇(0) = 0 . Furthermore, let ϕ(0) := ϕ0

and l(0) := l0. To obtain vibration-free transport, the following terminal conditions must be achieved

in some finite terminal time τ :

ϕ(τ) = ϕf , l(τ) = lf , ϕ̇(τ) = l̇(τ) = θ(τ) = θ̇(τ) = 0. (5.2)

In (5.2), ϕf and lf are positive reference values of the luffing angle and the rope length respectively.

The actuator dynamics from the luffing motor to the boom’s luffing angle will be presented next.

Consider the triangle FTJ in Fig. 5.1, we have

D2(ϕ) = d2
1 + L2

B + 2d1LB cos (α1 + ϕ) . (5.3)

Denote the initial angle of the luffing motor as ϕM0 := ϕM (0). The initial value D0 of D(ϕ) can be

calculated by replacing ϕ by ϕ0 in (5.3). Since the variation of the rope length is constant, it can be
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obtained that

(ϕM − ϕM0) b1 = D0 −D(ϕ). (5.4)

Let φ := α1 + ϕ. From (5.4), it can be inferred that

ϕM =
D0 + b1ϕM0 −

√
d2

1 + L2
B + 2d1LB cosφ

b1
. (5.5)

Differentiating (5.3) and (5.4), we have

Ḋ(ϕ) = −d1LB sinφ

D
ϕ̇ (5.6)

Ḋ(ϕ) = −b1ϕ̇M . (5.7)

Comparing (5.6) and (5.7) yields

ϕ̇M =
d1LB
b1

sinφ

D
ϕ̇. (5.8)

By taking the derivative of (5.8), it results in

ϕ̈M =
d1LB
b1

[
D
(
ϕ̈ sinφ+ ϕ̇2 cosφ

)
− ϕ̇Ḋ sinφ

D2

]
. (5.9)

The MRIS control will be designed based on (5.1) where the control input is u(t). Afterward, it can

be translated to the real signal commanding the luffing servo motor in the position or velocity level

using (5.5) or (5.8) respectively.

The control objective is to design a MRIS control law to bring the system from its initial conditions

to the terminal conditions (5.2) in a minimum time, considering the following actuator constraints:

|ϕ̇M | ≤ ϕ̇max
M , |ϕ̈M | ≤ ϕ̈max

M , |l̇| ≤ l̇max, |l̈| ≤ l̈max. (5.10)

For a real-size rotary crane system, ϕ̇max
M = 5.47 rad/s, ϕ̈max

M = 2.73 rad/s2, l̇max = 1.5 m/s, and

l̈max = 0.6 m/s2. The following section will be devoted to the design of the MRIS controller.
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27

MODEL REFERENCE INPUT SHAPING CONTROL DESIGN
• Standard robust input shaping does not provide good performance.

A model reference input shaping scheme is proposed.⇒
• Diagram of the model reference input shaping (MRIS) control is:

Reference 
Model (LTI)ISur(t)

MRIS law

Real crane 
(with hoisting)
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(Reference 
command)

(Input 
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u ξ

θ,  ϕ ϕ

,  l l

Fig. 1 Diagram of the MRIS control

u

Figure 5.2: Basic concept of the MRIS control design.

5.3 MRIS controller design

5.3.1 Design concept

The input shaping control is originally established for a second-order time-invariant linear system.

A direct application of the standard input shaping control for a time-varying nonlinear system often

results in a poor vibration suppression performance. In order to circumvent this problem, the standard

input shaping control law is firstly applied to a reference model, which is a second-order time-invariant

linear system. Thus, the oscillation of the reference model (named reference oscillation) can be com-

pletely suppressed. The actual control input of the time-varying nonlinear system is then derived to

exactly match the vibration of the real system with the reference oscillation. By such a means, a

complete vibration suppression can be achieved for the real plant. The aforementioned concept of

the MRIS scheme is illustrated in Fig. 5.2. To accomplish the MRIS controller design, the reference

command ur(t) (see Fig. 5.2) must be determined to fulfill control objectives other than the vibration

suppression. This can be done by parameterizing ur(t) in such a way that the number of unknowns in

ur(t) should be (at least) equal to the number of remaining control targets. For instance, ur(t) should

have two to-be-determined variables to realize two remaining objectives ϕ(τ) = ϕf and ϕ̇(τ) = 0 in

(5.2).

5.3.2 MRIS control law

The reference model is introduced as follows:

l̄ξ̈ + gξ = ū(t), (5.11)
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where l̄ is a constant nominal rope length. The natural period of (5.11) is T = 2π
√
l̄/g. The control

input ū(t) (see Fig. 5.2) is designed based on the standard input shaping technique

ū(t) = ur(t) ∗ I(t), (5.12)

where ∗ is the convolution operator and I(t) is the ZV input shaper, which has the following expression

in time domain [153]:

I(t) = 0.5 [δ(t) + δ (t− T/2)] . (5.13)

In (5.13), δ(.) is the Dirac delta generalized function. As discussed earlier at the end of Section 5.3.1,

the reference command should have two unknowns. Therefore, it is chosen to be the following bang-

off-bang profile:

ur(t) =


a, 0 ≤ t ≤ t1

−a, t1 < t ≤ tf

0, t > tf ,

(5.14)

where a and t1 are to-be-determined variables, and tf will be gradually reduced to obtain a minimum

transferring time that meets the actuator limits (5.10) (see [60]).

Under the action of the control input (5.12), the reference oscillation is suppressed, namely

ξ (tf + T/2) = ξ̇ (tf + T/2) = 0. (5.15)

The next step is to design the real control input u(t) (see Fig. 5.2) to match the actual vibration θ(t)

with the reference oscillation ξ(t), that is to say

θ(t) ≡ ξ(t), θ̇(t) ≡ ξ̇(t), θ̈(t) ≡ ξ̈(t), ∀t ≥ 0. (5.16)

By using (5.1) and (5.11), we have

ξ̈ = −g
l̄
ξ +

ū(t)

l̄

θ̈ = −2
l̇

l
θ̇ − g

l
sin θ +

u(t)

l
.

(5.17)
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Applying (5.16) on (5.17) results in

−2
l̇

l
ξ̇ − g

l
sin ξ +

u(t)

l
= −g

l̄
ξ +

ū(t)

l̄
, (5.18)

from which the MRIS law u(t) can be extracted as follows:

u(t) = ū(t)
l

l̄
+ g

(
sin ξ − l

l̄
ξ

)
+ 2l̇ξ̇. (5.19)

By using the MRIS control law (5.19), the vibration of the time-varying nonlinear system (5.1) is

completely suppressed, namely

θ (tf + T/2) = θ̇ (tf + T/2) = 0. (5.20)

Therefore, to accomplish the MRIS controller design, one needs to determine two unknowns a and t1

in ur(t) to fulfill the remaining requirements, those are

ϕ (tf + T/2) = ϕf , ϕ̇ (tf + T/2) = 0. (5.21)

Comparing the definition of u(t) in (5.1) with (5.19), we have

LBϕ̈ sin (ϕ− ξ) + LBϕ̇
2 cos (ϕ− ξ)

= [ur(t) ∗ I(t)]
l

l̄
+ g

(
sin ξ − l

l̄
ξ

)
+ 2l̇ξ̇. (5.22)

Two unknowns a and t1 can be designed based on (5.22) to realize (5.21). However, since (5.22) is

a nonlinear differential-integral equation, an analytical solution may not exist. For this reason, the

following optimization problem is configured to determine a and t1:

min
a,t1

ω1 [ϕ (tf + T/2)− ϕf ]2 + ω2ϕ̇
2 (tf + T/2) (5.23)

s.t. Nonlinear differential-integral equation (5.22).

The weighting coefficients of (5.23) are ω1 = 103 and ω2 = 105. The nonlinear program (5.23) can be

solved by the fmincon routine of MATLAB.

Note that, for any nonlinear optimization solver, good initial guesses of decisive variables are crucial

to ensure that the converged (local) minimum has an acceptable quality. The following subsection
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will be devoted to formulating the initial guesses for a and t1, which are sufficiently close to the true

solutions.

5.3.3 Computation of initial guesses for unknown variables

Denote the initial guess of a and t1 as a0 and t10 respectively. The purpose is to produce reasonable

values of a0 and t10 in closed-form. Note that, it is infeasible to obtain an analytical solution of a and

t1 when a full time-varying nonlinear system is used. Therefore, the computation of a0 and t10 will

be conducted on a simplified model. This model utilizes the constant nominal rope length l̄ and also

assumes the swing angle is sufficiently small such that sin θ ≈ θ and θ � ϕ. Under these assumptions,

based on (5.1), the simplified dynamics of the system is given by

l̄θ̈ + gθ = ψ(t), (5.24)

where ψ(t) = LBϕ̈ sinϕ+ LBϕ̇
2 cosϕ. The initial conditions of (5.24) are

ϕ(0) = ϕ0, ϕ̇(0) = 0, θ(0) = 0, θ̇(0) = 0. (5.25)

The present goal is to design the input ψ(t) of the simplified model (5.24) in the form of a standard

input shaping control law, that is

ψ(t) = ψr(t) ∗ I(t), (5.26)

where I(t) is the ZV input shaper in (5.13) and ψr(t) is a bang-off-bang profile similarly to (5.14),

that is to say

ψr(t) =


a0, 0 ≤ t ≤ t10

−a0, t10 < t ≤ tf

0, t > tf

. (5.27)

Note that, the initial guesses a0 and t10 are present in (5.27) and their values must be determined

to fulfill the conditions ϕ(tf + T/2) = ϕf and ϕ̇(tf + T/2) = 0 in (5.21). Let us denote z :=

−LB cosϕ+LB cosϕ0. The terminal conditions (5.21) can be translated to the z-coordinate as follows:

z (tf + T/2) = zf , ż (tf + T/2) = 0, (5.28)
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where zf = −LB cosϕf + LB cosϕ0. Taking the first and second derivatives of z results in

ż = LBϕ̇ sinϕ (5.29)

z̈ = LBϕ̈ sinϕ+ LBϕ̇
2 cosϕ. (5.30)

From (5.30), we have ψ(t) = z̈(t). From (5.26), it yields

z̈(t) = ψr(t) ∗ I(t). (5.31)

Note that, unlike (5.22), (5.31) is a linear differential-integral equation, which admits an analytical

solution. To solve (5.31), the Laplace transformation method can be used. Taking the Laplace

transform for both sides of (5.31), we have

s2z(s) = ψr(s)I(s). (5.32)

From (5.27) and (5.13), the Laplace transforms of ψr(t) and I(t) can be easily obtained by

ψr(s) = −a0

s

(
2e−st10 − e−stf − 1

)
(5.33)

I(s) = 0.5
(
1 + e−0.5Ts

)
. (5.34)

Plugging (5.33) and (5.34) into (5.32) and taking the inverse Laplace transform of z(s), we can obtain

a closed-form expression of z(t) and ż(t) in terms of a0 and t10 as shown in (5.35), where H(.) is the

Heaviside function:

z(t) = −1

2
a0

[
(t− t10)2H (t− t10) + (t− t10 − T/2)2H (t− t10 − T/2)− 0.5 (t− tf )2H (t− tf )

−0.5 (t− tf − T/2)2H (t− tf − T/2)− 0.5 (t− T/2)2H (t− T/2)− 0.5t2
]
.

