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As the demand for wireless communications is increasing unabated, the achievement of efficient
frequency utilization is an ongoing challenge. In-band full-duplex (IBFD) technology, which
simultaneously transmits and receives on the same frequency band and can theoretically achieve
twice the spectral utilization efficiency of conventional half-duplex systems, is an emerging technique
in recent wireless communications. However, self-interference (SI) interferes significantly with the
desired signal propagated from another terminal and disturbs the system capacity, as the distance
between the transmission and reception antennas is extremely close compared to the distance between
the terminal and another terminal. Unfortunately, orthogonal frequency division multiplexed
(OFDM) modulation, which is commonly used in numerous systems at present, causes a high
peak-to-average power ratio and the nonlinearities of the terminals have a significant impact on
the signals. Furthermore, SI is distorted by other transceiver non-idealities, such as imbalances of
the I/Q mixers and the phase noise of the local oscillators. Thus, the IBFD literature includes reports
of nonlinear SI cancellers that have been developed to achieve improved cancellation performance.
However, nonlinear cancellers exhibit certain problems, such as high computational complexity, the
requirement of large training data, and vulnerability to the nonlinearity of low-noise amplifiers
(LNAs). Moreover, no theoretical studies have been conducted on the performance of IBFD radios
with nonlinear cancellers. This thesis presents studies on nonlinear cancellers with regard to the
above problems.

Chapter 1 provides a general introduction to and summary of this thesis. It contains the
background of the studies in this thesis and details of time-domain parallel Hammerstein cancellers,
which are among the most well-studied SI cancellers.

In Chapter 2, a frequency-domain Hammerstein canceller is proposed, which achieves low
computational complexity while taking into account the nonlinearity of I/Q mixers and power
amplifiers (PAs). In the training period of the proposed canceller, discontinuities are produced
in the OFDM symbols without destroying the cyclic prefix structure, and the parameter estimator
can estimate the discontinuities of the SI signal with high accuracy in the frequency domain. In the
cancellation period, the time-domain SI signal is regenerated with the estimated frequency response
by the overlap-save method. The performance of the proposed scheme is assessed by equivalent
baseband signal simulations of an IBFD transceiver. As a result, the proposed scheme achieves as
high SI cancellation as time-domain parallel Hammerstein cancellers with a low computational cost.
Furthermore, the results demonstrate that the convergence performance of the proposed scheme is
faster than that of the time-domain scheme.

In Chapter 3, a basis function selection technique is presented to reduce the computational
cost further and to improve the convergence performance of the frequency-domain Hammerstein
canceller, which is presented in Chapter 2. The power spectral density (PSD) of the nonlinear SI
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signal is theoretically analyzed in detail and a nonlinear SI PSD estimation method is developed.
The proposed selection technique determines the basis functions that are necessary for cancellation
and relaxes the computational cost of the frequency-domain Hammerstein canceller based on the
estimated PSD of the SI of each basis function. Thereafter, the simulation results are presented,
demonstrating that the proposed technique can achieve similar cancellation performance to the
original frequency-domain Hammerstein canceller and a time-domain parallel Hammerstein canceller.
It is also shown that the proposed technique improves the computational cost and convergence
performance of the original frequency-domain Hammerstein canceller.

In Chapter 4, an iterative nonlinear SI canceller is proposed to consider the nonlinearities of not
only the PA and I/Q mixers, but also the LNA. The estimation process of the proposed scheme
consists of three stages: the channel response estimation, I/Q imbalance estimation, and PA and
LNA nonlinearity estimation. The channel response is estimated in the time domain, whereas t he
I/Q imbalance and nonlinearities are estimated in the frequency domain by using features of OFDM
modulation for a more straightforward estimation and superior accuracy. In the cancellation process
of the proposed scheme, the received signal is compensated for with the estimated parameters of
the LNA and receiver I/Q imbalance prior to cancellation, because the desired signal is received
with a high-power SI and is distorted by the radio frequency impairments of the receiver. The
simulation results reveal that the proposed technique can achieve higher cancellation performance
than the Hammerstein canceller when the LNA is saturated by SI. Moreover, the performance of
the proposed canceller converges much faster than that of the time-domain parallel Hammerstein
canceller.

In Chapters 2 to 4, the development of cancellers that can achieve higher cancellation performance
and a lower computational cost is presented, but a more detailed discussion of nonlinear cancellers
is required to improve the performance of IBFD radios further. For a more in-depth discussion,
Chapter 5 presents a theoretical analysis technique that takes into account the PA and LNA
nonlinearities for IBFD radios with parallel Hammerstein SI cancellers. The envelope of an OFDM
signal with a sufficiently large number of subcarriers can be assumed to follow a complex Gaussian
distribution according to the central limit theorem. Thus, the nonlinear characteristics of the
system can be expanded by a generalized Fourier series using orthonormal Laguerre polynomials.
Subsequently, the canceller performance and system symbol error rate (SER) are analyzed using
the obtained Fourier coefficients. The analytical results are compared with the simulation results,
demonstrating strong correlation in various situations, from extremely nonlinear cases to good
linear cases. Furthermore, the results demonstrate that the SER of the IBFD system is reduced
by moderately nonlinearizing rather than linearizing the amplifier.

Chapter 6 concludes this thesis and provides a discussion on future works.
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Chapter 1

General Introduction

1.1 In-Band Full-Duplex Radios

From the 1960s to the 1990s, researchers established the foundation of the physical
layer of current wireless communications, such as the base of orthogonal frequency-
division multiplexing (OFDM) in 1966 [1], its efficient modulation by fast Fourier
transform in 1971 [2], and symbol detection on multiple-input and multiple-output
(MIMO) systems in the late 1990s [3, 4]. In these methods, which are multiplexing
techniques, a sender transmits multiplexed signals and one or more receivers receive
multiplexed information from the received signals. In the fourth generation (4G) and
fifth generation (5G) mobile communication systems, the maximum communication
speed is 10 and 100 times higher than that of the third generation (3G) systems,
respectively, which has been achieved by increasing the frequency bandwidth as
well as applying technologies based on OFDM and MIMO. However, as the strong
demand for wireless communications is increasing unabated, the achievement of
efficient frequency utilization remains an ongoing challenge. In Japan, from 2018 to
2019, mobile traffic increased at a rate of approximately 1.2 times per year [5].

Intuitively, in contrast to multiplexing techniques, duplexing systems can be
constructed very easily. For example, a terminal uses a frequency band [fa1, fa2]
and another terminal uses a different frequency band [fb1, fb2] to avoid interference
between the two terminals, where fa1 < fa2 < fb1 < fb2, which is known as the
frequency division duplex (FDD). Furthermore , a terminal uses a time interval
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[ta1, ta2] and another terminal uses a different time interval [tb1, tb2], where ta1 <

ta2 < tb1 < tb2, which is known as the time division duplex (TDD). However, in the
FDD and TDD, the two terminals need to divide the frequency or time resources in
half. The FDD and TDD techniques are used in systems from the first generation
(1G) to 5G, and there have been no major changes in these techniques in the history
of wireless communication.

In-band full-duplex (IBFD) technology, which simultaneously transmits and
receives on the same frequency band, is an emerging technique in recent wireless
communications, and it is expected to improve the spectral efficiency compared
to conventional duplexing systems. IBFD systems offer several advantages over
conventional half-duplex systems, as follows [6]:

• improving the channel capacity up to twofold;
• reducing the latency of feedback messages such as acknowledge (ACK) and

negative acknowledge (NACK) on the median access control (MAC) layer;
and

• achieving secure communications where other terminals cannot demodulate
information because signals from two terminals are mixed on the same
frequency.

Full-duplex communication can replace the conventional half-duplex communication
system, and its application to various communication systems, such as wireless local
area networks (WLANs) [7,8], device-to-device relay communications [9,10], cellular
networks [11, 12], and self-backhauling systems [13], has been studied. In Japan,
under the leadership of the Ministry of Internal Affairs and Communications, the
research and development of IBFD communication will be carried out from 2019
to 2022 for further upgrading of the image transmission communication system for
unmanned mobile devices and the 5G mobile communication system [14].

However, self-interference (SI) is caused by simultaneous transmission and
reception on the same frequency band and limits the channel capacity. SI is the
most challenging obstacle to the realization of full-duplex communications and it
is important to reduce the SI to the thermal noise level. Thus, it is very difficult
to achieve IBFD radios, which have attracted research attention since the early
2010s [15,16]. Advances in radio frequency (RF) circuit design and signal processing
technologies have made it possible to achieve IBFD technology in the past 10 years.
In general, the SI signal is gradually eliminated by introducing antenna isolation
and SI cancellation in the analog RF domain and digital baseband domain [6, 17].

2



Chapter 1. General Introduction

For example, if the transmission power is 20 dBm and the thermal noise level is
−90 dBm, the total performance of all SI cancellation stages needs to reach 110 dB.
Furthermore, it is difficult to achieve high SI cancellation owing to the system
constraints and nonlinearity of analog circuits. In the next section, an overview
of SI mechanisms is presented.

1.2 Overview of SI Cancellation

1.2.1 Analog-domain cancellation

When the low-noise amplifier (LNA) and analog-to-digital converter (ADC) of the
receiver are saturated owing to strong SI, the elimination of SI in the digital baseband
becomes difficult. Thus, sufficient SI cancellation in the analog stage is necessary
to eliminate the SI signal. For example, if the transmission power is 20 dBm and
the saturated input level of the LNA is −10 dBm, the analog cancellation needs
to be at least 40 dB to guarantee a 10 dB peak-to-average power ratio (PAPR). In
the literature [16, 18–27], two major means of reducing the SI signal in the analog
domain have been proposed.

The first method for suppressing SI is to increase the transceiver isolation
between the transmitter and receiver chains. In full-duplex systems, two methods are
available to accomplish this: sharing an antenna for transmission and reception [19],
and separating the antennas [16]. In the antenna-sharing method, the isolation
between the transmitters and receivers is only approximately 15 dB [19] because
it depends on the isolation of the circulator. In antenna-separation systems, high
isolation can be achieved by the orthogonalization of the polarization and direction,
or by increasing the distance between the antennas [18]. However, in small terminals
such as smartphones and IoT devices, the amount of isolation is reduced owing to
size restrictions.

The second approach for suppressing SI is analog RF domain cancellation, which
is performed to prevent saturation in the receiver LNA and ADC. The most
researched analog cancellation scheme [15,16,19–22] is a multi-tapped delay-line RF
canceller that consists of digital controllers and passive elements, such as splitters,
variable attenuators, variable phase shifters, and delay lines. This delay-line
canceller can remove both the linear SI signal and nonlinear components of the
power amplifier (PA) output signal, because the canceller uses signals that are
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Table 1.1: Digital cancellers and RF impairments in literature

Addressed RF Impairments
IQI PA NL LNA NL Phase Noise

Linear [16]
Widely Linear [28] X

Hammerstein [19,22,29–36] X X
Auxiliary Receiver [37–39] X X

[40] X X
[41] X
[42] X X

Volterra Series [43–45] X X X

obtained by the linear conversion of the PA output signal. This canceller can be
configured flexibly because the number of delay lines can be increased or decreased
depending on the system specifications, cost requirements, and size restrictions.
Furthermore, an analog domain cancellation scheme with an auxiliary transmitter
has been proposed [23–27]. This canceller can take into account the multipath fading
and transmitter I/Q imbalance by including strong signal processing. However, this
canceller may not be suitable for cheap terminals because it requires an additional
transmitter.

1.2.2 Digital-domain cancellation

Digital SI cancellation is the final step in a series of cancellation processes. Using
powerful digital signal processing techniques, digital cancellers with various features
have been developed, as indicated in Table 1.1. In this field, it is common to deal
with RF impairments [19,22,28–35,40,43,44], phase noise [41,42], and applications to
MIMO systems [30,31,46,47], as well as the application of blind signal processing [48,
49]. In addition to the research that is focused on digital cancellers composed only of
digital signal processing, certain studies have also integrated auxiliary receivers [37–
39].

The simplest digital canceller is the time-domain linear canceller, which has
one finite impulse response (FIR) filter. The linear canceller can regenerate
the linear component of the SI, but its performance is considerably degraded
by the nonlinearity of the transceiver. In general, inexpensive terminals suffer
from nonlinearity problems more often than expensive terminals. The most

4



Chapter 1. General Introduction

problematic RF impairments are the I/Q mixer imbalance and PA nonlinearity [37].
Hammerstein cancellers [19, 22, 29–36] have been developed to deal with these
impairments. This type of canceller estimates the channel responses for all nonlinear
basis functions by applying a least-squares estimation. A digital canceller with an
auxiliary receiver [37–39], which is used to receive the PA output signal directly, can
perfectly regenerate the nonlinear SI signal caused by the transmitter nonlinearities
using lightweight digital signal processing. However, the nonlinearity resulting
from to the receiver LNA cannot be expressed by the Hammerstein model, and
the Hammerstein canceller and auxiliary receiver cannot cope with the nonlinear
distortion of the LNA. In the literature [40], a canceller that addresses the
nonlinearity of both the PA and LNA has been presented. This canceller estimates
the radio channel and nonlinear characteristics alternately. However, the I/Q
imbalance is not considered in this scheme. In other works [50–53], mitigation
techniques for receiver nonlinearity have been proposed for wideband receivers.
These techniques do not employ SI cancellers and cannot deal with the nonlinear
distortion of the transmitter. To use these techniques for SI cancellation, it
is necessary to complement them with other cancellers that can mitigate the
nonlinear distortion of the transmitter. Volterra series-based cancellers [43–45]
offer the potential to mitigate the PA and LNA nonlinearities as well as the I/Q
imbalance. However, these cancellers require significantly higher computational
power to estimate and regenerate the nonlinear SI signal than other practical
cancellers. For example, the Hammerstein canceller and the canceller described
in [43] need to estimate 12M = 576 and 7M3 + 3M2 + 2M + 1 ≈ 7.81 × 105

parameters for fifth-order nonlinearity cancellation, respectively, when the number
of taps of the channel impulse response is M = 48. To the best of the author’s
knowledge, a digital SI canceller that addresses the PA and LNA nonlinearities as
well as the imbalance of I/Q mixers with a reasonable computational cost has not yet
been developed. The development of such a canceller would enable the construction
of inexpensive full-duplex terminals.

In systems in which the transmitter and receiver do not share a local oscillator,
phase noise will be a major obstacle in addition to RF impairments. The estimation
of the time-varying phase noise is generally challenging. A linear digital canceller
with phase noise estimation was proposed in [41]. This canceller estimates the phase
noise with the minimum mean square error (MMSE) algorithm under the presence
of the desired signal. Similarly, in [42], the phase noise was estimated with the
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maximum likelihood algorithm, following which the nonlinear SI was reconstructed
and removed.