ż(t) = −1

2
a0

[
2 (t− t10)H (t− t10) + (t− t10)2 δ (t− t10) + 2 (t− t10 − T/2)H (t− t10 − T/2)

+ (t− t10 − T/2)2 δ (t− t10 − T/2)− (t− tf )H (t− tf )− 0.5 (t− tf )2 δ (t− tf )

− (t− tf − T/2)H (t− tf − T/2)− 0.5 (t− tf − T/2)2 δ (t− tf − T/2)

− (t− T/2)H (t− T/2)− 0.5 (t− T/2)2 δ (t− T/2)− t
]
. (5.35)

By using (5.28) on (5.35), it can be obtained that

a0 =
4zf
t2f
, t10 =

tf
2
. (5.36)
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The values of a0 and t10 in (5.36) are the initial guesses of a and t1 when solving the nonlinear program

(5.23).

5.4 Simulation results

This section provides simulation results of the proposed MRIS controller and its comparisons with

no-control case and the standard robust input shaper ZVDD [43]. In no-control context, both luffing

and hoisting motions use trapezoidal velocities to reach their reference values without considering the

vibration suppression. The simulations are conducted for the following two cases with different luffing

ranges:

� Case 1: ϕ0 = 0.38 rad (22 degs), ϕf = 0.79 rad (45 degs), l0 = 30 m, and lf = 10 m.

� Case 2: ϕ0 = 0.38 rad (22 degs), ϕf = 1.22 rad (70 degs), l0 = 30 m, and lf = 10 m.

The nominal rope length is chosen as l̄ = 0.5 (l0 + lf ). Note that, tf is gradually reduced by the

bisection method to obtain a minimum value (tf )min for which the actuator limitations (5.10) are met.

The computational results are summarized as follows:

� Case 1: a = 0.206, t1 = 5.553 s, (tf )min = 11.35 s.

� Case 2: a = 0.550, t1 = 5.552 s, (tf )min = 11.35 s.

The computational times of Case 1 and Case 2 are 10.76 s and 9.53 s respectively on a personal com-

puter with 2.7-GHz Intel Core i5-4310M and 8 GB of RAM. It is remarked that the total transferring

time of the MRIS controller is (tf )min + T/2, where T/2 is the delay caused by the ZV input shaper.

In two cases, an identical minimum transportation time is obtained due to the actuator limitations

of the hoisting motion. It is also important to note that, when initial guesses of a and t1 are both

set to zero, the optimization solver (i.e., fmincon) fails to provide a good solution and sometimes,

infeasibility is encountered. Thus, the appropriate guesses suggested in Section 5.3.3 are crucial.

A standard robust ZVDD input shaper is employed to compare with the proposed MRIS controller.

The formula of the ZVDD input shaper in time domain is given by [153]

I1(t) =
1

8
δ(t) +

3

8
δ

(
t− T

2

)
+

3

8
δ (t− T ) +

1

8
δ

(
t− 3T

2

)
. (5.37)
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Figure 5.3: Comparative simulation result in Case 1.
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Figure 5.4: Comparative simulation result in Case 2.
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The comparative simulation results between the MRIS control, a standard robust input shaping control

using the ZVDD input shaper (5.37), and a no-control case are given in Figs. 5.3–5.4 for Case 1 and

Case 2. Note that, the full time-varying nonlinear system (5.1) is used in the simulations. From

Figs. 5.3–5.4, it can be observed that the MRIS control law is able to completely suppress the vibration,

whereas there still exists a significant residual oscillation after the motion in the case when the robust

ZVDD input shaper is utilized. Furthermore, the control input magnitude of the MRIS controller is

considerably smaller than the ZVDD input shaping control. Therefore, it has been shown that, under

a relatively similar transportation time, the proposed MRIS scheme is superior than the standard

robust input shaping method.

5.5 Summary

This chapter established a model reference input shaping controller—a new scheme to obtain an exact

zero vibration suppression for a highly nonlinear time-varying system found in the luffing dynamics of

the rotary crane. The performance of the MRIS controller was shown to be superior than the standard

robust input shaping control using the ZVDD input shaper.



Chapter 6

Resonance-based Tossing Control

In Chapters 2–5, the vibration was seen as a harmful property that needs to be eliminated, since

cranes are assumed to transfer large blocks. For this reason, various vibration suppression control

techniques were presented in the previous chapters. The main aim of this chapter is to evidently

demonstrate that one can employ the vibration excitation control to further shorten the transfer time

in the context of bulk material transportation of an overhead crane. As such, it shows that the

vibration suppression control is not the best option in all circumstances. In practice, transportation

of bulk materials using an overhead crane system possesses a special property, that is, the transferred

materials can be dropped/discharged while in the air. In order to exploit such a unique feature, this

chapter introduces a new concept, named tossing control methodology, to enhance transportation

productivity. A specific type of tossing controller is proposed, which relies on the phenomenon of

linear resonance to induce oscillation in periodically increasing amplitude. A novel resonance-based

tossing controller—comprising an optimal linearization law and a resonance evoking component—

is formulated. It will be shown that, under similar requirements of bulk materials transportation,

conditions, and actuator constraints, the resonance-based tossing control can reduce the transferring

time up to 26.5% compared with the well-known minimum-time swing suppression controller—the

fastest member of the swing suppression control group. The results show that, although it is not always

able to obtain a faster transportation using the resonance tossing controller, evidence for breaking the

time limitation of the minimum-time swing suppression control is provided. Both simulation and

experimental results are presented to verify the effectiveness of the proposed resonance tossing control

method.

124
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Dropping material

Grab bucket

Rope

Trolley

Figure 6.1: An overhead crane is transferring bulk material in a warehouse.1

6.1 Introduction

As previously discussed in Chapter 4, overhead cranes are widely used in various places such as facto-

ries, storage yards, harbors, etc. to transfer heavy payloads point-to-point. The payload is suspended

under the trolley by wire ropes and its height can be adjusted by the hoisting motion. The trolley is

actuated to relocate the payload within the workspace. The payloads are usually large blocks or bulk

materials (such as sand, cement, etc.). When transferring the bulk materials, the overhead crane must

utilize a specially designed grab bucket which can close/open to effectively grasp/drop the materials

(see Fig. 6.1). The fundamental property of the bulk materials transportation is that the materials can

be dropped/discharged from the air and they naturally fall down toward their intended destination by

gravity. This is completely different to a large block transfer, in which the payload must be eventually

laid down on the ground by the overhead crane. It is well-known that the payload exhibits vibration

during and after transportation. The residual oscillation is usually undesirable when transferring a

large block payload, since, for safety, the swinging motion needs to cease before the payload can be

safely landed. Therefore, in such circumstances, vibration suppression control (see Chapters 1&4 and

references therein) must be emphasized. In the context of bulk materials transportation, its aforemen-

tioned unique property, namely that materials can be discharged while in the air, implies a favorable

consequence, that is, the zero terminal swing angle constraint as found with the vibration suppression

control can be relaxed. As a result, the requirements of bulk materials transportation are stated as

1Source: https://www.reel-coh.com
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Tossing control Swing suppression control

g g

Initial
position

Discharging
destination

Initial
position

Discharging

destination

Figure 6.2: Difference between (swing) tossing control and swing suppression control.

follows: the payload (grab bucket with materials inside) should be transferred above the discharging

destination, at which the payload’s horizontal and vertical velocities are zero, meanwhile the trolley

must stop2, and the terminal swing angle is not necessarily zero. The relaxation of the constraint on

the zero terminal swing angle indeed offers the possibility of further reducing the transferring time by

exciting the payload vibration rather than suppressing/minimizing it. Such a type of control is termed

tossing control. Note that, both tossing and swing suppression control methodologies can realize the

requirements of bulk materials transportation. The only difference between them is the tossing control

aims at achieving a large terminal swing angle, whereas the swing angle must be zero in the swing

suppression control. This dissimilarity is illustrated in Fig. 6.2.

This chapter will introduce a resonance-based tossing control for an overhead crane system. The

proposed method utilizes the linear resonance phenomenon (see [154, p. 113], [155, p. 162]) to

generate a large swing angle with periodically increasing amplitude. Here, the linear resonance is

employed instead of the nonlinear one due to the following reasons. First, the linear vibration frequency

can be exactly computed, whereas it is generally not possible in the case of the nonlinear vibration

[156]. Second, the linear resonance frequency is independent from the magnitude of control input and

2These requirements are explained as follows. At the discharging destination, the payload speed in both horizontal
and vertical directions must be zero in order to make use of the following advantages. Firstly, it ensures that, in ideal
conditions, when the grab opens, the bulk materials fall down along the vertical axis, which prevents spilling. Secondly,
the control input for the returning phase can be easily obtained by simply applying the designed control input of the
transferring phase backward in time (see Section 6.3.3). Lastly, after discharging, the payload tendency is to swing toward
the initial position, which naturally makes the returning phase more time-efficient. In addition, the trolley velocity must
also be zero since after discharging the material, to save time, the trolley needs to immediately return to the initial
position to supply material for the next transportation cycle.
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oscillation itself, whereas such a property may not hold in the nonlinear resonance [157]. Therefore,

by using the linear resonance, the controller design can be facilitated. The resonance control law

is given by a parameterized composite sine and cosine function, whose frequency is identical with

that of the system. By that means, the resonance can be created. Since a large swing angle is

supposed to be generated, the nonlinear model of the overhead crane ought to be used. Therefore,

in order to obtain the linear resonance for a nonlinear system, an exact linearization law is added

to the resonance control input. The technical difficulty in using such a technique is that the control

effort for linearizing the system grows rapidly as the swing angle increases, which is even unbounded

when the swing angle approaches the singular points at ±π/2 if a conventional linearization law is

used. To solve that problem, an optimal gain for the linearization law will introduced to minimize its

magnitude. A favorable property of the proposed optimal exact linearization law is that its magnitude

can be bounded by a known limit for all swing angles in (−π/2, π/2). Essential terminal conditions

resulted from the tossing control requirements are employed to determine the unknown parameters of

the total resonance control law. Both maximum velocity and maximum acceleration of the actuator

are taken into account. To the best of author’s knowledge, none of existing researches investigated a

similar problem relating to the tossing control methodology.