To achieve a higher channel capacity in IBFD communications, cancellers should
have a lower number of training symbols. For example, SI cancellers with blind
signal processing have been proposed for OFDM systems [48, 49]. However, these
techniques require symbol synchronization between the SI and desired signal because
they are applied in the frequency domain [49]. This problem is inherent in
frequency-domain cancellers and limits the locations of two full-duplex terminals
that communicate with one another. Hammerstein cancellers with frequency-domain
cancellation exhibit the same problem and time-domain cancellation is required to
avoid this issue [34].

At present, the most common communication systems are MIMO systems, and
the application of digital cancellers to such systems is an important subject. Several
studies [30, 31] have been conducted to upgrade single-input and single-output
(SISO) Hammerstein cancellers to MIMO systems. Unlike SISO systems, MIMO
systems can use additional spatial dimensions and many received signals for SI
cancellation. A precoding scheme [46, 54–56] has been developed to optimize the
receiver weight matrix and transmitter precoder matrix for reducing SI. In [47], it
was noted that in massive MIMO systems, the SI can be reduced by a zero-forcing
receiver with numerous transmitting and receiving antennas. Researches in [57, 58]
have been conducted on full-duplex relay systems to mitigate SI and to maximize
the spectral efficiency. In [57], a transmission power optimization technique was
proposed for full-duplex multi-antenna relay systems. In [58], the conditions under
which half-duplex or full-duplex modes exhibit higher spectral efficiency and an
opportunistic mode selection scheme were studied. Precoding techniques of MIMO
systems and power optimization techniques of relays are used in conjunction with
digital SI cancellers. Thus, the development of a digital canceller with improved
performance is also important for these systems.

1.3 RF Non-Ideality in IBFD

An overview of digital SI cancellers has been presented in the previous section.
However, to understand nonlinear SI cancellers in detail, we need to investigate
the nonlinearities and non-idealities in IBFD radios. In this section, the baseband
models of the RF components of a full-duplex terminal are provided. If the reader
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cos 2πfct

sin 2πfct

I(t)

Q(t)

xideal(t)

(a) Ideal I/Q up-converter

cos 2πfct

(1 + εr) sin(2πfct+ εθ)

I(t)

Q(t)

xIQI(t)

(b) Imbalanced I/Q up-converter

Figure 1.1: Block diagram of I/Q mixers

is familiar with the nonlinearities of RF devices, he or she can skip this section.

1.3.1 Notations

In this section, the passband signal corresponding to an equivalent baseband signal
x(t) is written as ↗x(t). That is, the relation of the equivalent baseband and passband
signals can be expressed as

↗
x(t) = Re

[
x(t)ej2πfct

]
= Re [x(t)] cos(2πfct)− Im [x(t)] sin(2πfct),

where ↗x(t) is a passband signal, x(t) is an equivalent baseband signal of ↗x(t), and
fc is the carrier frequency.

1.3.2 RF non-ideality of I/Q mixers and oscillators

Ideal I/Q mixer

In digital wireless communication, radio waves with high carrier frequencies ranging
from several MHz to several tens of GHz are used. However, the information placed
on the radio waves is a signal with a frequency that is much lower than the carrier
frequency. An I/Q mixer is an RF component for placing low-frequency information
on a high-frequency carrier wave. Figure 1.1 (a) presents a block diagram of an
ideal I/Q mixer. In the passband domain representation, the input baseband signal
x(t) = I(t) + jQ(t) and output passband signal ↗xideal(t) of the ideal I/Q mixer
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exhibit the following relationship:

↗
xideal(t) = I(t) cos(2πfct)−Q(t) sin(2πfct)

= Re
[
(I(t) + jQ(t)) ej2πfct

]
= Re

[
x(t)ej2πfct

]
= 1

2x(t)ej2πfct + 1
2x
∗(t)e−j2πfct, (1.1)

where fc is the carrier frequency. Thus, the equivalent baseband signal of the output
signal ↗xideal(t) can be expressed as

xideal(t) = x(t) = I(t) + jQ(t). (1.2)

Therefore, in the ideal I/Q mixer, the input baseband signal x(t) and equivalent
baseband signal of the output signal xideal(t) are exactly the same.

I/Q imbalance

The equivalent baseband signals of the input and output signals do not match in
real-world devices, and the in-phase and quadrature carriers are not orthogonal,
or their amplitudes are misaligned. The resulting non-idealities are known as I/Q
imbalances. Figure 1.1 (a) presents a block diagram of an imbalanced I/Q mixer. In
the passband domain representation, the input baseband signal x(t) = I(t) + jQ(t)
and output passband signal ↗xIQI(t) of an I/Q mixer with imbalance exhibit the
following relationship:

↗
xIQI(t) = I(t) cos(2πfct)− (1 + εr)Q(t) sin(2πfct+ εθ)

= [I(t)− (1 + εr) sin εθQ(t)] cos(2πfct)
− (1 + εr) cos εθQ(t) sin(2πfct), (1.3)

where εr and εθ are the amplitude and phase imbalances, respectively. Therefore,
the equivalent baseband signal of ↗xIQI(t) can be written as

xIQI(t) = [I(t)− (1 + εr) sin εθQ(t)] + j(1 + εr) cos εθQ(t)
= I(t) + j(1 + εr)ejεθQ(t) = I(t) + jbIQIQ(t), (1.4)
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εθ

×(1 +
ε
r )

I

jbIQIQ

(a) Imbalanced IQ plane

I

jbIQIQ

(b) Imbalanced 16 QAM constellation

Figure 1.2: Effect of I/Q imbalance on I/Q constellation

f
0

X(f)

(a) Input spectrum

f
0

X(f)
X∗(−f)

(b) Imbalanced output spectrum

Figure 1.3: Effect of I/Q imbalance on frequency domain

where bIQI = (1 + εr)ejεθ . Figure 1.2 depicts the effect of the I/Q imbalance on the
I/Q constellation. The I and Q axes are no longer orthogonal and the constellation
of the quadrature amplitude modulation (QAM) signal changes from a square to a
parallelogram.

By assigning I(t) = (x(t) + x∗(t))/2 and Q(t) = (x(t) − x∗(t))/j2 to (1.4), the
equivalent baseband signal xIQI(t) can be expressed as

xIQI(t) = x(t) + x∗(t)
2 + jbIQI

x(t)− x∗(t)
j2

= 1 + bIQI

2 x(t) + 1− bIQI

2 x∗(t). (1.5)

Furthermore, the frequency-domain representation of (1.5) can be expressed as

XIQI(f) = 1 + bIQI

2 X(f) + 1− bIQI

2 X∗(−f). (1.6)

Figure 1.3 presents the spectra of the input and output signals from a imbalanced
mixer. It shows that the output signal from a real-world mixer has the mirror-image
component of the input signal X∗(−f).
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cos(2πfct+ φ(t))

sin(2πfct+ φ(t))

I(t)

Q(t)

↗
xPN(t)

(a) Up-converter with phase noise

cos(2πfct+ φ(t))

sin(2πfct+ φ(t))

LPF

LPF

↗
y(t)

Re[yPN(t)]

Im[yPN(t)]

(b) Down-converter with phase noise

Figure 1.4: Effect of phase noise

An indicator of the I/Q imbalance is known as the image rejection ratio
(IRR) [59], and it can be defined as

IRR =
∣∣∣∣∣1 + bIQI

1− bIQI

∣∣∣∣∣
2

. (1.7)

Phase noise

Phase noise is a very important non-ideality that limits the performance of digital
SI cancellers [60]. Figure 1.4 presents signal diagrams of an up-converter and a
down-converter with phase noise. The RF up-converted signal with phase noise φ(t)
can be expressed as

↗
xPN(t) = I(t) cos(2πfct+ φ(t))−Q(t) sin(2πfct+ φ(t))

= Re
[
x(t)ejφ(t)ej2πfct

]
. (1.8)

Thus, the equivalent baseband representation of the up-converted signal ↗xPN(t) can
be written as

xPN(t) = x(t)ejφ(t). (1.9)

In a receiver, the down-converted signal with phase noise φ(t) can be expressed
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cos(2πfct+ φ(t))

(1 + εr) sin(2πfct+ φ(t))

I(t)

Q(t)

↗
xIQI,PN(t)

(a) Passband signal diagram

Imbalance
εr, εθ

Phase noise

×ejφ(t)

x(t) xIQI(t) xIQI,PN(t)

(b) Equivalent baseband signal diagram

Figure 1.5: Block diagram of up-converter with I/Q imbalance and phase noise

as

yPN(t) = LPF
[↗
y(t)× 2e−j(2πfct+φ(t))

]
= LPF

[(
y(t)ej2πfct + y∗(t)e−j2πfct

)
e−j(2πfct+φ(t))

]
= y(t)e−jφ(t). (1.10)

Comparing (1.9) and (1.10), it can be observed that the phase noise is added to
the signal phase in the transmitter and subtracted in the receiver. Thus, if the
local oscillator is shared by the transmitter and receiver, the phase noise that is
generated by the transmitter is cancelled out by the receiver. That is, it is important
for the local oscillator to be shared between the transmitter and receiver to reduce
the degradation of the SI cancellation performance owing to phase noise in IBFD
communications.

Composition of I/Q imbalance and phase noise

The output signal from an I/Q mixer is affected by the composited non-ideality of
the I/Q imbalance and phase noise. Figure 1.5 presents signal diagrams of an up-
converter with I/Q imbalance and phase noise. The up-converted signal of Fig. 1.5(a)
can be expressed as

↗
xIQI,PN(t) = I(t) cos(2πfct+ φ(t))−Q(t)(1 + εr) sin(2πfct+ φ(t) + εθ)

= [I(t)− (1 + εr) sin εθQ(t)] cos(2πfct+ φ(t))
− (1 + εr) cos εθQ(t) sin(2πfct+ φ(t))
= Re

[
xIQI(t)ejφ(t)ej2πfct

]
. (1.11)
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cos(2πfct+ φ(t))

(1 + εr) sin(2πfct+ εθ + φ(t))
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LPF

↗
y(t)

Re[yIQI,PN(t)]

Im[yIQI,PN(t)]

(a) Passband signal diagram

Imbalance
εr, εθ

Phase noise

×e−jφ(t)

y(t) yPN(t) yIQI,PN(t)

(b) Equivalent baseband signal diagram

Figure 1.6: Block diagram of down-converter with I/Q imbalance and phase noise

Thus, the equivalent baseband signal of ↗xIQI,PN(t) can be written as

xIQI,PN(t) = xIQI(t)ejφ(t), (1.12)

and Fig. 1.5(b) presents a block diagram of the equivalent baseband signal. It can
be observed from the block diagram that the effect of the imbalance is first added
to the signal, and the phase noise is multiplied in the transmitter later.

Furthermore, Fig. 1.6 presents signal diagrams of a down-converter with I/Q
imbalance and phase noise. The down-converted signal of Fig. 1.6(a) can be
expressed as

yIQI,PN(t) = 2LPF
[↗
y(t) cos(2πfct+ φ(t))

]
− j2LPF

[↗
y(t)(1 + εr) sin(2πfct+ εθ + φ(t))

]
= LPF

[↗
y(t)

[
(1− bIQI)ej2πfct+jφ(t) + (1 + bIQI)e−j2πfct−jφ(t)

]]
= (1 + bIQI)

2 y(t)e−jφ(t) + (1− bIQI)
2 y∗(t)ejφ(t)

= 1− bIQI

2 yPN(t) + 1 + bIQI

2 y∗PN(t). (1.13)

Figure 1.6(b) presents a block diagram of the equivalent baseband signal yIQI,PN(t).
As opposed to the transmitter, the phase noise is multiplied to the signal first, and
the imbalance effect is added later in the transmitter.

1.3.3 Amplifier AM–AM and AM–PM nonlinearity

Wireless transceivers have amplifiers for the transmission and reception of
information with other distant transceivers. In general, an amplifier cannot amplify a
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signal that is greater than its maximum output amplitude. In practice, a real-world
amplifier has a nonlinear transfer function consisting of amplitude modulation to
amplitude modulation (AM–AM) and amplitude modulation to phase modulation
(AM–PM) distortion. On the equivalent baseband, the transfer function of a
nonlinear amplifier can be expressed as

f(x) = A(|x|)ejΦ(|x|) x

|x|
, (1.14)

where A(|x|) is the AM–AM distortion and Φ(|x|) is the AM–PM distortion. The
nonlinear transfer function can be described by a power series of odd order:

f(x) ≈
∞∑
m=0

a2m+1x|x|2m, (1.15)

where ap is the p-th complex coefficient of the series.
The reason that (1.15) is expressed as a series of odd order only can be explained

as follows. In the passband domain, the output signal from the amplifier can be
expressed as the Taylor series of the input signal (1.1):

a(t) ≈
∞∑
n=1

a′n
↗
xnideal(t)

=
∞∑
n=1

a′n
2n
(
x(t)ej2πfct + x∗(t)e−j2πfct

)n
=
∞∑
n=1

a′n
2n

n∑
m=0

(
n

m

)
(x(t))n−m (x∗(t))m ej2πfc(n−2m)t, (1.16)

where a′n is the n-th Taylor coefficient of the amplifier passband transfer function.
In general, the bandwidth of the signal x(t) is sufficiently smaller than the carrier
frequency fc; thus, the signal is only received if

fc(n− 2m) = ±fc
⇔ n is odd, and m = (n∓ 1)/2 (1.17)

is satisfied. For m+ = (n+ 1)/2 and m− = (n− 1)/2,
(
n

m+

)
=
(
n

m−

)
(1.18)
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holds. Thus, the output from a bandpass filter with a center frequency fc can be
written as

a′(t) = ej2πfct
∞∑

n=1,3,···

a′n
2n (x(t))

n+1
2 (x∗(t))

n−1
2

+ e−j2πfct
∞∑

n=1,3,···

a′n
2n (x(t))

n−1
2 (x∗(t))

n+1
2 . (1.19)

According to (1.19), the equivalent baseband signal of the amplifier output signal
can be written as

a′base(t) =
∞∑

n=1,3,···

a′n
2n (x(t))

n+1
2 (x∗(t))

n−1
2

=
∞∑
m=0

a′2m+1
22m+1x(t)|x(t)|2m. (1.20)

Another reason that (1.15) is expressed as a series of odd order only can
be explained by the Wirtinger derivative of complex analysis. In the previous
explanation, the output signal in the passband system was discussed, but in this
paragraph, the Wirtinger derivative and its Taylor series in the baseband domain
are presented. As a complex function, the transfer function f(x) is a nonregular
analytic function; thus, we cannot expand f(x) to a power series by Taylor
expansion. However, the Taylor expansion with the Wirtinger derivative can expand
a nonregular function to a power series. The Taylor series of f(x) with the Wirtinger
derivative can be expressed as

f(x) =
∞∑
p=0

∞∑
q=0

f (p,q)(0)
p!q! xp (x∗)q , (1.21)

where

f (p,q)(0) =
(
∂p+qf(x)
∂xp∂ (x∗)q

)∣∣∣∣∣
x=0

. (1.22)

To satisfy the identity f(xejθ) = f(x)ejθ of the AM–AM and AM–PM nonlinearity
for an arbitrary phase θ, the function f(x) must consist only of terms that satisfy
p− q = 1 in (1.21). Thus, the amplifier transfer function f(x) can be expressed by
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a power series with an odd order only:

f(x) =
∞∑
q=0

f (q+1,q)(0)
(q + 1)!q! x

q+1 (x∗)q

=
∞∑
q=0

f (q+1,q)(0)
(q + 1)!q! x|x|

2q. (1.23)

Memoryless models are often used for modeling RF amplifiers. On the equivalent
baseband, the transfer function of the ideal amplifier can be written as

f(x) =

gx, |gx| < Asat

Asat
x
|x| , |gx| ≥ Asat,

(1.24)

where g is the small signal gain and Asat is the maximum output amplitude. The
model of (1.24) is known as the “soft limit” model1 .