It is well-known that, among all vibration controllers, the minimum-time (or time-optimal) control

universally provides the smallest possible transferring time [57, 59, 139, 158]. Nevertheless, at its best,

the proposed resonance-based tossing controller is able to save 26.5% transferring time (or 6.4 seconds

in one cycle of transportation, see Section 6.5) compared with the minimum-time swing suppression

control. Therefore, this evidence confirms the main aim of the chapter and proves the possibility of

breaking the time limitation of the minimum-time swing suppression control in the context of bulk

materials transportation.

The remainder of this chapter is organized as follows. In Section 6.2, a mathematical model of the

overhead crane system is presented. Moreover, requirements of the bulk materials transferring process

are introduced. Section 6.3 is devoted to the design of the resonance-based tossing controller to fulfill

the transportation task. Comparative simulation result of the proposed tossing controller and the

minimum-time swing suppression control is provided in Section 6.5. Experimental result on a small-

scale overhead crane is given in Section 6.6 to verify the effectiveness of the proposed motion planning

method. Finally, Section 6.7 draws conclusions of the chapter.
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Figure 6.3: Mathematical model of the overhead crane system.

6.2 Problem formulation

A mathematical description of the overhead crane system in the case of bulk materials transportation

is illustrated in Fig. 6.3, in which x(t) (m) and θ(t) (rad) are the trolley position and the swing angle.

The net force driving the trolley is denoted as F (t). In addition, m (kg), M (kg), l (m), and g

(= 9.81 m/s2) represents the payload mass, trolley mass, rope length, and gravitational acceleration

respectively. From Fig. 6.3, the horizontal and vertical positions of the payload can be computed by

xp(t) = x(t)− l sin θ(t) (6.1)

yp(t) = l cos θ(t). (6.2)

By differentiating (6.1) and (6.2), horizontal and vertical velocities of the payload are

ẋp(t) = ẋ(t)− lθ̇(t) cos θ(t) (6.3)

ẏp(t) = −lθ̇(t) sin θ(t). (6.4)

The dynamics of the overhead crane system in this chapter is similar to that formulated in Section 4.2

of Chapter 4. Therefore, by recalling two equations (4.9) and (4.10), the mathematical model of the
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overhead crane system shown in Fig. 6.3 can be described by

(M +m) ẍ−mlθ̈ cos θ +mlθ̇2 sin θ = F (6.5)

lθ̈ + g sin θ = ẍ cos θ. (6.6)

Similarly to Section 4.2, ẍ(t) is chosen to be the control input of the system and only (6.6) is employed

in the subsequent tossing control design. Note that, in Section 4.2, a linearized version of (6.6) is

utilized to design minimum-time zero-vibration S-curve commands, whereas the nonlinear differential

equation (6.6) will directly be employed to design the tossing controller. The reason is that the small

angle approximation is not longer valid in the tossing control methodology, as a large swing angle

is supposed to be generated. Due to the physical limitation of the trolley actuator, the following

maximum velocity and maximum acceleration constraints must be strictly complied:

|ẋ(t)| ≤ vmax and |ẍ(t)| ≤ amax, (6.7)

where vmax > 0 and amax > 0. By using the information of the servo motor’s maximum velocity and

maximum torque, as well as the structure of the transmission system, the values of vmax and amax can

easily be estimated [159].

Throughout this chapter, it is also assumed that the payload starts from rest, namely x(0) = ẋ(0) =

θ(0) = θ̇(0) = 0 [59, 63, 139, 158, 160, 161]. In order to realize the tossing control requirements (see

Section 6.1), the following terminal conditions must be fulfilled

ẋ(tf ) = ẋp(tf ) = ẏp(tf ) = 0, xp(tf ) = x̄p, θ(tf ) < 0. (6.8)

In (6.8), tf is the terminal time and x̄p represents the horizontal desired destination of the payload (see

Fig. 6.3). By imposing (6.8), the payload is transferred to the discharging destination (xp(tf ) = x̄p)

at zero velocities in both horizontal and vertical directions (ẋp(tf ) = ẏp(tf ) = 0), the trolley stops

(ẋ(tf ) = 0), and a large terminal swing angle is obtained (θ(tf ) < 0). From (6.3) and (6.4), horizontal

and vertical velocities of the payload at the terminal time tf are

ẋp(tf ) = ẋ(tf )− lθ̇(tf ) cos θ(tf ) (6.9)

ẏp(tf ) = −lθ̇(tf ) sin θ(tf ). (6.10)

In order to realize the condition ẋ(tf ) = ẋp(tf ) = ẏp(tf ) = 0 of (6.8), we should make ẋ(tf ) = θ̇(tf ) = 0.

If this condition is strengthened by adding θ(tf ) = 0, it will become the vibration control, which is
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not of interest in this chapter. Moreover, by using (6.1), the remaining condition of (6.8), namely

xp(tf ) = x̄p, can be developed to x(tf ) − l sin θ(tf ) = x̄p. In summary, the terminal conditions (6.8)

are converted to

ẋ(tf ) = θ̇(tf ) = 0, x(tf )− l sin θ(tf ) = x̄p, θ(tf ) < 0. (6.11)

The following section will be devoted to formulating the resonance tossing control to realize (6.11)

while ensuring (6.7).

6.3 Design of resonance-based tossing control

6.3.1 Resonance control with an optimal linearization law

The basic idea of the proposed method (to realize the tossing control requirements) is based on the

resonance phenomenon. Mechanical resonance can be evoked by matching the frequency of the control

input to that of the oscillation. The main technical difficulty of utilizing the resonance for a nonlinear

system is that the frequency of the nonlinear vibration strongly depends on the control input as well

as the oscillation amplitude [156, 157]. This creates a dilemma in the control design process, since

to generate the resonance, the control input must know the oscillation frequency in advance so that

the frequency matching can be done. Furthermore, the calculation of exact vibration frequency for a

nonlinear system is not an easy task, or sometimes, is impossible [156]. Therefore, the linear resonance

is employed instead of the nonlinear one. In order to generate the linear resonance phenomenon for

the nonlinear system (6.6), the following exact linearization resonance control law is proposed

ẍ(t) = g

(
tan θ − kθ

cos θ

)
︸ ︷︷ ︸

:=L(t)

:=R(t)︷ ︸︸ ︷
− a

cos θ
sin (ω0t)−

b

cos θ
cos (ω0t) . (6.12)

In (6.12), L(t) is the linearization law to exactly linearize the nonlinear system (6.6) and R(t) is the

control input for generating the resonance. The unknown parameters a, b, and ω0 will be determined

in the subsequent deductions by solving a system of nonlinear equations (see (6.55)). Furthermore, the

constant k must be designed to minimize the magnitude of the linearization law L(t). This optimal

design objective is explained as follows. The methodology of the tossing control is to excite a large

swing angle, which entirely depends on the magnitude of R(t). As the swing angle θ(t) increases,

nevertheless, the control effort for linearizing the system (or the magnitude of L(t)) rapidly increases
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(see Fig. 6.5 with k = 1). Moreover, the control input is limited by |ẍ(t)| ≤ amax. Thus, no room is left

for the (prioritized) resonance generation component R(t). For this reason, maximum value of |L(t)|
over a range of operating swing angle

(
θ ∈

[
−θ̄, θ̄

]
, θ̄ > 0

)
needs to be minimized by k. Therefore, k

should be a minimizer of the following minimax optimization problem

min
k

max
θ

[
f (k, θ) =

(
tan θ − kθ

cos θ

)2
]

(6.13)

s.t. θ ∈
[
−θ̄, θ̄

]
with θ̄ ∈ [0, π/2)

k ∈ (0,+∞) .

Note that, θ̄ is treated as an unknown, which can be solved together with the parameters a, b, and

the terminal time tf (see (6.55)). The optimal solution of (6.13) is given by Theorem 5.

Theorem 5. The minimizer k? of the minimax optimization problem (6.13) is given by

k? =
1

cos θ? + θ? sin θ?
, (6.14)

where θ? is determined by

sin
(
θ̄ + θ?

)
− θ? cos

(
θ̄ + θ?

)
= θ̄. (6.15)

Proof. Since f(k, θ) is an even function with respect to θ; hence, it is sufficient to perform the optimiza-

tion procedure on θ ∈
[
0, θ̄
]
. Flow of the proof is explained as follows. The interest region of k is divided

into three sub-intervals, namely k ∈ (0,+∞) = (0, k]∪ [k, 1]∪ [1,+∞), where k := 1/
(
cos θ̄ + θ̄ sin θ̄

)
.

Firstly, it is proven that for 0 < k ≤ k, the minimum value of the function max f(k, θ) attains at

k = k. Secondly, for 1 ≤ k < +∞, the minimum of max f(k, θ) is achieved at k = 1. Therefore, the

whole interest region of k shrinks from (0,+∞) down to [k, 1]. Finally, for k ≤ k ≤ 1, the optimal

solution is determined by the intersection between the critical function and the boundary function.

To begin the proof, the following essential calculus results are provided to facilitate the subsequent

presentations

θ − sin θ ≥ 0, ∀θ ≥ 0. (6.16)

sin θ − θ cos θ ≥ 0, ∀θ ≥ 0. (6.17)
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Furthermore, the first partial derivative of f(k, θ) with respect to k is given by

∂f(k, θ)

∂k
=

2θ (kθ − sin θ)

cos2 θ
. (6.18)

A. Interval 1 (0 < k ≤ k)

At first, let us consider a function q(θ) = kθ − sin θ. The boundary values of q(θ) are given by

q(θ)|θ=0 = 0 (6.19)

q(θ)|θ=θ̄ =
cos θ̄

(
θ̄ cos θ̄ − sin θ̄

)
cos θ̄ + θ̄ sin θ̄

. (6.20)

By using the result of (6.17) and note that θ̄ ≥ 0, we have q(θ)|θ=θ̄ ≤ 0. In summary, we have

q(θ)|θ=0 = 0 and q(θ)|θ=θ̄ ≤ 0. (6.21)

The critical point θs of q(θ) must satisfy ∂q(θ)/∂θ|θ=θs = 0⇒ cos θs = k. Therefore, the value of q(θ)

at the critical point θs is given by

q(θs) = kθs − sin θs = θs cos θs − sin θs. (6.22)

By using (6.17), it is concluded that q(θs) ≤ 0. By combining this result and (6.21), we have q(θ) ≤
0, ∀θ ∈

[
0, θ̄

]
. Therefore, kθ − sin θ ≤ 0, ∀θ ∈

[
0, θ̄

]
. Moreover, in this case, we have k ≤ k; thus,

kθ − sin θ ≤ 0. For this reason, from (6.18), ∂f(k, θ)/∂k ≤ 0 holds. This implies that when θ is held

constant, f(k, θ) decreases as k increases. Therefore

min
k

max
θ∈[0, θ̄]

f(k, θ)

∣∣∣∣∣
0<k≤k

= max
θ∈[0, θ̄]

f(k, θ)

∣∣∣∣∣
k=k

. (6.23)

B. Interval 2 (1 ≤ k < +∞)

From (6.16), we have sin θ ≤ θ, but k ≥ 1, so sin θ ≤ kθ ⇒ kθ− sin θ ≥ 0. By using the condition that

θ ≥ 0 and cos2 θ > 0, it can be obtained from (6.18) that ∂f(k, θ)/∂k ≥ 0. This result means that

when θ is held constant, f(k, θ) increases as k increases. Therefore, it can be easily seen that

min
k

max
θ∈[0, θ̄]

f(k, θ)

∣∣∣∣∣
k≥1

= max
θ∈[0, θ̄]

f(k, θ)

∣∣∣∣∣
k=1

. (6.24)
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C. Interval 3 (k ≤ k ≤ 1)

Since the absolute maximum value of a function is the largest term between its values at the critical

points and at the boundaries [162, p. 207]; thus, the critical function and the boundary function

should be computed.

The critical function is derived as follows. For each k, a critical point θc of f(k, θ) must satisfy

∂f(k, θ)/∂θ|θ=θc = 0, which can be expanded to

(sin θc − kθc) cos θc [1− k (cos θc + θc sin θc)] = 0. (6.25)

The results of (6.25) are 
sin θc = kθc

cos θc = 0⇒ θc = π/2⇒ (Reject)

1− k (cos θc + θc sin θc) = 0.

(6.26)

In (6.26), when sin θc = kθc, we have f(k, θ)|θ=θc = 0. Thus, this critical point can be excluded

from consideration since f(k, θ) is always non-negative. For the remaining scenario, namely 1 −
k (cos θc + θc sin θc) = 0, we have k = 1/ (cos θc + θc sin θc). Denote fc(k) as the value of f(k, θ) at

the critical point θc. By using the result k = 1/ (cos θc + θc sin θc), the critical function fc(k) can be

computed by

fc(k) =

(
tan θc −

kθc
cos θc

)2

=

(
sin θc − θc cos θc
cos θc + θc sin θc

)2

. (6.27)

The first derivatives of fc(k) and k with respect to θc are

dfc(k)

dθc
=

2θ2
c (sin θc − θc cos θc)

(cos θc + θc sin θc)
3 . (6.28)

dk

dθc
=

−θc cos θc

(cos θc + θc sin θc)
2 ≤ 0. (6.29)

By using the result of (6.17), it can be concluded that dfc(k)/dθc ≥ 0. For this reason, fc(k) increases

as θc increases. Furthermore, (6.29) implies that k decreases as θc increases. Therefore, in summary,

we have the critical function fc(k) decreases with respect to k.
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max f(k, θ)

Figure 6.4: Illustrations of the critical function fc(k), the boundary function fb(k), and the function
max f(k, θ). The optimal solution is attained at the second intersection between fc(k) and fb(k).

Now, we will examine the boundary function. Since f(k, θ)|θ=0 = 0, the only boundary needing to be

considered is θ = θ̄. Denote fb(k) as the boundary function of f(k, θ). It can be evaluated as

fb(k) = f(k, θ)|θ=θ̄ =

(
sin θ̄ − kθ̄

cos θ̄

)2

. (6.30)

From (6.30), fb(k) is a parabolic function with respect to k, which attains zero at k =
(
sin θ̄

)
/θ̄. At

this point, properties of the critical function fc(k) and the boundary function fb(k) are clear. Their

illustrations are depicted in Fig. 6.4. Note that max f(k, θ) = max {fb(k), fc(k)}. Therefore, one

could sketch the function max f(k, θ) by the blue dash curve as shown in Fig. 6.4. The left part of the

function max f(k, θ) belongs to fc(k) and the right part belongs to fb(k). It is immediately recognized

that max f(k, θ) is a convex function. From that, it is not difficult to see that the minimizer k? of the

minimax optimization problem (6.13) is attained at the intersection between fc(k) and fb(k), namely

k? must satisfy

fc(k
?) = fb(k

?), (6.31)
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where k? = 1/ (cos θ?c + θ?c sin θ?c ) and θ?c is the critical point of f(k?, θ). By using (6.27) and (6.30),

the condition in (6.31) can be expanded as follows

(
sin θ?c − θ?c cos θ?c
cos θ?c + θ?c sin θ?c

)2

=

(
sin θ̄ − k?θ̄

cos θ̄

)2

. (6.32)

The result in (6.32) can be further developed to

[
sin
(
θ?c − θ̄

)
− θ?c cos

(
θ?c − θ̄

)
= −θ̄

sin
(
θ?c + θ̄

)
− θ?c cos

(
θ?c + θ̄

)
= θ̄.

(6.33)

(6.34)

It can be seen that (6.33) corresponds to the first intersection point (at k = k) of fc(k) and fb(k)

(see Fig. 6.4); hence, it does not indicate the optimal solution. The second intersection point given by

(6.34) determines our desirable optimal solution. From this observation as well as the results of (6.23)

and (6.24), the minimizer of the optimization problem is given by

k? =
1

cos θ? + θ? sin θ?
, (6.35)

where θ? is computed by sin
(
θ̄ + θ?

)
− θ? cos

(
θ̄ + θ?

)
= θ̄. This completes the proof.

The optimal solution of (6.13) can be found by solving the nonlinear equation (6.15). By using the

Intermediate Value Theorem [162, p. 52], it is easy to show that, for all θ̄ ∈ [0, π/2), (6.15) has one

and only one root θ? ∈
[
0, θ̄

]
. Therefore, (6.15) can be solved by any one-dimensional root-finding

solver. For instance, if a bisection method is employed, the computational complexity for solving the

nonlinear equation (6.15) is O(n) [163] and so is the minimax program (6.13).

Denote L?(t) := L(t)|k=k? as the optimal linearization law. Some important properties of the optimal

solution are presented in the following corollary of Theorem 5.

Corollary 1. The optimal solution (6.14)–(6.15) of the minimax program (6.13) has the following

properties:

1) lim
θ̄→(π/2)−

θ? = π/2.

2) lim
θ̄→(π/2)−

k? = 2/π.

3) lim
θ̄→(π/2)−

max
θ∈[−θ̄,θ̄]

|L?(t)| = 2g/π.
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Proof. Taking the limit as θ̄ → (π/2)− for both sides of (6.15) results in

lim
θ̄→(π/2)−

[
sin
(
θ̄ + θ?

)
− θ? cos

(
θ̄ + θ?

)]
= π/2. (6.36)

By using the sum law, multiplication law, and the composite function law of the limit computation

[162, p. 35] on (6.36), it can be obtained that

cos z + z sin z = π/2, (6.37)

where z = limθ̄→(π/2)− θ
?. It can be easily seen that (6.37) has only one solution, that is z = π/2.

Therefore, limθ̄→(π/2)− θ
? = π/2, which proves the property 1).

For the proof of the property 2), we can take the limit as θ̄ → (π/2)− for both sides of (6.14), which

yields

lim
θ̄→(π/2)−

k? =
1

cos z + z sin z
. (6.38)

By using the property 1), we have limθ̄→(π/2)− k
? = 2/π.

At the optimal solution, from (6.31), we have

max
θ∈[−θ̄,θ̄]

|L?(t)| = g
√
fc(k?) = g

√
fb(k?). (6.39)

Taking the limit as θ̄ → (π/2)− on (6.30) yields

lim
θ̄→(π/2)−

√
fb(k?) = lim

θ̄→(π/2)−

sin θ̄ − k?θ̄
cos θ̄

. (6.40)

From the property 2), we have limθ̄→(π/2)− k
? = 2/π. Therefore, the limit in (6.40) is in a 0/0

indeterminate form. Applying the L’Hôpital rule [162, p. 192] on (6.40) results in

lim
θ̄→(π/2)−

√
fb(k?) = lim

θ̄→(π/2)−

cos θ̄ − k?

− sin θ̄
=

2

π
. (6.41)

Therefore, the result lim
θ̄→(π/2)−

max
θ∈[−θ̄,θ̄]

|L?(t)| = 2g/π follows, which proves the property 3).

Note that, the property 3) implies that the optimal linearization law is bounded for all swing angles

θ ∈ (−π/2, π/2) by 2g/π if the gain k? = 2/π is utilized. Let L1(t) := L(t)|k=1 be the conventional
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Figure 6.5: Magnitude comparison between the optimal linearization law (k? = 0.92097) and the
non-optimal one (k = 1) with θ̄ = π/4.

linearization law. It can be easily shown that when θ = ±θ̄, we have limθ̄→(π/2)− |L1(t)| = +∞, which

is unbounded. Therefore, the optimal linearization law is more favorable than the conventional one.