Another model that is frequently used is the Rapp model [61]. The AM–AM
characteristic function of the Rapp model can be written as

f(x) = Gx(
1 +

∣∣∣ Gx
Asat

∣∣∣2s)1/2s , (1.25)

where G is the small signal gain, Asat is the maximum output amplitude, and s is
the smoothness factor of the Rapp model. A larger smoothness factor s results in
stronger linearity of the Rapp model. When the smoothness factor s is infinite, the
Rapp model becomes the soft limit model.

1.4 Time-Domain Parallel Hammerstein Can-
celler

The parallel Hammerstein canceller is one of most well-studied nonlinear cancellers
in the IBFD literature. This type of canceller was initially developed to deal
with amplifier nonlinearity [19, 29], but several versions have subsequently been
established to deal with I/Q imbalance [28, 32, 34] and crosstalk in MIMO
systems [62].

The generalized model of the time-domain parallel Hammerstein canceller can

1 Certain papers refer to the model as “hard limit.” However, in this thesis, I call the
model “soft limit.” 15
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φ0(x)

...

c[n]x[n]

φL−1(x)

...

c0[m]

cL−1[m]

Figure 1.7: Block diagram of time-domain parallel Hammerstein canceller

be written as

c[n] =
L−1∑
l=0

M−1∑
m=0

φl(x[n−m])cp[m], (1.26)

where c[n] is the regenerated SI signal, φ0(x), · · · ,φL−1(x) are basis functions of the
canceller, and c0[m], · · · , cL−1[m] are the impulse responses of the basis functions.

The basis functions are determined according to which nonlinear components
we wish to remove from the received signal. For example, if we wish to remove
distortions from the PA up to the (2L−1)-th order, we should set the basis functions
as

φl(x) = x|x|2l. (1.27)

Moreover, if we wish to remove distortions from the PA and I/Q mixer up to the
P -th order, we should set the basis functions for 0 ≤ p ≤ P , 0 ≤ q ≤ P , and
p+ q ≤ P as

φ 2p+q(2P−q+1)
2

(x) = xp (x∗)q , (1.28)

and L = P (P + 1)/2.
The impulse responses of the canceller are determined by the least squares (LS)

and least mean squares (LMS) algorithms. In this section, the LS learning technique
for the canceller is described. Assuming that the SI is a linear combination of the
basis function φl(x), the received SI signal can be written as

y[n] =
L−1∑
l=0

M−1∑
m=0

φl(x[n−m])hl[m] + z[n], (1.29)
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where hp[m] is the impulse response of each basis function and z[n] is the additive
noise. Thus, the received SI y[n] can be written in the vector-matrix form:

y = Φh + z, (1.30)

where

y =
[
y[0] y[1] · · · y[N − 1]

]T
, (1.31)

Φ =


φ0(x[0]) · · · φ0(x[1−M ]) φ1(x[0]) · · · φL−1(x[1−M ])
φ0(x[1]) · · · φ0(x[2−M ]) φ1(x[1]) · · · φL−1(x[2−M ])

... . . . ... ... . . . ...
φ0(x[N − 1]) · · · φ0(x[N −M ]) φ1(x[N − 1]) · · · φL−1(x[N −M ])

 ,

(1.32)

h =
[
h0[0] · · · h0[M − 1] h1[0] · · · hL−1[M − 1]

]T
, (1.33)

z =
[
y[0] z[1] · · · z[N − 1]

]T
. (1.34)

Thus, the vector of impulse responses can be estimated by the LS as follows:

ĥ =
(
ΦHΦ

)−1
ΦHy. (1.35)

The computational cost is an important performance indicator of SI cancellers.
In general, the computational cost of the pseudo-inverse matrix of (1.35) is very
high. Furthermore, the LMS and recursive least squares (RLS) algorithms for the
augmented nonlinear digital canceller [32] require computational costs of O(L2MN)
and O(L4M2N), respectively. However, the canceller can be trained with a low
computational cost if the predetermined training sequence is used, and subsequently,
the pseudo-inverse matrix of (1.35) can be computed a priori. The number of both
the multiplications and additions for training the Hammerstein canceller can be
expressed as LMN when applying the pseudo-inverse matrix of the LS algorithm a
priori [29].

17



Chapter 1. General Introduction

1.5 Summary of Dissertation

SI is distorted by transceiver non-idealities such as the amplifier nonlinearities,
imbalances of I/Q mixers, phase noise of local oscillators, and quantization noise
of ADCs. Thus, the IBFD literature includes reports of nonlinear SI cancellers
that have been developed to achieve improved cancellation performance. However,
compared to linear cancellers, nonlinear cancellers exhibit several problems, such
as high computational complexity, the requirement of large training data, and
vulnerability to LNA nonlinearity. Furthermore, no theoretical studies have been
conducted on the performance of IBFD radios with nonlinear cancellers. This thesis
presents studies on nonlinear cancellers with regard to the above problems.

Chapter 1 presents a general introduction to and summary of this thesis. It
contains the background of the studies in this thesis.

In Chapter 2, a frequency-domain Hammerstein canceller based on the parallel
Hammerstein model, which can achieve low computational complexity, is proposed.
The proposed canceller estimates the frequency response of the SI channel and
regenerates SI signals by means of the overlap-save method. Therefore, the
computational complexity of the proposed scheme is less than that of time-domain
parallel Hammerstein cancellers. The performance of the proposed scheme is
assessed by equivalent baseband signal simulations of a full-duplex transceiver.
The results demonstrate that the proposed scheme achieves as high SI cancellation
as time-domain parallel Hammerstein cancellers with a low computational cost.
Moreover, the results reveal that the convergence performance of the proposed
scheme is faster than that of the time-domain scheme.

In Chapter 3, a basis function selection technique is proposed to reduce the
computational cost further and to improve the convergence performance of the
frequency-domain Hammerstein canceller, which is presented in Chapter 2. The PSD
of the nonlinear SI signal is theoretically analyzed in detail and a nonlinear SI PSD
estimation method is presented. The proposed selection technique determines the
basis functions that are necessary for cancellation and relaxes the computational cost
of the frequency-domain Hammerstein canceller based on the estimated SI PSD of
each basis function. Thereafter, simulation results are presented, demonstrating that
the proposed technique can achieve similar cancellation performance compared to
the original frequency-domain Hammerstein canceller and a time-domain nonlinear
canceller. Furthermore, it is shown that the proposed technique improves the
computational cost and convergence performance of the original frequency-domain
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Hammerstein canceller.
In Chapter 4, an iterative nonlinear SI canceller is proposed to consider the

LNA nonlinearity. The estimation process of the proposed scheme consists of three
stages: the channel response estimation, I/Q imbalance estimation, and PA and
LNA nonlinearity estimation. For the estimation of the parameters and improvement
in the accuracy, the distortions are compensated for by cancellation or inversion
with the latest estimated parameters. The channel response is estimated in the
time domain, whereas the I/Q imbalance and nonlinearities are estimated in the
frequency domain for a more straightforward estimation and superior accuracy. In
the cancellation process of the proposed scheme, the received signal is compensated
for with the estimated parameters of the LNA and receiver I/Q imbalance prior
to cancellation because the desired signal is received with a high-power SI and is
distorted by the RF receiver impairments. The simulation results demonstrate that
the proposed technique can achieve higher cancellation performance compared to
the Hammerstein canceller when the LNA is saturated by the SI. Furthermore,
the performance of the proposed canceller converges much faster than that of the
Hammerstein canceller.

Chapter 5 presents a theoretical analysis technique for IBFD radios with parallel
Hammerstein SI cancellers. The nonlinear system characteristics are expanded by a
generalized Fourier series using orthonormal Laguerre polynomials. Thereafter, the
canceller performance and system SER are analyzed using the obtained Fourier
coefficients. The analytical results are compared with the simulation results,
demonstrating strong correlation in various situations, from extremely nonlinear
cases to good linear cases. Moreover, the results demonstrate that the SER of the
IBFD system is reduced by moderately nonlinearizing rather than linearizing the
amplifier.

Chapter 6 concludes this thesis.
In Appendix A, a novel estimation technique for the memoryless nonlinearity

using weighted least squares is presented. The technique is developed using the
theory of the orthonormal basis functions, which are used in Chapter 5. In the
proposed method, the input signal and weight value are obtained via numerical
integration formulas. Moreover, a theoretical error analysis of the proposed
technique on complex Gaussian signals is provided. The simulation results reveal
that the proposed method can achieve a sufficiently low reconstruction error with 10
measurement samples on the estimation of the 13th-order nonlinearity. Furthermore,
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the simulation and theoretical results are consistent with one another. Although this
technique is not a nonlinear canceller, it is an efficient method for estimating the
nonlinearity that is required for nonlinear cancellers.
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Chapter 2

Frequency-Domain Hammerstein Canceller

Currently, several time-domain and frequency-domain SI cancellers have been
proposed. Time-domain SI cancellers are based on the parallel Hammerstein
(PH) model, and they have good flexibility with high computational cost. In
contrast, frequency-domain SI cancellers can achieve high cancellation performance
with low computational cost but they have less flexibility than time-domain PH
based SI cancellers. In this chapter, the author proposes a frequency-domain SI
canceller based on the PH model. The proposed canceller estimates the frequency
response of the SI channel and regenerates SI signals by the overlap-save method.
Therefore, the computational complexity of the proposed scheme is less than
time-domain PH cancellers. The performance of the proposed scheme is assessed by
equivalent baseband signal simulations of a full-duplex transceiver. As a result, the
proposed scheme achieves high SI cancellation as time-domain PH cancellers with
low computational cost. In addition, the results show the convergence performance
of the proposed scheme is faster than the time-domain scheme.

2.1 Introduction

Digital SI cancellers are necessary to eliminate long delayed and remained SI signals
since RF cancellers cannot reduce the power of the SI signal to the noise floor. Digital
SI cancellation algorithms can be classified into three categories: time-domain
algorithms, frequency-domain algorithms, and reference receiver based algorithms.
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Time-domain digital self-interference cancellers [1–8] estimate the self-interference
channel, and the self interference is canceled using the estimated channel and the
known transmitted signal. In [1–6, 8], it is shown that the IQ imbalance of IQ
mixers and power-amplifier (PA) nonlinear distortion are serious problems for digital
cancellation, and, consequently, nonlinear self-interference cancellers are proposed.
A similar idea to nonlinear self-interference cancellers has been studied in the field
of acoustic echo cancellation [9, 10]. Time-domain nonlinear cancellers assume the
self-interference channel including the transceiver path to be a parallel Hammerstein
model, and they have high cancellation characteristics with high computational cost.
For example, the least mean squares (LMS) and the recursive least squares (RLS)
algorithms for the augmented nonlinear digital canceller [6] need computational costs
of O(P 2N) and O(P 4N2), respectively, where P is the highest nonlinearity order
of the canceller, and N is the number of the taps of each branched finite impulse
response (FIR) filter. Furthermore, they overestimate nonlinear characteristics even
when the power of the self-interference is lower than the noise power because the
highest nonlinearity order P is determined so that self-interference can be removed,
in the worst case, during the design stage.

Conventional frequency-domain digital self-interference cancellers [11–15] esti-
mate the frequency response of the self-interference channel in the frequency domain,
and they offer lower computational cost than time-domain cancellers by using fast
Fourier transform (FFT). However, they have less flexibility than the time-domain
cancellers because they cannot be used with well-known adaptive algorithms such
as LMS and RLS, and in [12] the nonlinear coefficients of the PA are estimated by
time-domain signal processing. Also, conventional frequency-domain cancellers have
several difficulties.

• The performance of the frequency-domain cancellation is degraded when the
symbol timing of the desired signal and the self-interference signal are not
synchronized [14].

• To avoid the degradation by the symbol timing offset, we have to apply
self-interference cancellation on the time domain even though the parameter
estimation process is performed on the frequency domain, as in [15].

• When pure OFDM symbols are used for the parameter estimation, the
frequency response can be estimated only at the frequency where the
subcarriers exist. It may cause degradation of time-domain cancellation
performance, which can be found in results of [15] because we have to estimate
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Figure 2.1: A model of the assumed full duplex transceiver.

the effect of discontinuities between symbols which yield the sidelobe of the
spectra.

In this chapter, the author describes a frequency-domain SI cancellation
algorithm based on the parallel Hammerstein model. In a training period, it
transmits appropriate symbols and estimates frequency responses of the SI channel
in frequency-domain. Then, the SI-canceled signal is computed by the overlap-save
method. The proposed scheme achieves high SI cancellation with low computational
cost and good flexibility like time-domain cancellers.

2.2 Self-Interference Signal Model

The structure of a transceiver subject to this study is presented in Fig. 2.1. In this
section, we derive the SI signal model on the transceiver. The transceiver consists
of a transmitter and a receiver which have RF components such as IQ mixers,
filters, and amplifiers. The modulation method of the transceiver is orthogonalized
frequency division multiplexing (OFDM). The isolation between a transmit antenna
and a receive antenna is achieved by a passive antenna isolation, and a simple RF
SI canceller which cancels only LOS SI signal is used. For simplicity, desired signals
are not received, and both RF filters and variable gain amplifiers (VGA) of the
transceiver have ideal characteristics.

2.2.1 IQ mixer

The transmission baseband signal x[n] is converted to an analog baseband signal by
digital to analog converter (DAC), and it is up-converted by an IQ mixer. On an

29



Chapter 2. Frequency-Domain Hammerstein Canceller

ideal IQ mixer, equivalent baseband signal of the output signal from the IQ mixer is
equal to the input signal of the IQ mixer. But in fact, that is not satisfied because
an actual IQ mixer has imbalances between I- and Q-phase carrier signals. Thus,
the output signal of the transmitter IQ mixer can be expressed as

xIQ(t) = gTX
1 (τ) ∗ x(t) + gTX

2 (τ) ∗ x∗(t), (2.1)

where gTX
1 (τ) and gTX

2 (τ) are I- and Q-phase impulse responses of the transmitter
IQ mixer [16], and the binary operator f ∗ g denotes a convolution of f and g. An
indicator of the imbalance is called image rejection rate (IRR), and it is defined as

IRRTX(f) =

∣∣∣GTX
1 (f)

∣∣∣2
|GTX

2 (f)|2
, (2.2)

where GTX
1 (f) and GRX

2 (f) are frequency responses of gTX
1 (t) and gTX

2 (t),
respectively.

On the assumption that GTX
1 (f) and GTX

2 (f) are constant at a whole band, the
output signal of the transmitter IQ mixer can be simplified to

xIQ(t) = x(t) + bTXx∗(t), (2.3)

where bTX is the coefficient of the image component. On the same assumption, the
output signal of the receiver IQ mixer can be written by

yIQ(t) = yVGA(t) + bRXy∗VGA(t), (2.4)

where bRX is the coefficient of the image component, and IRRRX = |bRX|−2 is an
IRR of the receiver IQ mixer, and yVGA(t) is the output signal of the receiver VGA.

2.2.2 Power amplifier

The output signal of the transmitter IQ mixer xIQ(t) is amplified by the power
amplifier (PA) before transmitting from the antenna. Practical characteristics of
a PA can be assumed to be linear at low output power, but the distorted output
signal cannot be ignored for SI cancellers at high output power. The output signal

30



Chapter 2. Frequency-Domain Hammerstein Canceller

at the PA is expressed as

xPA(t) = fPA(τ) ∗ (a1xIQ(t) + xIMD(t)) , (2.5)
xIMD(t) = a3ψ3(xIQ(t)) + a5ψ5(xIQ(t)) + · · · ,
ψp(x) = x |x|p−1 ,

where fPA(τ) is an impulse response of the PA, and xIMD(t) is an intermodulation
distortion signal, and ap is a gain of a distorted signal ψp.

2.2.3 Self-interference coupling channel

The received SI signal at the receive antenna can be written by

yANT(t) = h(τ) ∗ xPA(t) + zth(t), (2.6)

where h(τ) is an impulse response of the SI channel and zth(t) is the thermal noise.
The SI channel is strongly coupling, and a LOS wave is stronger than multi-path
waves because the receive antenna is placed near the transmit antenna. Thus,
the characteristic of the SI channel is modeled to Rician fading channel, and its
parameter is K = 25 dB – 40 dB when the distance between the transmit antenna
and the receive antenna is less than 0.5 m [17]. The isolation between the transmit
antenna and the receive antenna can be higher by using directional antennas and
absorbers [18].

2.2.4 Received self-interference signal

Taking RF impairments into account, the quantized received signal is written as

y(t) =
∞∑

p=1,3,···

{
hp(τ) ∗ ψp(x(t)) + h′p(τ) ∗ ψ∗p(x(t))

}
+ z(t), (2.7)

where hp(τ) and h′p(τ) are impulse responses of the SI channel, and z(t) contains
other distortions and total noise at the receiver. The received SI signal at frequency-
domain is expressed as

Y (f) =
∞∑

p=1,3,···

{
Hp(f)Ψp(f) +H ′p(f)Ψ′p(f)

}
+ Z(f), (2.8)
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Figure 2.2: Proposed SI canceller.

where Ψp(f) is a frequency-domain symbol of the p-th distorted transmitted signal,
and Ψ′p(f) is an image signal of Ψp(f). In addition, Hp(f) and H ′p(f) are frequency
responses of Ψp(f) and Ψ′p(f), respectively. Also, Z(f) is the frequency-domain
representation of z(t). Thus, the received frequency-domain signal Y (f) can be
described as a linear combination of Ψp(f) and Ψ′p(f).

2.3 Proposed Frequency-Domain Canceller Based
on Parallel Hammerstein Model

In this section, the author describes the proposed frequency-domain SI canceller
based on the parallel Hammerstein model as shown in Fig. 2.2. The frequency
responses Hp,i[k] and H ′p,i[k] are estimated in the training period of the proposed
scheme. In the canceling period, the received SI signal is regenerated by the overlap-
save method with estimated Hp,i[k] and H ′p,i[k].

2.3.1 Generating training symbols

In the training period of the proposed scheme, the i-th transmitted OFDM symbol,
xi[n], is manipulated from a pure OFDM symbol xfft

i [n] to utilize effects of the cyclic
prefix (CP) as shown in Fig. 2.3. The swapping manipulation is necessary to achieve
high SI cancellation, because there are no discontinuities in an OFDM symbol, and
they appear between symbols. Additionally, Hp,i[k], which is the frequency response
of ψp(xi[n]), can be estimated with high accuracy by the CP.
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The first step of generating training symbols is to modulate training bits to Xi[k]
by QAM and to convert them to a time-domain symbol xfft

i [n], such that

xfft
i [n] = IFFT {Xi[k]} [n] = 1√

K

Nsc/2∑
k=−Nsc/2

k 6=0

Xi[k]ej2πk∆fnTs , (2.9)

where the operator IFFT{·} is the inverse fast Fourier transform (FFT) operator,
and ∆f and Ts are the frequency interval and sampling interval of the OFDM
modulation, and NSC is the number of subcarriers.

In the second step, the first half of xfft
2i is swapped to the first half of xfft

2i+1, such
that

xswp
i [n] =


xfft
i+1[n] ({n < Nfft/2} ∧ {i is even})
xfft
i−1[n] ({n < Nfft/2} ∧ {i is odd})
xfft
i [n] (n ≥ Nfft/2)

(2.10)

where Nfft is the FFT size of OFDM. By this manipulation, discontinuities
are produced in OFDM symbols without destructing the CP structure, and the
parameter estimator of the proposed method can estimate discontinuities of the SI
signal with high accuracy. Furthermore, the number of swapped OFDM training
symbols can be less than pure OFDM training symbols because side lobes increased
by discontinuities become the minority in all power of the SI signal.

In the final step of generating training symbols, the swapped OFDM symbols for
i = 0 . . . Nswp − 1 are used as transmission symbols xtr

i [n], and pure OFDM symbol
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is used as transmission signals after transmitting the swapped symbols as written
by

xtr
i [n] =

x
swp
i [n] (i < Nswp),
xfft
i [n] (i ≥ Nswp).

(2.11)

Then, the transmission symbols xtr
i [n] and Ncp-sized CP are jointed as (2.12) and

transmitted.

xi[n] =

x
tr
i [n−Ncp +Nfft] (n < Ncp)
xtr
i [n−Ncp] (n ≥ Ncp)

(2.12)

2.3.2 Frequency-domain training

On the proposed method, the frequency response of the SI channel can be estimated
by well-known adaptive algorithms in frequency-domain scheme, and they estimate
the frequency response of the SI channel at each discrete frequency, k, independently.
Least squares (LS), recursive LS (RLS) and normalized least mean squares (NLMS)
algorithms applied to the proposed scheme are shown in the following.

Least squares parameter estimation

LS algorithm is one of the most fundamental parameter estimation algorithms. At
digital baseband, the received signal can be expressed as

Yi[k] = 1√
NSC

Nfft−1∑
n=0

yi[n+Ncp]e−j2πk∆fnTs

= H1,i[k]Ψ1,i[k] +H2,i[k]Ψ2,i[k] · · ·+HP ,i[k]ΨP ,i[k] + Zi[k], (2.13)

Ψp,i[k] =

FFT {ψp(xtr
i [n])} [k] (p is odd)

FFT {ψp−1(xtr
i [n])} [k] (p is even)

(2.14)

where yi[n] is the i-th received symbol and Zi[k] is the total noise at the receiver,
and P is the number of basis functions.

To apply LS algorithm for estimating the frequency response, Hp,i[k] is assumed
to be static and equal to Hp[k]. Additionally, we introduce vector-matrix notations,
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Y[k], Ψ[k] and H[k], such that

Y[k] =
[
Y0[k] Y1[k] · · · YNtr−1[k]

]T
, (2.15)

Ψ[k] =


Ψ1,0[k] Ψ2,0[k] · · · ΨP ,0[k]
Ψ1,1[k] Ψ2,1[k] · · · ΨP ,1[k]

... ... . . . ...
Ψ1,Ntr−1[k] Ψ2,Ntr−1[k] · · · ΨP ,Ntr−1[k]

 , (2.16)

H[k] =
[
H1[k]H2[k] · · · HP [k]

]T
, (2.17)

where Ntr is the number of training symbols. By using vector-matrix notations,
Y[k] can be expressed as

Y[k] = Ψ[k]H[k] + Z[k], (2.18)

where Z[k] consists of Zi[k]. Then, the LS-estimated frequency responses are
expressed as

Ĥ[k] =
[
Ĥ1[k] Ĥ2[k] · · · ĤP [k]

]T
=
(
ΨH [k] Ψ[k]

)−1
ΨH [k] Y[k]. (2.19)

Recursive least squares parameter estimation

LS algorithm requires matrix inversion or singular value decomposition (SVD). On
the other hand, recursive LS algorithm can recursively estimate parameters which
minimize least square errors without matrix inversion and SVD. On the proposed
scheme, RLS algorithm is expressed as

Ψi[k] =
[
Ψ1,k[k] Ψ2,k[k] · · · ΨP ,k[k]

]T
, (2.20)

Ĥi[k] = Ĥi−1[k] + Ei[k]Gi[k], (2.21)
Ei[k] = Yi[k]−ΨT

i [k]Hi−1[k], (2.22)

Gi[k] = Pi−1[k]Ψ∗i [k]
λ+ ΨT

i [k]Pi−1[k]Ψ∗i [k] , (2.23)

Pi[k] = λ−1
{
Pi−1[k]−Gi[k]ΨT

i [k]Pi−1[k]
}

, (2.24)
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where Ψi[k] is the k-th input signal vector of an RLS adaptive filter at a discrete
frequency, k, and Ĥi[k] is the k-th estimated frequency response at k, and λ is called
forgetting factor. Furthermore, Ĥi[k] and Pi[k] are initialized to 0 and δ−1I where
δ is very small positive value. The total number of multiplications of complex value
for computing (2.20)–(2.24) is 4P 2 + 4P .

Normalized least mean squares parameter estimation

NLMS parameter estimation algorithm has much lower computation cost and
complexity than RLS algorithm. NLMS algorithm is expressed as

Ĥi[k] = Ĥi−1[k] + µ

Qi[k]Ei[k]Ψ∗i [k], (2.25)

Ei[k] = Yi[k]−ΨT
i [k]Hi−1[k], (2.26)

Qi[k] = (1− α)Qk−1[k] + αΨH
i [k]Ψi[k], (2.27)

where µ and α are positive constant values, and Ψi[k] and Ĥi[k] are the same values
as for RLS. The total number of multiplications of complex values for computing
(2.25)–(2.27) is 2P , and it is N times faster than the time-domain NLMS, where N
is the number of taps of a time-domain FIR filter.

2.3.3 Time-domain canceling using frequency response

In this section, the author describes the overlap-save method for the proposed scheme
on time-domain using Hp,k[f ] without conversion to impulse responses. When
a signal x is periodic, (h ∗ x) is known as a circular convolution and it can be
computed efficiently with FFT algorithm by IFFT {FFT {x}FFT {h}}. In general,
this algorithm is not used to regenerating SI signals because the transmitted signal
is not periodic. For this reason, SI signals are regenerated by the overlap-save
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method [19] expressed as

ψrg
p,i[n] = IFFT2Nfft

{
Ψrg
p,i[k]

}
[n−Ncp +Nfft], (2.28)

Ψrg
p,i[k] =

Hp,iFFT2Nfft {ψp(xc
i [n])} , (p is odd),

Hp,kFFT2Nfft

{
ψ∗p−1(xc

i [n])
}

, (p is even),
(2.29)

xc
i [n] =

xi[2Ncp + n], (n < Nfft −Ncp),
xi[n+Ncp −Nfft], (n ≥ Nfft −Ncp),

(2.30)

where ψrg
p,i[n] is the p-th distorted i-th regenerated OFDM symbol of the SI signal,

and FFTM {·}, IFFTM {·} are M -sized FFT and inverse FFT, respectively. Finally,
the digital SI canceled signal can be written by

ydc
i [n] = yi[n]−

P∑
p=1

ψrg
p,i[n]. (2.31)

2.3.4 Computational cost and complexity

The author describes the derivation process of computational cost and complexity
of the proposed scheme in the following.

In the training period of the proposed scheme, received OFDM symbols are
decomposed to discrete frequency components by FFT after removing CPs. This
process requires 1

2Nfft log2Nfft times multiplications of two complex numbers per
symbol. The transmitted symbols before adding CPs are distorted by ψp(·) and
also decomposed to discrete frequency components by FFT, where ψp(·) can be
computed a priori and implemented by a lookup table. The total computational
cost of transforming received and transmitted symbols to frequency-domain is 1

4(P+
2)Nfft log2Nfft per symbol because FFT

{
ψ∗p(x)

}
can be computed by frequency-

inversion and conjugation of FFT {ψp(x)}. In the next step of the training period,
the proposed scheme estimates Hp,i[k] from Yi[k] and Ψp,i[k]. NLMS algorithm
and RLS algorithm require 2P and 4P 2 + 4P complex multiplications per discrete
frequency per symbol, respectively. Thus, the whole computational cost of the
training period is 1

4(P + 2)Nfft log2Nfft + ANfft per symbol, where A is 2P (NLMS
used) or 4P 2 + 4P (RLS used).

In the canceling period, the overlap-save method is used P times on the
proposed scheme. By the same trivial technique for computing FFT

{
ψ∗p(x)

}
,
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this process requires 3
2PNfft(log2Nfft + 1) complex-multiplications per symbol since

one time overlap-save method can be computed by 2Nfft-sized FFT, IFFT, and
multiplications.