As an illustrative example, the optimization problem (6.13) will be solved by means of Theorem 5 with

θ̄ = π/4 rad. In the first step, θ? can be computed from (6.15) by fzero routine of MATLAB. Then,

k? can be easily determined by (6.14). The resultant optimal solution is k? = 0.92097. According to

Fig. 6.5, the maximum magnitude of the optimal linearization law is only 0.225, which is significantly

smaller than that of the conventional linearization law with k = 1, whose maximum value is 1.086.

So far, the optimal value k? of k can be calculated by (6.14) and (6.15). Substituting the control law

(6.12) (with a replacement of k by k?) into (6.6), the closed loop system is governed by

lθ̈(t) + k?gθ(t) = −a sin (ω0t)− b cos (ω0t). (6.42)

In order to generate the resonance, it must be chosen that ω0 =
√
k?g/l. Note that, (6.42) is a second

order differential equation under the excitation of a biased sinusoidal input; thus, it has an analytical

solution. The solution of (6.42) can be derived by using the method of undetermined coefficients [155].

A summation of the homogeneous solution and the particular solution of (6.42) gives us:

θ(t) = c1 cos (ω0t) + c2 sin (ω0t) +
a

2lω0
t cos (ω0t)−

b

2lω0
t sin (ω0t) , (6.43)
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where c1 and c2 are to-be-determined coefficients. By taking the first derivative of θ(t) in (6.43), it is

obtained that

θ̇(t) =− c1ω0 sin (ω0t) + c2ω0 cos (ω0t) +
a

2lω0
cos (ω0t)

− a

2l
t sin (ω0t)−

b

2lω0
sin (ω0t)−

b

2l
t cos (ω0t) . (6.44)

The initial conditions θ(0) = 0 and θ̇(0) = 0 are respectively applied on (6.43) and (6.44) to solve

for two unknowns c1 and c2. Consequently, we have c1 = 0 and c2 = −a/
(
2lω2

0

)
. In summary, the

solution of (6.42) can be expressed by

θ(t) = − a

2lω2
0

sin (ω0t) +
a

2lω0
t cos (ω0t)−

b

2lω0
t sin (ω0t)

θ̇(t) = − b

2lω0
sin (ω0t)−

a

2l
t sin (ω0t)−

b

2l
t cos (ω0t) .

(6.45)

By summing three sinusoidal functions with an identical frequency, θ(t) can be rewritten in a more

compact form

θ(t) = Γ(t) sin (ω0t+ Φ(t)) . (6.46)

In (6.46), Γ(t) and Φ(t) are given by

Γ(t) =

√(
γt

2lω0

)2

+

(
a

2lω2
0

)2

− γat cosϕ

2l2ω3
0

Φ(t) = tan−1

[
γt sinϕ

(−a/ω0) + γt cosϕ

]
,

where γ =
√
a2 + b2 and ϕ = tan−1(−a/b). From (6.46), it is recognized that amplitude of the

oscillation is Γ(t). Furthermore, if γ 6= 0, we have

lim
t→+∞

Γ(t) = lim
t→+∞

√(
γt

2lω0

)2

+

(
a

2lω2
0

)2

− γat cosϕ

2l2ω3
0

= +∞. (6.47)

The result in (6.47) implies that the amplitude of θ(t) will approach to infinity as t → +∞, which

clearly indicates the resonance phenomenon. In the following subsection, all of the unknowns a, b, θ̄,

θ?, and tf will be determined to fulfill the tossing control requirements.
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6.3.2 Embedding the tossing control requirements

In order to solve for five unknown parameters a, b, θ̄, θ?, and tf , the tossing control requirements

(6.11) need to be employed. For the sake of clear presentation, denote h(a, b, θ̄, θ?, t) := ẍ(t), where

ẍ(t) is given by (6.12) with a replacement of k by k?. With the initial conditions x(0) = ẋ(0) = 0 (see

Section 6.2), it can be easily obtained that

ẋ(t) =

∫ t

0
h(a, b, θ̄, θ?, σ)dσ (6.48)

x(t) =

∫ t

0

∫ σ

0
h(a, b, θ̄, θ?, ρ)dρdσ. (6.49)

The double integration in (6.49) can be reduced to a single one by using the Cauchy’ formula for

repeated integral [164, p. 193], which results in

x(t) =

∫ t

0
(t− σ)h(a, b, θ̄, θ?, σ)dσ. (6.50)

From (6.48), the condition on zero trolley speed at tf—ẋ(tf ) = 0—can be rewritten by∫ tf

0
h(a, b, θ̄, θ?, t)dt = 0. (6.51)

By using (6.50), the condition on the target payload position at tf—x(tf ) − l sin θ(tf ) = x̄p—can be

exploited as below

−l sin θ(tf ) +

∫ tf

0
(tf − t)h(a, b, θ̄, θ?, t)dt = x̄p. (6.52)

The zero swing rate condition θ̇(tf ) = 0 can be developed by using (6.45), whose result is

− b

2lω0
sin (ω0tf )− a

2l
tf sin (ω0tf )− b

2l
tf cos (ω0tf ) = 0. (6.53)

Now, we have four equations (6.15), (6.51)–(6.53) to solve for five unknowns. Thus, one missing

equation can be filled in by setting θ(tf ) = −θ̄. By using (6.45), it can be rewritten as

−a
2lω2

0

sin (ω0tf ) +
tf

2lω0
[a cos (ω0tf )− b sin (ω0tf )] = −θ̄. (6.54)
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In summary, to solve for five unknowns a, b, θ̄, θ?, and tf , we have the following set of five nonlinear

equations 

−a
2lω2

0

sin (ω0tf ) +
tf

2lω0
[a cos (ω0tf )− b sin (ω0tf )] = −θ̄

− b

ω0
sin (ω0tf )− atf sin (ω0tf )− btf cos (ω0tf ) = 0∫ tf

0
h(a, b, θ̄, θ?, t)dt = 0

l sin θ̄ −
∫ tf

0
h(a, b, θ̄, θ?, t)tdt = x̄p

sin
(
θ̄ + θ?

)
− θ? cos

(
θ̄ + θ?

)
= θ̄.

(6.55)

The MATLAB routine fsolve can be utilized to solve (6.55). Initial guesses of unknowns (for feeding

to the fsolve solver) are a0 = 0, b0 = 0, θ̄0 = π/12, θ?0 = θ̄0/2, and tf0 = 2nπ/ω (n = 1, 2, 3, . . .)

where ω =
√
g/l. Note that, in order to ensure the maximum velocity and maximum acceleration

constraints are strictly complied, namely max |ẋ(t)| ≤ vmax and max |ẍ(t)| ≤ amax, the index n of tf0

can be gradually increased until those inequalities are met.

Remark 17. Since θ̄, θ?, and tf are required to be positive, in (6.55), the following changes of variables

should be performed to ensure fsolve routine run properly: θ̄ = z2
1 , θ? = z2

2 , and tf = z2
3 . Moreover,

for safety, the payload should remain underneath the trolley, namely that magnitude of the terminal

swing angle should not exceed π/2. In other words, it requires that θ̄ < π/2. To guarantee such a

condition for the resultant solution, the following auxiliary barrier equation is added to (6.55):

z4 := ln
(
π/2− θ̄

)
= ln

(
π/2− z2

1

)
. (6.56)

Therefore, at present, six unknowns need to be solved are a, b, zi (i = 1, . . . , 4). Initial guesses for zi

(i = 1, . . . , 4) are made at z10 =
√
θ̄0, z20 =

√
θ?0, z30 =

√
tf0, and z40 = ln

(
π/2− θ̄0

)
.

It is also worth noting that the resonance-based tossing controller only utilizes the rope length l in its

design, which can be easily measured in practice. Therefore, parametric uncertainty is not a significant

issue for the proposed method.

6.3.3 Transferring and returning phases

An entire cycle of the transportation is explained as follows. In the first half (or transferring phase), by

employing the control law (6.12), the payload is transferred from the initial position to the discharging

destination, at which the grab opens to drop down the materials. The second half (or returning
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phase) starts immediately after the first half, where the trolley returns to the initial position to supply

materials for the next cycle. Note that, at the end of the second half, the trolley speed must be zero

and there should be no residual vibration. Since the controller (6.12) is independent of the payload

mass m, one simple way to realize the above requirement is to apply ẍ(t) (in (6.12)) backward in time

as the control input for the returning phase. The proof of this claim is provided as follows. Recall the

dynamical model of the overhead crane in the transferring phase as below (see (6.6)):

lθ̈(t) + g sin θ(t) = cos θ(t)ẍ(t), t ∈ [0, tf ], (6.57)

where, by assumption, the system starts from rest (see Section 6.2). Namely, the initial conditions of

(6.57) are

x(0) = ẋ(0) = θ(0) = θ̇(0) = 0. (6.58)

Denote x̄ as the terminal position of the trolley at the end of the transferring phase, that is to say,

x̄ = x̄p − l sin θ̄. Since the transferring phase employs the resonance-based tossing controller, the

following terminal conditions of (6.57) are realized:

x(tf ) = x̄, ẋ(tf ) = 0, θ(tf ) = −θ̄, θ̇(tf ) = 0. (6.59)

Now consider the model of the overhead crane system in the returning phase as below:

lθ̈r(µ) + g sin θr(µ) = cos θr(µ)ẍr(µ), µ ∈ [tf , 2tf ]. (6.60)

In (6.60), to draw a distinction with the transferring phase, the swing angle and the control input of the

returning phase are denoted as θr and ẍr respectively. Since the returning phase starts immediately

after the transferring phase, to realize the differentiable continuity condition of the solution, it requires

that θr(tf ) = θ(tf ), θ̇r(tf ) = θ̇(tf ), xr(tf ) = x(tf ), and ẋr(tf ) = ẋ(tf ), namely that the initial

conditions of (6.60) are assumed to be

xr(tf ) = x̄, ẋr(tf ) = 0, θr(tf ) = −θ̄, θ̇r(tf ) = 0. (6.61)