2.4 Performance Simulations

In this section, we evaluate the performance of the proposed scheme by equivalent
baseband signal simulations of a full-duplex transceiver as shown in Fig. 2.1. The
simulation parameters are presented as Table 2.1, which are based on [3]. In this
simulations, the dynamic range of the receiver ADC is about 79 dB [20]. The
imbalance of IQ mixers is realized by adding an image signal, and the coefficients of
nonlinearity of the PA are predetermined based on IIP. The parameters of both RLS
algorithm and LMS algorithm are set to the optimal coefficients which can achieve
the best steady-state cancellation performance in each canceller. This scenario
ensures that the results show the true performance of each canceller. Additionally,
in this simulations, the SI cancellation rate is defined as

Cancellation =
E
[
|yi[n]|2

]
E
[
|ydc
i [n]|2

] , (2.32)

where E [s] denotes the expected value of s.

2.4.1 Cancellation performance

Fig. 2.4 shows the cancellation performance of both the proposed frequency-domain
parallel Hammerstein based method (FH) and time-domain parallel Hammerstein
based method (PH) [4]. In addition, the parameters of both cancellers are optimized
by LS algorithm, and the self-interference and noise power ratio (INR) varies from
20 dB to 80 dB, where INR is defined as

INR =
E
[
G2

LNA |(h(τ)− hRF(τ)) ∗ xPA(t)|2
]

E
[
|nLNA(t)|2

] , (2.33)

where hRF(τ) is the impulse response of the RF SI canceller, and GLNA is the gain
of the receiver LNA, and nLNA(t) is a total noise of the output signal of the receiver
LNA. In the situation of Fig. 2.4, the number of training symbols, Ntr, is 60 and
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Table 2.1: Simulation Specifications

Parameter Value
Oversampling rate 4

Modulation OFDM
Constellation 16QAM

Size of FFT Nfft 256
Number of subcarriers 52

Cyclic prefix Ncp 64 samples
Sampling rate 80M samples/sec
Transmit data Uniform-random data

SI channel after RF-SIC Rayleigh fading
Channel order 64 samples
Transmit power 15 dBm

IRR varied
Highest order of IMD 3

IIP3 17 dBm
PA Gain 27 dB

Noise figure of LNA 4 dB
Number of ADC bits 14 bits

Basis functions {x,x∗,x|x|2,x∗|x|2,x|x|4,x∗|x|4}

swapped training symbols, Nswp, is∞, and both SI cancellers can be assumed to be
trained completely. The cancellation performance of the proposed scheme is similar
to the time-domain method, and they achieve perfect cancellation of the SI signal
when INR is below 60 dB even under worse IRR. Thus, the proposed method has a
comprehensive cancellation capability as same as the time-domain method. When
INR is higher than 70 dB, SI cancellation is saturated because linear combinations
of the basis functions of Table 2.1 cannot represent the received SI signal completely.
The complete set of basis functions are discussed in [6], and in Chapter 3, the author
apply them to the proposed method.

In Fig. 2.5, the convergence of both cancellers with NLMS and RLS algorithm is
shown at INR = 50 dB and Nswp = ∞. The proposed scheme with RLS algorithm
achieves about 49 dB SI cancellation with three or four training symbols, and the
time-domain scheme achieves about 49 dB SI cancellation with 28 training symbols.
Hence, convergence speed of the frequency-domain scheme with RLS algorithm is
faster than the time-domain scheme because the time-domain signals are strongly
colored. Generally, convergence speed of an adaptive algorithm decreases with
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Figure 2.4: The SI cancellation performance at Ntr = 60.
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Figure 2.5: The convergence of each canceller at INR = 50 dB and IRR = 25 dB.
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Figure 2.6: The convergence performance of the proposed scheme with RLS
algorithm at Nswp = 0 . . . 4 and IRR = 25 dB.

colored input signals. On the other hand, the input signal of the RLS adaptive filter
of the frequency-domain scheme has flat spectrum and weak correlation between
their elements. For this reason, the time-domain scheme needs nine times more
training symbols than the frequency-domain scheme. When NLMS algorithm is
used, the frequency-domain scheme provides about 49 dB SI cancellation with 38
training symbols, but the time-domain scheme cannot reach 40 dB for the first 60
symbols. This is due to the same reason for the RLS case.

Fig. 2.6 shows the convergence of the frequency-domain scheme with RLS
algorithm when Nswp is changed from 0 to 4. The proposed scheme cannot achieve
50-dB SI cancellation at Nswp < 3, and the result at Nswp = 4 is similar to the case
of Nswp =∞ shown in Fig. 2.5. Consequently, the sufficient number of Nswp is four
to achieve high SI cancellation.

2.4.2 Computational complexity and cost

Table 2.2 shows computational complexity and cost of the time-domain parallel
Hammerstein based SI canceller and the proposed frequency-domain parallel
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Table 2.2: Computational complexity and cost per sample

Canceller scheme time-domain scheme proposed scheme
Adaptive algorithm RLS NLMS RLS NLMS
Complexity of training O(P 2N2) O(PN) O(P 2) O(P )
# of ops. of training 591× 103 768 147 22.4
Complexity of canceling O(PN) O(P )
# of ops. of canceling 384 64.8

Hammerstein based SI canceller when the parameters are the same as simulation
evaluations. At deriving complexity, the number of basis functions, P , and the
number of taps of a time-domain FIR filter, N , are assumed to be variables, and
other parameters are treated as constant. Besides, the number of operations is
calculated as multiplications of two complex numbers. The proposed scheme with
RLS algorithm is about 4.02× 103 times faster than the time-domain scheme with
RLS algorithm and about 5.22 times faster than the time-domain scheme with NLMS
algorithm at the training period. In addition, at the canceling period, the proposed
scheme is about 5.93 times faster than the time-domain scheme.

2.5 Conclusion

In this chapter, the author has described a frequency-domain digital self-interference
canceller based on the parallel Hammerstein model. The proposed scheme decreases
computational cost by estimating the characteristic of the SI channel on frequency-
domain and using overlap-save method for regenerating SI signals. In addition, the
proposed scheme has good compatibility with the time-domain parameter estimation
algorithms such as least squares, recursive least squares, and normalized least mean
squares algorithm. The performance of the proposed scheme is assessed by equivalent
baseband signal simulations of a full-duplex transceiver. The results show that the
proposed scheme achieves high SI cancellation as well as the time-domain scheme
and fast convergence with low computational cost.
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Chapter 3

Basis Function Selection for
Frequency-Domain Hammerstein Canceller

This chapter presents a basis function selection technique of a frequency-domain
Hammerstein digital self-interference canceller for in-band full-duplex communi-
cations. The power spectral density (PSD) of the nonlinear self-interference
signal is theoretically analyzed in detail, and a nonlinear self-interference PSD
estimation method is developed. The proposed selection technique decides on the
basis functions necessary for cancellation and relaxes the computational cost of
the frequency-domain Hammerstein canceller based on the estimated PSD of the
self-interference of each basis function. Furthermore, the convergence performance of
the canceller is improved by the proposed selection technique. Simulation results are
then presented, showing that the proposed technique can achieve similar cancellation
performance compared with the original frequency-domain Hammerstein canceller
and a time-domain nonlinear canceller. Additionally, it is shown that the proposed
technique improves the computational cost and the convergence performance of the
original frequency-domain Hammerstein canceller.

3.1 Introduction

Time-domain digital self-interference cancellers which only use a single transmitter-
receiver pair are not suitable to implement on an actual transceiver because they
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can only achieve high self-interference cancellation at a very high computational
cost. In contrast, the author has proposed a novel frequency-domain Hammerstein
canceller which decreases computational cost by estimating the characteristic of
the SI channel on the frequency domain and using the overlap-save method for
regenerating SI signals in Chapter 2. To the best of the author’s knowledge, the
frequency-domain Hammerstein self-interference canceller is the first digital self-
interference canceller which estimates non-idealities of the IQ mixers and the PA in
the frequency-domain with LMS, RLS, and LS algorithms. However, as with the
time-domain Hammerstein canceller, the basis functions used for cancellation are
determined in advance, but some of them may be unnecessary when their power is
lower than the noise. In addition, the necessary basis functions for some subcarriers
may not be needed on another subcarrier. Increasing the number of basis functions
leads to an increase in computational cost and convergence time of training, so it is
better to reduce the number of basis functions.

• In this chapter, the author introduce a basis function selection technique for
a frequency-domain Hammerstein self-interference canceller. The proposed
selection technique decides basis functions necessary for cancellation and
relaxes the computational cost of the frequency-domain Hammerstein
canceller based on the power spectral density of the self interference of each
basis function.

• In the proposed technique, only the nonlinear characteristics of the
transmitter, which can be regarded as static, are learned in advance. To
prevent degradation of cancellation performance due to variations in nonlinear
characteristics, they are used for the selection of basis functions and not for
training self-interference channels.

• Since the proposed technique can be used together with a multi-tap RF
canceller, the proposed technique can be applied for much of the full-duplex
hardware studied so far.

• Detailed equivalent baseband simulations are performed for verifying the
proposed technique, and their results show that the computational cost
of the frequency-domain Hammerstein canceller decreases as the power of
the self interference decreases. In addition, a canceller with least-square
training achieves faster convergence characteristics by the proposed selection
technique.

Unfortunately, due to specific symbols to train the canceller, the frequency-
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Figure 3.1: A model of the assumed full-duplex transceiver.

domain Hammerstein canceller will not be able to track channel variations
simultaneously with data transmission. This problem is still not solved in
this chapter. However, when the symbol timing of the desired signal and the
self-interference signal are synchronized, the problem does not arise because specific
training symbols are unnecessary. Although this problem is very important, the
author treats it as a future work.

The rest of this chapter is organized as follows. In Section 3.2, a detailed model
of the self interference which includes nonlinearities of the IQ mixers and the power
amplifier is provided. The proposed selection technique with the frequency-domain
Hammerstein self-interference canceller is presented in Section 3.3. In Section 3.4,
the performance of the proposed technique under different scenarios is analyzed
with equivalent baseband signal simulations. Finally, this chapter is concluded in
Section 3.5.

3.2 Self-Interference Signal Model

Fig. 3.1 shows the full-duplex direct-conversion transceiver model discussed in this
chapter. The transceiver consists of a transmitter and a receiver which have
IQ mixers, RF filters, and amplifiers. For simplicity, the desired signal is not
considered, and both RF low-pass filters and variable gain amplifiers (VGA) have
ideal characteristics. In addition, in the derivation of the mathematical model,
the nonlinear behaviors of the LNA is ignored for simplicity, but they are taken
into account on simulations. The nonlinear self-interference signal model has been
derived on the time domain in much literature such as [1–3]. However, the author
describes the detailed frequency-domain representation of the self interference in
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this section because we use it to describe the proposed scheme in the next section.
The transceiver transmits an orthogonal frequency division multiplexing

(OFDM) signal which has Nsc subcarriers and Ncp-length cyclic prefix (CP). The
digital-domain discrete-frequency transmit signal is expressed as Xi[k] where i and
k are the symbol index and the subcarrier index, respectively. The transmit signal
Xi[k] is transformed to time-domain signal x[n] by the OFDM modulator and
converted to an analog baseband signal x(t) by an analog to digital converter (ADC)
and a low pass filter (LPF). The analog baseband signal x(t) can be expressed as

x(t) =
Nsc/2∑

k=−Nsc/2
k 6=0

Xi[k]ej2πk∆ft (t ∈ TS
i ∪Tcp

i ), (3.1)

where TS
i is the i-th symbol duration without CP, and Tcp

i is the i-th CP duration,
and ∆f is the frequency interval of each subcarrier. Then we get the frequency-
domain representation of the analog baseband transmit signal X(f) = F {x(t)},
where F {·} is the operator of the Fourier transform.

3.2.1 IQ mixer

The analog baseband transmit signal X(f) is upconverted to an RF transmit signal
by the IQ mixer of the transmitter. On an ideal IQ mixer, the output equivalent
baseband signal of the transmitter IQ mixer XIQ(f) is equal to the baseband
transmit signal X(f). Actually, XIQ(f) has a mirror-image component of X(f)
because an actual IQ mixer has imbalances between the I- and Q-phase carrier
signals. The output equivalent baseband signal of the transmitter IQ mixer XIQ(f)
can be expressed as

XIQ(f) = X(f) + bTXX∗(−f) (3.2)

where bTX is the frequency-independent imbalance coefficient of the transmitter IQ
mixer, and (·)∗ denotes the complex-conjugate operation. An indicator of the IQ
imbalance is called image rejection ratio (IRR) [4], and can be defined as

IRRTX =
∣∣∣bTX

∣∣∣−2
. (3.3)
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Furthermore, the received self-interference signal Y (f) can be expressed as

Y (f) = YIQ(f) = YVGA(f) + bRXY ∗VGA(−f), (3.4)

where bRX is the frequency-independent imbalance coefficient of the receiver IQ
mixer, and Y ∗VGA(f) is the equivalent baseband signal of the receiver VGA output
signal. As with the transmitter IRR, the receiver IRR is defined as

IRRRX =
∣∣∣bRX

∣∣∣−2
. (3.5)

3.2.2 Power amplifier

The output signal of the transmitter IQ mixer XIQ(f) is amplified by the VGA and
the PA of the transmitter because the power ofXIQ(f) is very low for communication
with a faraway terminal. Unfortunately, nonlinear distortion of the transmit signal,
which is called intermodulation distortion, will occur by nonlinearities of the PA
under high transmission power. On time domain, the output signal of the PA is
expressed as

xPA(t) = hPA(τ) ∗
 ∞∑
p=1,3,5,···

apxIQ(t) |xIQ(t)|p−1


= hPA(τ) ∗

 ∞∑
p=1,3,5,···

p∑
q=0

apcq,p−qx
q(t)(x∗(t))p−q

 ,
(3.6)

cp,q =


0 ((p < 0) ∨ (q < 0)),
(bTX)q ((p, q) ∈ {(1, 0), (0, 1)}),
c′p,q (otherwise),

(3.7)

c′p,q = cp−1,q−1

(
1 +

∣∣∣bTX
∣∣∣2)+ cp−2,q

(
bTX

)∗
+ cp,q−2b

TX

where hPA(τ), ap, and xIQ(t) are the impulse response of the PA, the gain of the p-th
nonlinear distortion, and the time-domain representation of XIQ(f), respectively.
For simplicity, we define the following equations,

Ψp,q(f) = F {ψp,q(t)} = F {xp(t) (x∗(t))q} , (3.8)
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P∑
p,q

(·)p,q =
P∑

p=1,3,5,···

p∑
q=0

(·)q,p−q, (3.9)

where P ∈ N. Thus, the frequency-domain representation of the PA output signal
XPA(f) can be expressed as

XPA(f) = HPA(f)
∞∑
p,q
ap+qcp,qΨp,q(f), (3.10)

where HPA(f) is the frequency-domain representation of hPA(τ).

3.2.3 Wireless channel and RF self-interference cancellation

The signal XPA(f) is radiated from the transmitter antenna, and is received by the
receiver antenna of the same terminal as a strong self interference. The received
self-interference signal YANT(f) can be expressed as

YANT(f) = HSI(f)XPA(f) +Nth(f), (3.11)

where HSI(f) is the frequency-response of the self-interference channel, Nth(f)
denotes thermal noise. The self-interference channel can be modeled to be a Rician
fading channel because the receiver antenna is located close to the transmitter
antenna. In [5], it is reported that the Rician factor of the self-interference channel
is 20 dB < K < 40 dB when the distance between the transmitter antenna and the
receiver antenna is 0.5 meters.

The delay-line RF self-interference canceller is composed of several passive
elements such as variable attenuators, phase shifters, and delay lines. Therefore,
its characteristic can be modeled as a frequency response HCir(f). The signal after
the RF self-interference cancellation can be expressed as

YAC(f) = {HSI(f)−HCir(f)}XPA(f) +Nth(f), (3.12)

where the characteristic of HSI(f)−HCir(f) is a strongly frequency-selective channel,
because the RF self-interference canceller removes the direct wave and short delay
waves of the self-interference signal.
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3.2.4 Received self-interference signal

The input signal of the receiver IQ mixer can be expressed as

YVGA(f) =gRX
VGAg

RX
LNA(HSI(f)−HCir(f))XPA(f)

+ gRX
VGAg

RX
LNANth(f) +NLNA(f),

(3.13)

where gRX
VGA, gRX

LNA, and NLNA(f) are the gain of the receiver VGA, the gain of the
LNA, and the noise generated by the LNA, respectively. Then the receiver IQ mixer
downconverts the signal YVGA(f) to an analog baseband signal, and the mirror-image
signal of YVGA(f) occurs as shown in (3.4). Therefore, the received analog baseband
self-interference signal Y (f) can be expressed as

Y (f) = H(f)
∞∑
p,q
ap+qcp,qΨp,q(f)

+ bRXH∗(−f)
∞∑
p,q
a∗p+qc

∗
p,qΨ∗p,q(−f) +N(f),

(3.14)

H(f) = gRX
VGAg

RX
LNA {HSI(f)−HCir(f)}HPA(f), (3.15)

N(f) =
{
gRX

VGAg
RX
LNANth(f) +NLNA(f)

}
+ bRX

{
gRX

VGAg
RX
LNANth(−f) +NLNA(−f)

}∗
.

(3.16)

In addition, by the relation Ψp,q(f) = Ψ∗q,p(−f), we can rewrite (3.14) as

Y (f) =
∞∑
p,q
Hp,q(f)Ψp,q(f) +N(f), (3.17)

Hp,q(f) = ap+qcp,qH(f) + a∗p+qb
RXc∗q,pH

∗(−f). (3.18)

From (3.17), we get a important fact that the received self-interference signal Y (f)
is a linear combination of Ψp,q(f) at each frequency.

3.2.5 Received subcarriers

In the proposed scheme, we use discrete-frequency domain signals which can
be generated by CP removal and discrete Fourier transform (DFT). Thus, it is
important to check what kind of signal will occur in the discrete-frequency domain.
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The nonlinear distortion signal ψp,q(t) can be expressed as

ψp,q(t) =
Nsc/2∑

k1=−Nsc/2
k1 6=0

Nsc/2∑
k2=−Nsc/2

k2 6=0

· · ·
Nsc/2∑

kp+q=−Nsc/2
kp+q 6=0


 p∏
j=1

Xi[kj]
 p+q∏

j=p+1
X∗i [kj]

×

× exp
j2π∆ft


p∑
j=1

kj −
p+q∑
j=p+1

kj


,

(3.19)

and we can simplify it as follows:

ψp,q(t) =
(p+q)Nsc∑

k=−(p+q)Nsc/2
Ψp,q,i[k]ej2πk∆ft (3.20)

where Ψp,q,i[k] denotes a frequency-domain representation of the nonlinear distortion
signal ψp,q(t). Under an assumption that the self-interference channel and the RF
canceller do not generate delay signals beyond CPs, the received analog baseband
signal y(t) can be expressed as

y(t) =
∞∑

k=−∞
Yi[k]ej2πk∆ft (t ∈ TS

i ), (3.21)

Yi[k] =
∞∑
p,q
Hp,q[k]Ψp,q,i[k] +Ni[k], (3.22)

Hp,q[k] = Hp,q(k∆f) (3.23)

where Ni[k] is a narrow-band noise for the k-th subcarrier. In (3.21) and (3.22), it is
notable that we can get Yi[k] by applying the DFT to the received digital baseband
signal after removing the CP, and Yi[k] is a linear combination of Ψp,q,i[k] at each
frequency as with (3.17). Additionally, we can estimate E

[
|Hp,q[k]Ψp,q,i[k]|2

]
by

(3.22), and the next section shows how to estimate E
[
|Hp,q[k]Ψp,q,i[k]|2

]
.

3.3 Proposed Scheme

This section describes the proposed scheme based on a frequency-domain
Hammerstein self-interference canceller [6]. The proposed scheme consists of three
stages: premeasurement of power ratio, training of the canceller, and cancellation.
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On the premeasurement stage, we estimate the gain of the (p, q)-th nonlinear
component to the linear component (GNL) as follows:

GN/L
p,q =

∣∣∣∣ap+qcp,qa1

∣∣∣∣ , (3.24)

At the beginning of the training stage, the power ofHp,q[k]Ψp,q,i[k] is estimated based
on GN/L

p,q [k], and we determine whether the (p, q)-th basis function is necessary or
not. The computational cost can be reduced by the proposed basis function selection
scheme because the number of the basis functions used for training is reduced.

3.3.1 Premeasurement

Since the parameters ap+q and cp,q depend on the RF circuits of the transceiver only,
they can be assumed to be very static. Thus, we can measure the GNL by a massive
computational resource at the time of design or when the terminal is inactive. In
addition, we can use a coaxial cable and an attenuator instead of antennas and the
RF cancellation circuit because the GNL does not depend on the frequency response
of the self-interference channel and the RF cancellation circuits. Therefore, in this
chapter, we use a coaxial cable and an attenuator for loopback measurements. When
the test OFDM signal xLB is used to measure the GNL, the received loopback signal
can be expressed as

Y LB
i [k] =

∞∑
p,q
HLB
p,q [k]ΨLB

p,q,i[k] +Ni[k], (3.25)

HLB
p,q [k] = ap+qcp,qH

LB[k] + a∗p+qb
RXc∗q,p

(
HLB[−k]

)*
(3.26)

where ΨLB
p,q,i[k] is the frequency-domain representation of the (p, q)-th distorted input

signal, and HLB
p,q [k] denotes the loopback frequency response of the transceiver, and

HLB[k] is the frequency response of the coaxial cable and the attenuator, and Ni[k]
is the noise signal of the k-th subcarrier. To measure the GNL, we estimate the
loopback frequency-response HLB

p,q [k] of the transceiver. At each subcarrier, we solve
the least squares problem as follows:

ĤLB
p,q [k] = arg min

HLB
p,q [k]

∣∣∣∣∣Y LB
i [k]−

P∑
p,q
HLB
p,q [k]ΨLB

p,q,i[k]
∣∣∣∣∣
2

for k ∈ {−Nsc/2, · · · ,−1, 1, · · · ,Nsc/2} ,
(3.27)
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where P is the maximum order to estimate distortions. It can be solved by linear
least squares algorithm as follows:

ĤLB[k] =
[
ĤLB
p,q [k] | (p, q)← IP

]T
=
{(

ΨLB[k]
)H

ΨLB[k]
}−1 (

ΨLB[k]
)H

YLB[k],
(3.28)

YLB[k] =
[
Y LB

0 [k], Y LB
1 [k], · · · , Y LB

NLB−1[k]
]T

, (3.29)

ΨLB[k] =
[
ΨLB

0 [k], ΨLB
1 [k], · · · , ΨLB

NLB−1[k]
]T

, (3.30)

ΨLB
i [k] =

[
ΨLB
p,q,i[k] | (p, q)← IP

]T
, (3.31)

Ip = [(p, 0), (p− 1, 1), · · · , (0, p)] , (3.32)
IP = [I1, I2, · · · , IP ] (3.33)

where [(·)p,q | (p, q)← Λ] =
[
(·)Λ[0], (·)Λ[1], · · ·

]
, and NLB is the number of OFDM

symbols for the premeasurement.
In (3.18), it is notable that H0,1[k] is a linear combination of H[k] and H∗[−k]. In

addition, we can estimate the channel response H[k] by H1,0[k] ≈ a1c1,0H[k] because
|c1,0| � |bRXc0,1| when |bTX| � 1 and |bRX| � 1. Thus, we can rewrite HLB

0,1 [k] as
follows:

HLB
0,1 [k] ≈ bTXHLB

1,0 [k] + bRX
(
HLB

1,0 [−k]
)∗

. (3.34)

bTX and bRX can be estimated by following least squares algorithm:


ĤLB
0,1 [1]

ĤLB
0,1 [2]
...

ĤLB
0,1 [Nsc/2]


︸ ︷︷ ︸

H0,1

≈


ĤLB

1,0 [1]
(
ĤLB

1,0 [−1]
)∗

ĤLB
1,0 [2]

(
ĤLB

1,0 [−2]
)∗

... ...
ĤLB

1,0 [Nsc/2]
(
ĤLB

1,0 [−Nsc/2]
)∗


︸ ︷︷ ︸

H

bTX

bRX

 , (3.35)

b̂TX

b̂RX

 =
(
HHH

)−1
HHH0,1. (3.36)

The receiver IQ imbalance interferes with estimation of the GNL because the GNL
is a parameter of the transmitter. Thus, it is necessary to relax the receiver IQ
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imbalance, and is achieved by the following operation:

Ĥ IQF
p,q [k] =

ĤLB
p,q [k]− b̂RX

(
ĤLB
q,p [−k]

)∗
1−

∣∣∣b̂RX
∣∣∣2 . (3.37)

When ĤLB
p,q [k] and b̂RX are sufficiently close to the true values, (3.37) can be

approximated as follows:

Ĥ IQF
p,q [k] ≈

HLB
p,q [k]− bRX

(
HLB
q,p [−k]

)∗
1− |bRX|2

=
ap+qcp,qH

LB[k]− ap+q
∣∣∣bRX

∣∣∣2 cp,qHLB[k]
1− |bRX|2

= ap+qcp,qH
LB[k].

(3.38)

Thus, we can estimate the GNL as follows:

ĜN/L
p,q =

√√√√√√√ 1
Nsc

Nsc/2∑
k=−Nsc/2

k 6=0

∣∣∣Ĥ IQF
p,q [k]

∣∣∣2∣∣∣Ĥ IQF
1,0 [k]

∣∣∣2 . (3.39)

When ĤLB
p,q [k] and b̂RX sufficiently are close to the true values, the estimated GNL

can be approximated to the true value of the GNL as follows:

ĜN/L
p,q ≈

√√√√√√ 1
Nsc

Nsc/2∑
k=−Nsc/2

k 6=0

|ap+qcp,qHLB[k]|2

|a1HLB[k]|2

=

√√√√√√ 1
Nsc

Nsc/2∑
k=−Nsc/2

k 6=0

(
G

N/L
p,q

)2
= GN/L

p,q .

(3.40)

3.3.2 Training

On the training stage, the swapped OFDM modulation, which is introduced in [6],
is needed to estimate Hp,q[k] out of the band when the symbol timing of the
desired signal and the self-interference signal are not synchronized. When the
symbol synchronization is achieved, we can use pure OFDM symbols instead of
swapped OFDM symbols. In the rest of this chapter, we assume unsynchronized
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situations. The difference between synchronized and unsynchronized situations
is whether the swapped OFDM modulation is used instead of pure OFDM
modulation and the subcarriers used for the channel estimation. In particular,
in synchronized situations, we use pure OFDM symbols and estimate the self-
interference channel at k ∈ {−Nsc/2, · · · ,−1, 1, · · · ,Nsc/2}, and in unsynchronized
situations, we use the swapped OFDM symbols and estimate the channel at
k ∈ {−Nfft/2, · · · ,−1, 1, · · · ,Nfft/2} where Nfft is the FFT size of the OFDM
modulation. By the swapped OFDM modulation, subcarriers Xi[k] is modulated
to a digital baseband signal xswp

i [n] as follows:

xi[n] =
Nsc/2∑

k=−Nsc/2
k 6=0

Xi[k]ej2πkn/Nfft (n ∈ [0,Nfft)), (3.41)

xswp
2i = [x2i+1[0], · · · ,x2i+1[Nfft/2− 1],

x2i[Nfft/2], · · · ,x2i[Nfft − 1]],
(3.42)

xswp
2i+1 = [x2i[0], · · · ,x2i[Nfft/2− 1],

x2i+1[Nfft/2], · · · ,x2i+1[Nfft − 1]].
(3.43)

Then the received subcarrier signal Y swp
i [k] can be expressed as

Y swp
i [k] =

∞∑
p,q
Hp,q[k]Ψswp

p,q,i[k] +Ni[k], (3.44)

Ψswp
p,q,i[k] =

Nfft−1∑
n=0

(xswp
i [n])p (xswp

i [n])q e−j2π
kn
Nfft , (3.45)

where Ψswp
p,q,i[k] is the distorted swapped OFDM modulated signal, and Ni[k] denotes

a noise signal. Before training the canceller parameters, we determine which basis
function to use for cancellation at each discrete frequency as follows:

Up,q[k] =
(
γE

[∣∣∣Hp,q[k]Ψswp
p,q,i[k]

∣∣∣2] > E
[
|Ni[k]|2

])
, (3.46)

where Up,q[k] denotes whether to use the (p, q)-th basis function at the k-th
subcarrier, E

[
|(·)i|2

]
denotes the expected power of (·) for i, and γ is called

the noise margin. In (3.46), we can control the trade-off between computational
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cost and accuracy of the self-interference cancellation by the noise margin γ.
E
[∣∣∣Hp,q[k]Ψswp

p,q,i[k]
∣∣∣2] cannot estimate directly because we do not know the channel

information Hp,q[k]. So E
[∣∣∣Hp,q[k]Ψswp

p,q,i[k]
∣∣∣2] is approximated as follows:

E
[∣∣∣Hp,q[k]Ψswp

p,q,i[k]
∣∣∣2] ≤P (1)

p,q [k] + P (2)
p,q [k]