The assumption of (6.61) will be checked at the end of the proof. Since the control input ẍr(µ) is a

backward-in-time version of the input ẍ(t), the following relation holds:

ẍr(µ) = ẍ(2tf − µ), ∀µ ∈ [tf , 2tf ]. (6.62)
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By substituting (6.62) to (6.60), we have

lθ̈r(µ) + g sin θr(µ) = cos θr(µ)ẍ(2tf − µ), µ ∈ [tf , 2tf ]. (6.63)

Performing the following time-reversing transformation without shifting/scaling the magnitude of the

variable θr:

τ = 2tf − µ, ψ = θr. (6.64)

From (6.64), the following results can be obtained:

dτ = −dµ, dτ2 = dµ2, dψ = dθr. (6.65)

Applying the transformations of (6.64) and (6.65) on (6.63) results in the following differential equation:

lψ̈(τ) + g sinψ(τ) = cosψ(τ)ẍ(τ), τ ∈ [0, tf ], (6.66)

with the subsequent terminal conditions

x(tf ) = x̄, ẋ(tf ) = 0, ψ(tf ) = −θ̄, ψ̇(tf ) = 0. (6.67)

After the transformation, the differential equation (6.66) (describing the returning phase dynamic)

is identical with (6.57), which represents the dynamic of the transferring phase. Furthermore, their

terminal conditions are also similar (see (6.59) and (6.67)). Hence, the conclusion is

ψ(τ) = θ(τ), ψ̇(τ) = θ̇(τ), ∀τ ∈ [0, tf ]. (6.68)

From (6.64), we have ψ = θr and by using dτ = −dµ from (6.65), the result of (6.68) gives us

θr(µ) = θ(τ), θ̇r(µ) = −θ̇(τ), ∀τ ∈ [0, tf ]. (6.69)

By employing the relation between two time frames τ = 2tf − µ on (6.69), we have

θr(2tf ) = θ(0) = 0, θ̇r(2tf ) = −θ̇(0) = 0. (6.70)

Furthermore, from (6.62), we have ẍr(µ) = ẍ(τ), therefore

xr(µ) = x(τ), ẋr(µ) = −ẋ(τ), ∀τ ∈ [0, tf ]. (6.71)
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By using the relation τ = 2tf − µ, (6.71) gives us

xr(2tf ) = x(0) = 0, ẋr(2tf ) = −ẋ(0) = 0. (6.72)

The results in (6.70) and (6.72) show that, at the end of the returning phase, the trolley returns to

the initial position at zero speed and no residual vibration occurs. In order to finish the proof, the

assumption on the differentiable continuity of the solution must be checked. From (6.69) and (6.71),

by utilizing τ = 2tf − µ, the following can be obtained:

xr(tf ) = x̄, ẋr(tf ) = 0, θr(tf ) = −θ̄, θ̇r(tf ) = 0, (6.73)

which verifies (6.61). Consequently, the continuity assumption is satisfied. This completes the proof.

Remark 18. The tossing control requirement (6.11) implies that, at the discharging destination,

only when all materials can be fully discharged from the grab bucket instantaneously, the positioning

accuracy of the falling materials is perfectly ensured. Given that a 4-ton capacity grab bucket needs

two seconds to drop its entire load, an absolute positioning accuracy may not be possible in reality.

However, when the tossing control is applied, it can be guaranteed that the velocities of the payload

(i.e., the grab bucket with materials inside) in both horizontal and vertical directions are zero at the

discharging destination (see (6.11)). Consequently, in the neighborhood of the dropping point, the

payload’s velocities are sufficiently small for a discharge with an acceptable accuracy. Furthermore,

the contact forces between particles of the granular materials as well as between particles and the

inner wall of the grab bucket will make the stream of the dropping materials nearly vertical, despite

having slight initial velocities. According to the above discussions, therefore, the grab can prematurely

open one second (half of the grab’s fully discharging time) before reaching the discharging destination,

by which a satisfactory positioning accuracy is ensured. By using such a discharging operation, we

can effectively prevent the falling materials spilling over the container without slowing down the

transportation. The above discharging process can be observed in the operation of experienced crane

operators. In summary, the discharging period is two seconds, whose center is the terminal time tf

obtained by solving (6.55).

6.4 Review of the minimum-time swing suppression control

In similarity to the resonance-based tossing control, the minimum-time swing suppression control is

designed only for the transferring phase. Control input for the returning phase can be obtained by
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Figure 6.6: Minimum-time swing suppression control profile of the transferring phase. Note that 2λ
is the switching numbers (between amax and −amax) of the control input segment spanning from t = 0

to t = t?1, which is represented by the solid line.

simply applying the computed input of the transferring phase backward in time.

In the transferring phase, the objective of the minimum-time swing suppression control is to transfer

the payload to the discharging destination without vibration (i.e., x(t?f ) = x̄p, ẋ(t?f ) = θ̇(t?f ) = 0, and

θ(t?f ) = 0) in a minimum time t?f . Note that ω =
√
g/l. For a sufficient large transferring distance,

a version of the minimum-time swing suppression control profile under the maximum velocity and

maximum acceleration constraints is illustrated in Fig. 6.6, where a bang-bang control input suggested

by the Pontryagin Minimum Principle is observed. Specifically, the dimensionless durations ζ and η

are computed by [158, 160, 161]

Km = 2ζ − (2λ− 1)η + 2(λ− 1)π

η = 2 tan−1

(
sin ζ

2λ− cos ζ

)
,

(6.74)

where Km := (ωvmax) /amax, 0 ≤ ζ ≤ π, 0 ≤ η ≤ π/2, and the index λ ∈ N+ is chosen such that

following condition must be fulfilled

2πλ > Km > 2(λ− 1)π. (6.75)
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In addition, the important switching instants of the bang-bang control input in Fig. 6.6 are given by

t?1 =
2ζ + η + 2(λ− 1)π

ω

t?2 =
x̄p − 2

∫ t?1
0

∫ t
0 ẍ(σ)dσdt

vmax
+ t?1.

(6.76)

The minimum transferring time is t?f = t?1 + t?2.

The computation process of the minimum-time swing suppression control is explained as follows.

Firstly, the index λ should be determined by using (6.75). Then, ζ and η can be calculated by solving

the system of two nonlinear equations (6.74) through, for instance, fsolve routine of MATLAB. Next,

the time instants t?1, t?2, and t?f can be computed by using (6.76). From the above information, the

minimum-time swing suppression control profile can be established as suggested by Fig. 6.6.

6.5 Simulation result: comparison with minimum-time swing sup-

pression control

A real gantry crane in use at the harbor is utilized in the simulation study. It has a capacity of

∼ 65% compared with the Sepetiba crane introduced in [63]. The maximum velocity and maximum

acceleration are vmax = 1.5 m/s and amax = 0.6 m/s2. The rope length is l = 20 m. The resonance-

based tossing control will be compared with the minimum-time swing suppression control in various

discharging destination x̄p ranging from 9 m to 20 m. Therefore, a discrete-value simulation test is

configured as follows. Let Σ be the range of the discharging distance x̄p as below:

Σ :=
{
x̄p ∈ R+ : d ≤ x̄p ≤ D, d = 9 m, D = 20 m

}
, (6.77)

where R+ is the set of positive real numbers. The set Σ is uniformly discretized into N = 1100 points

to form the following subset ΣD ⊂ Σ:

ΣD =

{
x̄p ∈ Σ : x̄p = d+ i

D − d
N

, i ∈ N, 0 ≤ i ≤ N
}
. (6.78)

Note that N is the natural numbers set. For each point of ΣD, the solution of the concerning (tossing or

vibration) controller will be solved by using the results in Section 6.3.2 and Appendix 6.4 respectively.

The controller gives a positive result to the test if a solution exists for very member of ΣD and satisfies

the velocity constraint |ẋ(t)| ≤ vmax and the acceleration constraint |ẍ(t)| ≤ amax simultaneously.
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Table 6.1: Computational results of the resonance-based tossing control and the minimum-time swing
suppression control (x̄p = 10 m).

Proposed resonance-based tossing control Minimum-time swing suppression control

a b θ̄ θ? k? tf 2tf λ ζ η t?1 t?2 t?f 2t?f

−0.517 −0.041 0.167 rad 0.084 rad 0.997 8.86 s 17.72 s 1 1.373 0.996 5.344 s 6.671 s 12.01 s 24.02 s

Firstly, the test will be applied to the resonance tossing control. The result is positive. The control

parameters as well as the computational results of the test are shown in Fig. 6.7. It can be seen

that the magnitude of the terminal swing angle θ̄ increases as the transferring distance increases,

which agrees well with the physical intuition. Furthermore, θ̄ is always less than π/2, thus the safety

condition is ensured. The maximum and average computational time are 0.093 second and 0.0467

second respectively on a personal computer with an Intel Core i5-3210M and 8 GB of RAM. Therefore,

the applicability of the resonance tossing controller is verified.

The discrete-value simulation test is then carried out on the minimum-time swing suppression con-

trol. The transferring time comparison of the resonance tossing control and the minimum-time swing

suppression control are shown in Fig. 6.8. According to Fig. 6.8, the resonance tossing control can

provide a significantly faster transferring time than the minimum-time swing suppression control when

x̄p ∈ [9, 10.08] m, namely in configurations with short discharging destination. At its peak, for the

discharging distance x̄p = 10.08 m, the transferring time of the resonance tossing control is 8.87 sec-

onds, whereas the minimum-time swing suppression control needs 12.07 seconds. Therefore, by using

the tossing control method, one can reduce the transferring time by 3.2 seconds (or 6.4 seconds in

one transportation cycle). Thus, productivity can be enhanced up to 26.5%. This evidence confirms

the main purpose of this chapter, and proves the possibility of breaking the time limitation of the

minimum-time swing suppression control. For the long transferring distance contexts, the resonance

tossing control is not able to produce a similar result. Here, the characteristic of the proposed toss-

ing controller, which is inherited from the resonance behavior, can be clearly observed, namely that

its transferring time lies in the neighborhood of T, 2T, . . . , where T is the natural frequency of the

closed-loop system.