+ 2
√
P

(1)
p,q [k]P (2)

p,q [k],
(3.47)

P (1)
p,q [k] = E

[∣∣∣ap+qcp,qH[k]Ψswp
p,q,i[k]

∣∣∣2]
=
(
GN/L
p,q

)2
Rp,q[k]E

[∣∣∣a1H[k]Ψswp
1,0,i[k]

∣∣∣2] ,
(3.48)

P (2)
p,q [k] = E

[∣∣∣a∗p+qbRXc∗q,pH
∗[−k]Ψswp

p,q,i[k]
∣∣∣2]

= E
[∣∣∣a∗p+qbRXc∗q,pH

∗[−k]
(
Ψswp
q,p,i[−k]

)∗∣∣∣2]
=
∣∣∣bRX

∣∣∣2 P (1)
q,p [−k],

(3.49)

Rp,q[k] =
E
[∣∣∣Ψswp

p,q,i[k]
∣∣∣2]

E
[∣∣∣Ψswp

1,0,i[k]
∣∣∣2] . (3.50)

In the derivation of (3.47), we have used the following triangle inequality:

|x+ y|2 ≤ |x|2 + |y|2 + 2 |x| |y| . (3.51)

Also, we can derive the following inequality:

E
[∣∣∣a1H[k]Ψswp

1,0,i[k]
∣∣∣2] ≤ E

[∣∣∣Y swp
VGA,i[k]

∣∣∣2]

= E

∣∣∣∣∣Y
swp
i [k]− bRX(Y swp

i [−k])∗

1− |bRX|2

∣∣∣∣∣
2


≤ PL[k]. (3.52)
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where

PL[k] =
∣∣∣∣1− ∣∣∣bRX

∣∣∣2∣∣∣∣−2
E [|Y swp

i [k]|2
]

+
∣∣∣bRX

∣∣∣2 E [|Y swp
i [−k]|2

]

+ 2
∣∣∣bRX

∣∣∣√E
[
|Y swp
i [k]|2

]
E
[
|Y swp
i [−k]|2

]. (3.53)

Detailed derivation of (3.52) and (3.53) is described in Appendix 3.A. Then, we
make (3.48) easier by the relation of (3.52) as follows:

P (1)
p,q [k] ≤

(
GN/L
p,q

)2
Rp,q[k]PL[k], (3.54)

Actually, we use (3.55) instead of E
[
|Y swp
i [k]|2

]
for the basis functions selection

because we do not know the true expected spectral density of the received self-
interference signal. Using NEP symbols for estimation received signal power spectral
density, we estimate E

[
|Y swp
i [k]|2

]
by

E
[
|Y swp
i [k]|2

]
≈ P̃Y [k] = 1

NEP

NEP−1∑
i=0
|Y swp
i [k]|2 . (3.55)

In the proposed scheme, we do not estimate and use |bRX| to estimate (3.49)
while we can easily estimate |bRX| just like GN/L

p,q . The reason for this decision is that
(3.47) and (3.53) are very sensitive to |bRX| on frequency-selective self-interference
channels after analog cancellation. In other word, the behavior of (3.47) and
(3.53) greatly changes depending on whether or not P (1)

p,q [k] ≈ |bRX|2P (1)
q,p [−k] and

E
[
|Y swp
i [k]|2

]
≈ |bRX|2E

[
|Y swp
i [−k]|2

]
are satisfied respectively, and it may lead to

deterioration of cancellation performance. To solve this problem, we introduce β as
a tuning parameter instead of |bRX|. By setting β to be greater than |bRX|, we can
avoid deterioration while computational cost increases.

To summarize the above, we can determine which basis functions to use for
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self-interference channel estimation by (3.56)–(3.58),

J [k] =
[
(p, q) | γP̃p,q[k] > P̃N , (p, q)← IP

]
(3.56)

P̃p,q[k] =
(
GN/L
p,q

)2
Rp,q[k]P̃L[k] + β2

(
GN/L
q,p

)2
Rq,p[−k]P̃L[−k]

+ βGN/L
p,q G

N/L
q,p

√
Rp,q[k]Rq,p[−k]P̃L[k]P̃L[−k],

(3.57)

P̃L[k] =
P̃Y [k] + β2P̃Y [−k] + 2β

√
P̃Y [k]P̃Y [−k]

|1− β2|2
. (3.58)

where J [k] indicates the set of selected basis functions for each subcarrier, and P̃N
is the estimated expected power of the additive white Gaussian noise Ni[k].

Then, we estimate the self-interference channel Hp,q[k] independently at each
subcarrier to reconstruct the self interference. Since it can be expected that the
power of the basis function not included in J [k] is smaller than the noise, the
received training signal can be represented by a linear combination of the basis
function constituting J [k] as

Y swp
i [k] =

∑
(p,q)∈J [k]

Hp,q[k]Ψswp
p,q,i[k] +N ′[k], (3.59)

where N ′[k] is the sum of the received noise and the nonlinear components
determined to be unnecessary for self-interference channel estimation.

Thus, the transmit symbol vector and the channel vector can be defined as (3.60)
and (3.61), respectively.

Ψswp
i [k] =

[
Ψswp
p,q,i[k] | (p, q)← J [k]

]T
, (3.60)

H[k] =
[
Hp,q[k] | (p, q)← J [k]

]T
. (3.61)

The channel response H[k] can be estimated by well-known estimation algorithms
such as least squares (LS) algorithms, recursive least squares (RLS) algorithms, and
normalized least mean squares (NLMS) algorithms.
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Least squares algorithm

To apply the LS algorithm to estimate H[k], we introduce the received symbol vector
and the transmit symbol matrix as (3.62) and (3.63), respectively.

Yswp[k] =
[
Y swp

0 [k] Y swp
1 [k] · · · Y swp

Ntr−1[k]
]T

= Ψswp[k]H[k] + N[k]
(3.62)

Ψswp[k] =
[
Ψswp

0 [k] Ψswp
1 [k] · · · Ψswp

Ntr−1[k]
]T

(3.63)

N[k] =
[
N ′0[k] N ′1[k] · · · N ′Ntr−1[k]

]T
(3.64)

Now, we get the least squares estimated channel Ĥp,q[k] of (3.62) as

Ĥ[k] =
[
Ĥp,q[k] | (p, q)← J [k]

]T
=
{

(Ψswp[k])H Ψswp[k]
}−1

(Ψswp[k])H Yswp[k]. (3.65)

Recursive least squares algorithm

Since the least squares method requires matrix inversion or singular value
decomposition (SVD), it may be too complicated to actually implement. On the
other hand, the RLS algorithm can recursively estimate the self-interference channel
which minimizes least square errors without matrix inversion and SVD. On the
proposed scheme, the RLS algorithm is expressed as

Ĥi[k] = Ĥi−1[k] + Ei[k]Gi[k], (3.66)
Ei[k] = Yi[k]− (Ψswp

i [k])T Ĥi−1[k], (3.67)

Gi[k] = Pi−1[k] (Ψswp
i [k])∗

λ+ (Ψswp
i [k])T Pi−1[k] (Ψswp

i [k])∗
, (3.68)

Pi[k] = λ−1
{
Pi−1[k]−Gi[k] (Ψswp

i [k])T Pi−1[k]
}

, (3.69)

where Ĥi[k] is the k-th estimated frequency response on the i-th iteration, and λ

is called forgetting factor. At the beginning of RLS algorithm, Ĥi[k] and Pi[k] are
initialized to 0 and δ−1I where δ is very small positive value. The total number
of multiplications of complex value for computing (3.66)–(3.69) on each discrete
frequency is 4|J [k]|2 + 4|J [k]|, where |J [k]| is the number of elements constituting
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J [k].

Normalized least mean squares algorithm

The NLMS algorithm, which has a much lower computational cost, is often used
when the computational cost of the RLS algorithm produces problems such as
processing speed. In the proposed scheme, the NLMS algorithm is expressed as

Ĥi[k] = Ĥi−1[k] + µ

Qi[k]Ei[k] (Ψswp
i [k])∗ , (3.70)

Qi[k] = (Ψswp
i [k])H (Ψswp

i [k]) , (3.71)
Ei[k] = Yi[k]− (Ψswp

i [k])T Ĥi−1[k], (3.72)

where µ is positive constant values. The total number of multiplications of complex
values for computing (3.70)–(3.72) is 2|J [k]|, and it is at least N times faster than
the time-domain NLMS algorithm, where N is the number of taps of a time-domain
FIR filter.

Computational cost of the training stage

At the beginning of the training stage, the set of the basis functions J [k] is
determined on each discrete frequency by (3.55)–(3.58). In (3.55)–(3.58), the most
complicated computation is the square root, which must be computed twice at each
discrete frequency. Since it is only necessary once at the beginning of the training
stage, the computational cost of (3.55)–(3.58) is sufficiently smaller than channel
estimation which processes for each symbol.

In the channel estimation process of the proposed scheme, received OFDM
symbols are decomposed to discrete-frequency components by FFT to get (3.59),
and it requires 1

2Nfft log2Nfft times multiplications of two complex numbers per
symbol. In this chapter, we assume (x[n])p(x∗[n])q can be computed a priori and
implemented by a lookup table. Then, the transmitted symbols are distorted by
(x[n])p(x∗[n])q and also decomposed to discrete-frequency components by FFT.
The total computational cost of transforming symbols to the frequency domain is
1
4(
∣∣∣IP ∣∣∣+ 2)Nfft log2Nfft per symbol because FFT {(x[n])q(x∗[n])p} can be computed

by frequency-inversion and conjugation of FFT {(x[n])p(x∗[n])q}. Next, the
self-interference channelHp,q[k] is estimated by estimation algorithms based on J [k].
The NLMS algorithm and the RLS algorithm require 2 |J [k]| and 4 |J [k]|2 +4 |J [k]|
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complex multiplications per discrete frequency per symbol, respectively. Thus, the
whole computational cost of the channel estimation process is

1
4
(∣∣∣IP ∣∣∣+ 2

)
Nfft log2Nfft +

Nfft/2∑
k=−Nfft/2

A[k]

Nfft +Ncp
per sample,

where A[k] is 2 |J [k]| (for NLMS case) or 4 |J [k]|2 + 4 |J [k]| (for RLS case).

3.3.3 Self-interference reconstruction

After the training period, we reconstruct the received self interference from the
transmit signal and channel information. We apply cancellation on the time
domain because performance of the frequency-domain cancellation is degraded by
the symbol timing offset. To reduce the computational cost of the time-domain
reconstruction, the overlap-save algorithm [7] is used to reconstruct the received self
interference, like [6]. By the overlap-save algorithm, the received self interference
can be reconstructed as

yrg[mNOLS + l] = IFFT {Y ′m} [Ncp + l], (3.73)

where
Y ′m[k] =

∑
(p,q)∈J [k]

Ĥp,q[k]Ψ′p,q,m[k], (3.74)

Ψ′p,q,m[k] = FFT{ψp,q[mNOLS −Ncp], · · · ,

ψp,q[(m+ 1)NOLS − 1]}[k],
(3.75)

ψp,q[n] = (x[n])p(x∗[n])q, (3.76)

and NOLS = Nfft − Ncp, l ∈ [0,NOLS), and x[n] is the transmit baseband signal.
In addition, FFT {·} and IFFT {·} are fast fourier transform operations with an
Nfft-size signal. Then, we can get the digital self-interference canceled signal yDC[n]
by subtracting the reconstructed signal yrg[n] from received signal y[n].

yDC[n] = y[n]− yrg[n] (3.77)
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Table 3.1: Simulation Specifications

Parameter Value
Oversampling rate 4

Modulation OFDM
Constellation 16QAM

Size of FFT Nfft 256
# of subcarriers 52
Cyclic prefix Ncp 64 samples
Sampling rate 80M samples/sec
Transmit data Uniform-random data

SI channel after RF-SIC Rayleigh fading
SI channel length 64 taps
Transmit power 23 dBm

IRR 25 dB
PA IIP3 21.8 dBm based on [8]
PA Gain 28.5 dB based on [8]

PA smoothness factor, SPA 1
LNA IIP3 −3 dBm based on [9]

LNA smoothness factor, SLNA 1, 3
Noise figure of receiver 4 dB

# of ADC bits 14 bits
Highest order of basis function P 3
# of symbols for (3.55), NEP 2

λ of the RLS 1

δ of the RLS 3× 10−3 for time-domain
3× 10−7 for freq.-domain

µ of the NLMS 0.2 for time-domain
0.8 for freq.-domain

# of taps for time-domain scheme 64
Trials 101

3.4 Numerical Simulations

In this section, the author provides numerical simulation results to verify the
proposed scheme. To show the effectiveness of the proposed scheme, we compare
the performance of the proposed scheme with a conventional scheme.
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3.4.1 Simulation environment

To verify the proposed scheme, equivalent baseband simulations of the full-duplex
transceiver shown in Fig. 3.1 is performed. The baseband signal simulator is
implemented with the D programming language, where each non-ideality is modeled
with realistic behaviors. In this simulation, we set parameters to the values in
Table 3.1, which are based on [1]. Since the dynamic range of the receiver ADC
is about 79 dB under these simulation parameters [10], the largest barrier to
self-interference cancellation is nonlinear distortions of IQ mixers and the PA. The
PA nonlinearities are realized by the Rapp model [11, 12], which is often used to
simulate class AB solid state power amplifiers. The output baseband signal of the
Rapp modeled PA is described as

y = GPAΓ(|x|) x
|x|

, (3.78)

Γ(|x|) = |x|
1 +

(
|x|
Vsat

)2SPA
− 1

2SPA

, (3.79)

where x and y are the input and output signals of the PA, respectively. The Rapp
model is characterized by the smoothness factor SPA, the saturation voltage Vsat,
and the gain GPA. In this chapter, we uses SPA = 1 because we assume there are no
linearization techniques of the PA on the transceiver, and the other parameters are
set according to the IIP3 and the gain in Table 3.1. In addition, we simulates the
nonlinearities of the LNA by the Rapp model with smoothness factor SLNA ∈ {1, 3}
and IIP = −3dBm. The case of S = 1 assume stronger nonlinearities than the case
of SLNA = 3.