In order to demonstrate a whole transportation process including both transferring and returning

phases, two controllers are computed for the desired discharging distance x̄p = 10 m. The resultant

control parameters of two controllers are aggregated in Table 6.1. Simulation results of two controllers

are shown in Fig. 6.9. It can be seen that, at the center of the materials dropping/discharging period

(represented by the solid blue line and the dash red line for the resonance-based tossing control and the

minimum-time swing suppression control respectively), the payload reaches the target destination at
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Figure 6.9: Comparative simulation results of the proposed resonance-based tossing control and the
minimum-time swing suppression control.

zero horizontal and vertical velocities, whereas the trolley completely stops. Therefore, requirements

of the transferring phase are fulfilled by both controllers. Moreover, at the end of the returning

phase, in both control schemes, the vibration is completely suppressed. To sum up, two controllers

satisfy the necessary conditions of the bulk materials transportation. The main difference between the

proposed resonance-based tossing control and the minimum-time swing suppression control is explained

as follows. At the dropping time, the swing angle in the case of tossing controller is −θ̄ = −0.167

rad (or −9.57 degrees), whereas it is 0 degree when the minimum-time swing suppression control is

employed (see θ graph in Fig. 6.9). This characteristic leads to the fact that, at the discharging point,

the payload must not be exactly under the trolley in the tossing control case, which is completely in

contrast to the minimum-time swing suppression control (see x and xp graphs of Fig. 6.9). For this

reason, if the actuator limits are sufficiently large (or the discharging distance is short), the tossing
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controller can take full advantage of the long rope length to save the transferring time since the trolley

is not required to travel a full distance as it does in the case of vibration controller (see subfigure x).

6.6 Experimental result

The proposed resonance-based tossing control now will be implemented on the same experimental

overhead crane system shown in Section 4.5 of Chapter 4, which is illustrated in Fig. 4.11. The

rope length used in this chapter is l = 1.4 m. Based on specifications of the servo motor and the

transmission system, values of the maximum velocity and the maximum acceleration are given by

vmax = 0.8 m/s and amax = 1 m/s2 respectively. The target horizontal position of the payload is

x̄p = 1.2 m. According to the result of Section 6.3, parameters of the resonance tossing control for the

experimental configuration can be computed as a = −0.8763, b = −0.1187, θ̄ = 0.2861 rad, θ? = 0.1444

rad, k? = 0.9897, and tf = 2.336 seconds. The computational time is only 0.14 second; thus, online

command generation is feasible. Note that, the resonance-based tossing controller is realized as a

feedforward scheme, namely that it is offline computed and integrated twice to obtain a control law in

the position level, which is equivalent to (6.50). This position command will be realized by a built-in

motion controller of the servo driver to drive the trolley motion. For clarification, the measured swing

angle is recorded for a sole purpose of verifying the validity of the proposed controller in practice.

To illustrate the independence (or robustness) of the proposed resonance tossing control law with

respect to the payload mass, two experiments with a 25 kg and a 30 kg payload are conducted. In

both cases, the same controller parameters computed as above are employed. Fig. 6.10 depicts the

experimental results of the resonance tossing controller. The system responses in two cases (25 kg

and 30 kg payload) are almost identical, which indicates that the proposed controller is robust against

the change of the payload mass. The payload is precisely transferred to the destination with zero

horizontal and vertical velocities; afterward, it is brought back to the initial position with no residual

vibration. Note that, the noise level of the experimental acceleration signal, which is obtained by

differentiating the measured position (from an encoder attached at the end of the servo motor) twice,

is very high even though a low-pass filter is employed; hence, it is not present in Fig. 6.10. Such an

observation noise has no effect to the system performance. The experimental data completely agrees

with the simulation result, which verifies the effectiveness of the proposed resonance-based tossing

control system.
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Figure 6.10: Experiment (Exp.) results of the resonance tossing control. They are in a complete
agreement with the simulation result.

6.7 Summary

This chapter proposed a resonance-based tossing controller for an overhead crane to suit the context

of bulk materials transportation. The analysis showed that both tossing control and vibration control

groups can realize the requirements of the bulk materials transferring process. The crucial conclusion

of the chapter emphasizes on the result that there are possibilities to break the time limitation of

the minimum-time vibration controller—the fastest member of the vibration control family—by using

the tossing control methodology. Both simulation and experimental results are provided to clarify the

effectiveness of the proposed method and they are in a complete agreement. Possible developments

will be elaborated in Chapter 7 to further enhance productivity of the bulk materials transportation

in future.



Chapter 7

Conclusions and Recommendations for

Future Work

7.1 Conclusions

This thesis proposed a number of control schemes to address both skew and swing vibration control

problems of cranes. Most of the theoretical results of the thesis were verified by actual experiments.

Also, the simulation results resembled well with the experimental data, showing that the entire model-

ings and control designs are correct, and that the proposed approaches are sufficiently practical. The

detailed summary of each chapter is elaborated as follows.

Part I (Skew vibration control of cranes):

� Chapter 2 established robust controllers to address the robust skew vibration control problem.

The results indicated that the integral sliding mode controller outperformed the dynamic output

feedback H∞ controller. This can be explained by the fact that the structure of the integral

sliding mode controller enables the payload to track its reference and reference rate. The H∞

controller does not possess such a capability.

� Chapter 3 investigated the possibility of reducing energy consumption without trading-off the

sub-optimal transfer time for the skew rotation process of cranes. This objective was achieved

using a switched optimal control scheme with the aid of an additional binary actuator, which is

an electro-mechanical clutch. In the same minimum transfer time, the switched optimal control

151
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system can save 25.49% and 61.70% of the consumed energy in the medium and long trans-

fer cases, respectively, in comparison with the no-switched time-optimal control system. Also,

compared with the input shaping and integral sliding mode controllers, the switched optimal

controller can significantly reduce both transfer time and total energy consumption.

Part II (Swing vibration control of cranes):

� Chapter 4 established minimum-time zero-vibration S-curve commands for an overhead crane

system with actuator limits, including maximum allowable acceleration and velocity. A param-

eterized bang-off-bang acceleration profile was used in both the embedding and shaping tech-

niques to formulate constrained (discrete) nonlinear programs. These optimization problems can

be solved in an online fashion, and thus online command generation was feasible. It was also

shown that the proposed minimum-time S-curve commands are faster than those of the relevant

studies [140, 141] in terms of transfer time.

� Chapter 5 introduced a model reference input shaping control design for the luffing dynamics of

a rotary crane. The newly established technique can completely suppress the swing oscillation

for a highly nonlinear time-varying system. This cannot be achieved if standard input shaping

controllers were employed.

� Chapter 6 pursued a different direction of vibration suppression control, i.e., the use of vibration

excitation control to further reduce the transfer time in the context of bulk material transport.

In such a framework, a resonance-based tossing control law was proposed, and it was shown

that both the vibration suppression and excitation controls can accomplish the task. However,

under the same conditions and actuator constraints, the resonance tossing control can reduce

the transfer time up to 26.5% compared with the well-known minimum-time swing suppression

controller, which is the fastest member of the swing suppression control group. Therefore, it was

found that the vibration suppression control is not always the best option in every situation.

To sum up, various vibration control schemes for crane systems have been formulated in this thesis.

A general remark on the usage of the proposed controllers is explained as follows. For the large blocks

transport, the vibration suppression controls (i.e., integral sliding mode control, H∞ control, switched

optimal control, minimum-time S-curve commands, and model reference input shaping control) should

be utilized, whereas the vibration excitation control using resonance-based tossing controller (Chap-

ter 6) can be employed in the case of bulk material transport to enhance the transfer productivity.

Among the established skew vibration suppression schemes, the integral sliding mode control and H∞
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control should be used when severe parametric uncertainties and disturbances are present. It was also

shown in Chapter 2 that the integral sliding mode control is a more preferable candidate. For indoor

environments, where the disturbance is less harsh, the switched optimal control (Chapter 3) can be

used to reduce both transfer time and energy consumption. In regard to the swing suppression con-

trol, the minimum-time S-curve commands (Chapter 4) are most suitable for a transfer process with

a constant rope length due to their simplicity and ease of implementation. In the case of time-varying

rope length, the model reference input shaping control (Chapter 5) should be employed.

7.2 Recommendations for Future Work

A number of possible future developments can be drawn from the thesis, and they are summarized as

follows.

Part I (Skew vibration control of cranes):

� More diverse types of controls should be applied to address the robust skew vibration control

problem of cranes. In Chapter 2, only non-adaptive integral sliding mode and H∞ controllers

were formulated. In the future, adaptive robust controls should be investigated to deal with not

only parametric uncertainties but also external disturbances caused by wind, sea heaves, etc.

� The computational time of the switched optimal controller in Chapter 3 should be improved

to enhance the practicability of the switched optimal control system. The fast nonlinear model

predictive control technique is a promising solution.

Part II (Swing vibration control of cranes):

� In Chapter 4, the minimum-time zero-vibration S-curve commands of a two-dimensional over-

head crane were derived under actuator limitation constraints and the constant rope length

assumption. This result can be extended to three-dimensional gantry/rotary crane systems with

time-varying rope lengths and by adding state constraints (e.g., maximum allowable swing angle

and swing rate). Furthermore, the nonlinear transverse flexibility of the rope, which appears

when the payload is very light and/or when disturbances (e.g., wind) exert on the cable, should

be considered in the control design process.

� In Chapter 5, only the luffing dynamics of the rotary crane with a time-varying rope length

was considered. In the future, the model reference input shaping control design presented in
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Chapter 5 should be extended to a complete three-dimensional rotary crane system with a full

set of simultaneous motions, including luffing, skewing, and hoisting.

� In Chapter 6, it has been shown that, compared with the classical minimum-time vibration

suppression control, it is possible to reduce the transfer time for the transportation of bulk ma-

terials by using the tossing control methodology. This result, therefore, indicates the importance

of further research on the topic. A specific type of tossing controller, which is based on the

phenomenon of mechanical resonance, was introduced in Chapter 6 to realize the transportation

requirements. Nevertheless, in some configurations, the transfer time using the resonance-based

tossing controller is slower than the minimum-time vibration control. Note that the objective

of both tossing and vibration controls is to reduce the transferring time as much as possible.

As a result, the use of a particular controller varies according to the circumstances. In order

to address this issue, a unified minimum-time controller, which satisfies the requirements of the

bulk materials transfer process (stated in Section 6.1) in minimum-time, should be formulated

in the future. Also, actuator limits, including the maximum velocity and maximum acceleration,

must be taken into account. The Pontryagin Minimum Principle is the main tool for designing

such a controller. There may have two important points. First, the terminal swing angle θ(tf )

should be free rather than constrained by θ(tf ) = 0 as in the case of vibration control. If the

time-optimal solution requires that θ(tf ) 6= 0, then the unified minimum-time control is actually

a minimum-time tossing controller; otherwise, it is a minimum-time vibration controller. Thus,

it is guaranteed that the unified minimum-time controller is the best choice among the tossing

and vibration control groups. Second, since a large swing angle may occur, a nonlinear model

must be utilized, and therefore an analytical solution of the unified minimum-time control might

not be possible. As a result, a computational nonlinear optimal control scheme may be needed.

Additionally, in order to increase the maneuverability, time-varying rope lengths and a unified

minimum-time control design for three-dimensional crane systems should be considered.

Moreover, the swing and skew dynamics of crane systems were independently treated in this thesis.

Therefore, it is interesting to investigate the interference between the swing and skew dynamics in

future works. As such, simultaneous swing and skew vibration controllers should be established to

concurrently achieve precise position and orientation controls for crane systems.

Finally, the proposed controllers in this thesis were applied only on laboratory systems. Therefore,

they should be implemented on real-size cranes, as this is the ultimate goal of any research and

development activities. We are preparing to install some of the controllers introduced in this thesis

on gigantic cranes as part of the joint research project with Iknow Machinery, Co., Ltd., Japan.



Appendix A

General Solution

This appendix provides detail of the extended CG scheme, which is used by the general solution

described in Section 3.6.3 to solve the switched optimal control seeking stage (stage (a) of Algorithm 4).

In the first step, necessary conditions of optimality will be derived by means of the following lemma.

Lemma 2. Consider the optimal control problem (3.31). Assuming that the switching instants are

now fixed. The necessary conditions for optimality are given as

ẋ =

{
fk(x) + bk(x)uk (k = 1, 3)

fk(x) (k = 2)
, if t ∈ Tk. (A.1)

λ̇(t) = −
(
∂Hk

∂x

)>
(k = 1, 2, 3), where (A.2)

Hk
∆
=

{
L(x) + λ> (fk(x) + bk(x)uk) (k = 1, 3)

L(x) + λ>fk(x) (k = 2)
,

λ(tf ) =

(
∂φg (x(tf ))

∂x(tf )

)>
, (A.3)

λ(t+k ) = λ(t−k ) (k = 1, 2), (A.4)

uk =


umax if

∂Hk

∂uk
< 0

−umax ≤ uk ≤ umax if
∂Hk

∂uk
= 0

−umax if
∂Hk

∂uk
> 0

, (k = 1, 3). (A.5)

155



Appendix A. General solution 156

The proof of Lemma 2 is conducted in a similar manner with [130, p.73], and therefore it is omitted

here. Note that in Lemma 2, (A.1) represents the switched system dynamic in each time interval.

Conditions of the costate vector λ(t) are given in (A.2)–(A.4). The bounded optimal control input of

each interval must satisfy (A.5).

Based on Lemma 2, the following extended clipping-off CG algorithm is proposed to solve the switched

optimal control problem subject to the fixed switching instants posed in the stage (a). From (A.5),

it is motivated to define 2 sub-interval point sets, “unsaturated-control sub-interval points” Uij and

“saturated-control sub-interval points” Sij of jth interval (j = 1, 3) at ith iteration, as follows.

Sij =
{
t ∈ Tj :

∣∣uij(t)∣∣ = umax and sgn(uij(t)) = −sgn(gij(t))
}
, (A.6)

Uij = Tj − Sij , (A.7)

where gij(t)
∆
= ∂H i

j/∂u
i
j and “sgn” represents a usual signum function. In Algorithm 5, the notation

(.)ij(t) denotes the value of the function (.) at ith iteration and in jth interval.

Algorithm 5: Extended clipping-off CG algorithm for solving the bounded optimal control input in

respect of fixed switching instants and fixed terminal time.

Step 1 At every time step t ∈ T1∪T3, giving an an admissible initial guess of the optimal control input

u0(t) =
[
u0

1(t), u0
3(t)
]> ∈ Ω. Solving the state equation (A.1) forward and costate equation

(A.2) backward in time. Compute g0(t) =
[
g0

1(t), g0
3(t)

]>
=

[
∂H0

1

∂u0
1

,
∂H0

3

∂u0
3

]>
by employing

the continuity condition in (A.4). Let the initial search direction as p0(t)
∆
=
[
p0

1(t), p0
3(t)
]>

=

−g0(t).

Step 2 Choose a scalar step-size α0 such that Jg
({
u0 + ε0p0

}
s

)
is minimized by means of any

one dimensional linesearch, where the value of ε0 at the time step t is given as ε0(t) =[
ε0

1(t), ε0
3(t)
]>

and

ε0
j (t) =

{
0 if t ∈ S0

j

α0 > 0 if t ∈ U0
j

, (j = 1, 3). (A.8)

For clarification,
{
u0 + ε0p0

}
s

at t is given by

{
u0 + ε0p0

}
s

=

[{
u0

1(t) + ε0
1(t)p0

1(t)
}
s{

u0
3(t) + ε0

3(t)p0
3(t)
}
s

]
, (A.9)
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and

{(.)}s =


(.) if |(.)| ≤ umax

umax if (.) > umax

−umax if (.) < −umax.

(A.10)

Let u1 =
{
u0 + ε0p0

}
s

and i = 1.

Step 3 At each t, determine the next search direction pi(t) =
[
pi1(t), pi3(t)

]>
as follows

pij(t) =

{
−gij(t) + βijp

i−1
j (t) if t ∈ Uij ,

−gij(t) if t ∈ Sij ,
(A.11)

where j = 1, 3 and

βij =


(βi0)j if (βi0)j < (βim)j

γi(βim)j if (βi0)j ≥ (βim)j , 0 < γi < 1

0 if (Ii2)j = 0 or (Ii3)j = 0,

(A.12)

with (βi0)j
∆
=

(Ii1)j
(Ii2)j

, (Ii2)j 6= 0; (βim)j
∆
=

(Ii1)j
(Ii3)j

, (Ii3)j 6= 0, and

(Ii1)j =
∫

t∈Ui
j

gij(t)g
i
j(t)dt

(Ii2)j =
∫

t∈Ui
j

gi−1
j (t)gi−1

j (t)dt

(Ii3)j =
∫

t∈Ui
j

gij(t)p
i−1
j (t)dt.

(A.13)

Step 4 Choose a step-size αi to minimize Jg
({
ui + εipi

}
s

)
in the similar manner with Step 2, then

let ui+1 =
{
ui + εipi

}
s

and i← i+ 1. Go to Step 5.

Step 5 Repeat Step 3 and Step 4 until
∣∣Jg(ui+1)− Jg(ui)

∣∣ < δ
∣∣Jg(ui+1)

∣∣ or Jg(u
i+1) < Jtol where

δ > 0 regards to tolerance at which the algorithm is said to be converged. Here, the tolerance

δ is chosen as δ = 10−6.

In Steps 2 and 4 of Algorithm 5, the minimizer αi of Jg
({
ui + εipi

}
s

)
can be obtained by any 1D

linesearch algorithm, e.g., the golden section method [165]. Specifically, a high–low–high geometry

pattern of the cost functional Jg with respect to αi should be found beforehand to determine the

feasible searching interval. The convergence analysis of Algorithm 5 is shown in Appendix B.



Appendix B

Convergence Analysis of Algorithm 5

In this appendix, inspired from [128], a convergence analysis is carried out for Algorithm 5 of Ap-

pendix A. By means of the one-dimensional linesearch in Step 4, variation of the control input uij in

jth interval at ith iteration is given as follows

δuij =

{
αipij(t) if t ∈ Uij
0 if t ∈ Sij ∪ T2

, (j = 1, 3). (B.1)

Due to (B.1) and (A.2)-(A.4), variation of the cost functional J ig at ith iteration is described by

δJ ig =

∫ tf

t0

∂H

∂u
δu

∣∣∣∣i dt =
∑
j=1,3

∫ tj

tj−1

∂H

∂u
δu

∣∣∣∣i
j

dt (B.2)

= αi
∑
j=1,3

∫
Ui
j

gij(t)p
i
j(t)dt. (B.3)

It is noted that t3
∆
= tf . Substituting (A.11) into (B.3) results in

δJ ig = αi
∑
j=1,3

∫
Ui
j

[
−gij(t)gij(t) + βijg

i
j(t)p

i−1
j (t)

]
dt (B.4)

= αi
∑
j=1,3

[
−(Ii1)j + βij(I

i
3)j
]

(B.5)

According to (A.12)–(A.13), −(Ii1)j + βij(I
i
3)j < 0 can always be guaranteed and by αi > 0 thus

δJ ig < 0. Therefore, it can be obtained that Jg(u
i+1) < Jg(u

i), i = 0, 1, 2, . . . From this, Algorithm 5

158
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will converge to a local minimum Jg(u
?). When a local minimum Jg(u

?) is reached as i → ∞, the

following conditions hold

gij(t) = gi−1
j (t) and pij(t) = pi−1

j (t), (j = 1, 3). (B.6)

Furthermore, since δJ ig = 0, from (B.3) and (B.4), it results in
∑
j=1,3

∫
Ui
j

gij(t)p
i
j(t)dt = 0

∑
j=1,3

∫
Ui
j

[
−gij(t)gij(t) + βijg

i
j(t)p

i−1
j (t)

]
dt = 0.

(B.7)

In (B.7), by employing (B.6) and substituting the upper equation into the lower equation, it can be

reduced to

∑
j=1,3

∫
Ui
j

gij(t)g
i
j(t)dt = 0, (B.8)

which results in

gij(t) ≡ 0 for every t in Uij , (j = 1, 3). (B.9)

By the constructions of “saturated-control sub-interval points” as in (A.6) and the result in (B.9),

necessary conditions of an optimal control input for the switched system in the stage (a) (as found in

(A.5)) are now fulfilled. This completes the proof.
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