The simulation model of IQ mixers has IQ imbalance achieved by adding an
image signal, and its coefficients are predetermined based on the value of IRR.
The parameters of both the RLS algorithm and the NLMS algorithm are set to the
optimal coefficient which can achieve the best steady-state cancellation performance
in each canceller. This condition ensures that the simulation results show the true
performance of each canceller. Following the standard convention in literature, the
self-interference cancellation ratio (SICR) is defined as

SICR =
E
[
|y[n]|2

]
E
[
|yDC[n]|2

] . (3.80)
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Additionally, we define the self interference to noise power ratio (INR) as

INR =
E
[
|y[n]− z[n]|2

]
E
[
|z[n]|2

] , (3.81)

where z[n] is the received total noise on the digital baseband. Each simulation
result shows the median value of 100 trials. In addition, the author calculates
the complex multiplication operations per sample (CMOPS), which indicates the
number of complex multiplications to process one sample, as the computational cost.
For example, the CMOPS of the time-domain Hammerstein canceller optimized
by the RLS algorithm with 64-taps FIR filters and six basis functions such as
{x,x∗, (x)3,x|x|2,x∗|x|2, (x∗)3} is

CMOPSPH-RLS = 4× (6× 64)2 + 4× (6× 64)
≈ 5.91× 105

(3.82)

because they update 6 × 64 coefficients by the RLS algorithm on each sample. In
the same way, the CMOPS of the time-domain Hammerstein canceller optimized by
the NLMS algorithm is

CMOPSPH-NLMS = 2× (6× 64) = 768. (3.83)

3.4.2 Results and discussion

Fig. 3.2 shows the median cancellation performance of all trials with different β and
γ under IRR of 25 dB and INR of 50 dB. In addition, Fig. 3.3 shows the ratio of
all trials to the trial where the proposed scheme achieves a SICR of less than 47 dB
on the same situation as Fig. 3.2. In this scenario, we use the RLS algorithm as a
estimation algorithm, and Fig. 3.4 shows the CMOPS of the proposed scheme at the
training stage. In addition, the number of the training symbols Nswp is 60 to train
the canceller completely. Looking at (3.56)–(3.58), it is easy to see that increasing
the noise margin γ increases the number of elements of J [k]. It involves higher
cancellation performance and higher computational cost, which can be confirmed
from Fig. 3.2 and Fig. 3.3. Additionally, it is shown that cancellation performance
is increased if the image margin β is increased. The reason is that the estimated
power of the (p, q)-th basis function is increased with image margin β, and then the
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Figure 3.2: The median SICR of the proposed scheme at −10 dB ≤ γ ≤ 10 dB
with INR = 50 dB. The RLS algorithm is used as the training algorithm. The
smoothness factor of the LNA is SLNA = 3.

set of basis functions for training J [k] becomes larger with increasing β as shown
in (3.56)–(3.58). In the following simulations, we use β = −20 dB and γ = 2 dB
because the proposed scheme with these parameters does not once achieve a SICR
of less than 47 dB in all trials as we can see in Fig. 3.3.

In Fig. 3.5, the median cancellation performance of all trials on each canceller
with the LS algorithm is shown at Ntr = 60 and SLNA = 3. The time-domain
linear canceller, which is implemented based on [1] without the conjugated term
x∗, cannot reconstruct the nonlinear self-interference signal. Hence the cancellation
performance of the linear canceller is saturated at about 22 dB. For a similar
reason, the cancellation performance of the widely linear canceller [1], which can
reconstruct both the linear term x and the conjugated term x∗ only, is saturated at
about 45 dB. In contrast, the nonlinear cancellers such as the augmented nonlinear
canceller [13], the frequency-domain Hammerstein canceller [6], and the proposed
scheme achieved an SICR of about 50 dB at INR of 50 dB. Hence, by the proposed

67



Chapter 3. Basis Function Selection for Freq.-Domain Hamm. Canceller

-10 -8 -6 -4 -2 0 2 4 6 8 10
Noise margin γ (dB)

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc
en
ta
ge

of
tri
al
s
wh

en
SI
CR

<
47

dB

β = −20 dB
β = −25 dB
β = −30 dB

Figure 3.3: The percentage of trails where the SICR of the proposed scheme is lower
than 47 dB in all trials at −10 dB ≤ γ ≤ 10 dB with INR = 50 dB. The RLS
algorithm is used as the training algorithm. The smoothness factor of the LNA is
SLNA = 3.

basis function selection technique, the self-interference cancellation performance of
the frequency-domain Hammerstein canceller hardly decreases.

In Fig. 3.6, the median cancellation performance of all trials on each canceller
with the LS algorithm is shown at Ntr = 60 and SLNA = 1. In this situation, we
simulate the LNA as a highly nonlinear component like the PA of the transmitter.
Even when SLNA = 1, we can confirm that the proposed method achieves the
same cancellation performance as a conventional time-domain canceller. Thus,
cancellation performance is not degraded by the proposed selection technique even
if nonlinearity of the LNA appears strongly. When INR > 53 dB, the cancellation
performance of all cancellers simulated in this chapter degrades because they cannot
remove nonlinear signals generated by the LNA. The slope of the degradation is
−2 [SICR dB / INR dB] because we can write the SICR with a strong nonlinear
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Figure 3.4: The computational cost of the proposed scheme at −10 dB ≤ γ ≤ 10 dB
with INR = 50 dB. The RLS algorithm is used as the training algorithm. The
smoothness factor of the LNA is SLNA = 3.

signal dLNA[n] generated by the LNA as

SICR ≈
E
[
|y[n]|2

]
E
[
|z[n] + dLNA[n]|2

] = O
(

I

N + I3

)
= O

(
I−2

)
, (3.84)

where I is the power of self-interference signal. There are few papers which consider
nonlinearities of the LNA such as [14, 15]. In Chapter 3 the author attacks the
nonlinearity of the LNA.

In Fig. 3.7, the convergence performance of each canceller with the LS algorithm
is shown at INR = 50 dB. In Fig. 3.7, we can find that the proposed technique
improves the initial convergence speed of the frequency-domain Hammerstein
canceller, and it achieves better cancellation performance than the conventional
method when the number of training symbols Ntr is less than eight. By removing
the basis functions unnecessary for self-interference cancellation by the proposed
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Figure 3.5: The median SICR value of each canceller with the LS algorithm at
Ntr = 60. The smoothness factor of the LNA is SLNA = 3. For the proposed
scheme, β = −20 dB and γ = 0 dB.

technique, the number of parameters of the canceller decreases, and convergence
performance is improved. In Fig. 3.8, the convergence performance of each canceller
with RLS algorithm is shown at INR = 50 dB. In contrast with the case of the LS
algorithm, the frequency-domain cancellers predominantly show better convergence
performance than the time-domain nonlinear canceller. In the time domain, the
input signal of the canceller is strongly colored, and convergence speed of an adaptive
algorithm decreases with a colored input signal. However, the input signal of an
adaptive algorithm of the frequency-domain Hammerstein canceller is almost white,
and the convergence speed of them is faster than that seen in the time-domain case.
In Fig. 3.9, the convergence performance of each canceller with the NLMS algorithm
is shown at INR = 50 dB. As with the RLS algorithm, the frequency-domain
cancellers show better convergence performance than the time-domain nonlinear
canceller.

Fig. 3.10 shows the computational cost of the training stage at different INR, and
Fig. 3.11 shows the selected percentage in all subcarriers for each basis function on
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Figure 3.6: The median SICR value of each canceller with the LS algorithm at
Ntr = 60. The smoothness factor of the LNA is SLNA = 1. For the proposed
scheme, β = −20 dB and γ = 2 dB.

Table 3.2: CMOPS of time-domain cancellers

Canceller CMOPS
Linear with NLMS 128
Linear with RLS 1.66× 104

Widely Linear with NLMS 256
Widely Linear with RLS 6.60× 104

Parallel Hammerstein with NLMS 768
Parallel Hammerstein with RLS 5.90× 105

the proposed selection technique. When the proposed selection technique is disabled,
the CMOPS of the RLS case is about 147 at all INR. On the other hand, using
the basis function selection, the necessary basis functions are selected according to
the INR, which can be found in Fig. 3.11, and, as a result, computational cost is
reduced. Since the computational complexity of the RLS algorithm increases with
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Figure 3.7: The convergence of each canceller with the LS algorithm at INR = 50 dB.
SICR values are median values of all trials at each situation. The smoothness factor
of the LNA is SLNA = 3. For the proposed scheme, β = −20 dB and γ = 2 dB.

the square of the number of basis functions, it is susceptible to the effect of the
selection technique, but the effect for the NLMS is small because the computational
complexity of the NLMS algorithm increases linearly. When INR is 20 dB, the
computational cost of the RLS case is less than 1/5 as compared with a case
without the selection, and even when INR is 50 dB, it is less than half. When
INR is greater than 50 dB, the difference of the CMOPS between SLNA = 1 and
SLNA = 3 is gradually increased. The proposed technique assumes that the LNA
is a linear component, and basis functions cannot be selected correctly when the
nonlinearity of the LNA is greater than the noise. In Table 3.2, CMOPS values of
time-domain cancellers are shown. Compared with the time-domain Hammerstein
canceller optimized by the RLS algorithm, the proposed canceller achieves about
1.2 × 104 times lower computational cost on the training stage at INR = 50 dB.
When the NLMS algorithm is used, the proposed canceller achieves about 45
times lower computational cost than the time-domain Hammerstein canceller at
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Figure 3.8: The convergence of each canceller with RLS algorithm at INR = 50 dB.
SICR values are median values of all trials at each situation. The smoothness factor
of the LNA is SLNA = 3. For the proposed scheme, β = −20 dB and γ = 2 dB.

INR = 50 dB.
At the end of the simulation evaluation, we check how the self-interference

cancellation performance of the proposed scheme is affected by fluctuations of the
transmitter characteristics. Fig. 3.12 shows the percentage of trails in which the
cancellation performance of the proposed scheme is lower than 47 dB in all trials
at INR = 50 dB when log-normally distributed fluctuations are given to transmit
power, IRR, IIP3 of the PA, and the gain of the PA independently. In other words, at
the premeasurement stage we assign the values shown in Table 3.1 to each parameter,
and at the training stage we assign log-normally distributed independent random
variables to each parameter, respectively. It is found that the proposed scheme with
γ = 2 dB is robust against fluctuations of 0.8 dB in variance. Generally, these
parameters are dependent on temperature and supply voltage and vary by only
about 1 dB at the maximum. Therefore, it can be seen that the proposed scheme is
sufficiently effective against temporal characteristic fluctuations of equipment.
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Figure 3.9: The convergence of each canceller with NLMS algorithm at INR = 50 dB.
SICR values are median values of all trials at each situation. The smoothness factor
of the LNA is SLNA = 3. For the proposed scheme, β = −20 dB and γ = 2 dB.

3.5 Conclusion

In this chapter, the author has proposed a basis function selection technique of the
frequency-domain Hammerstein self-interference canceller for in-band full-duplex
communication systems. The estimation technique of the power spectral density of
the received self interference is developed from the detailed nonlinear characteristics
of a full-duplex terminal. The proposed selection technique reduces unnecessary
basis functions for cancellation before the training stage according to the estimated
self-interference power at each discrete frequency. Simulation results show that
the proposed technique improves computational cost and convergence performance
of the original frequency-domain Hammerstein canceller. It is shown that
computational cost can be reduced to about one-fifth in the low self-interference
situation by reducing the basis functions according to the estimated self-interference
signal power. In addition, by the proposed basis function selection technique,
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Figure 3.10: The computational cost at a training stage with β = −20 dB and
γ = 2 dB.

self-interference cancellation performance of the frequency-domain Hammerstein
canceller hardly decreases and achieves similar cancellation performance compared
with the original.

Appendix 3.A Derivation of (3.52) and (3.53)

We can assume that Ψswp
p1,q1,i[k] and Ψswp

p2,q2,i[k] are independent when (p1, q1) 6= (p2, q2),
because they are sums of a large number of combinations of subcarriers as (3.19).
When Ψswp

p1,q1,i[k] and Ψswp
p2,q2,i[k] are independent, E

[
|Y swp

VGA[k]|2
]
can be written as
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Figure 3.11: The selected percentage in all subcarriers for each basis function. In
this figure, β = −20 dB, γ = 2 dB, and SLNA = 3.

follows:

E
[
|Y swp

VGA[k]|2
]

=
∞∑
p,q

E
[∣∣∣ap+qcp,qH[k]Ψswp

p,q [k]
∣∣∣2]

= E
[∣∣∣a1H[k]Ψswp

1,0 [k]
∣∣∣2]

+
∞∑

(p,q) 6=(1,0)
E
[∣∣∣ap+qcp,qH[k]Ψswp

p,q [k]
∣∣∣2]

︸ ︷︷ ︸
≥0

,
(3.85)

Thus, the following inequality is derived as:

E
[∣∣∣a1H[k]Ψswp

1,0 [k]
∣∣∣2] ≤ E

[
|Y swp

VGA[k]|2
]

. (3.86)
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Figure 3.12: The percentage of trails where the SICR of the proposed scheme is
lower than 47 dB in all trials when nonlinear parameters are varied on log-normal
distribution. In this simulation, the LS algorithm is used as the training algorithm.
INR, β, γ, and SLNA are 50 dB, −20 dB, 2 dB, and 3 respectively.

Transforming (3.4) with respect to Y swp
VGA[k], (3.87) is derived.

Y swp
VGA[k] = Y swp

i [k]− bRX (Y swp
i [−k])∗

1− |bRX|2
. (3.87)

Finally, we derive (3.52) and (3.53) from (3.86) by the triangle inequality.
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Chapter 4

Iterative Nonlinear SI Canceller

This chapter presents an iterative estimation and cancellation technique for
nonlinear in-band full-duplex transceivers with IQ imbalances and amplifier
nonlinearities. The estimation process of the proposed scheme consists of three
stages, namely, the channel response estimation, IQ imbalance estimation, and
power amplifier and low-noise amplifier (LNA) nonlinearities estimation. For the
estimation of the parameters and improvement of the accuracy, distortions are
compensated by cancellation or inversion with the latest estimated parameters. On
the one hand, the channel response is estimated on the time domain; on the other
hand, the IQ imbalance and nonlinearities are estimated on the frequency domain for
a more straightforward estimation and superior accuracy. In the cancellation process
of the proposed scheme, the received signal is compensated with the estimated
parameters of the LNA and receiver IQ imbalance before cancellation because
the desired signal is received with a high-power self-interference and is distorted
by the radio-frequency receiver impairments. Simulation results show that the
proposed technique can achieve higher cancellation performance compared with
the Hammerstein canceller when the LNA is saturated by the self-interference.
Additionally, the performance of the proposed canceller converges much faster than
that of the Hammerstein canceller.
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4.1 Introduction

In general, inexpensive terminals suffer from nonlinearity problems more than
expensive terminals. With powerful digital signal processing techniques, many
digital cancellers have been developed to reduce effects of non-idealities, as shown in
Table 4.1. The most problematic RF impairments are the IQ mixer imbalance and
PA nonlinearity [1]. To deal with these impairments, Hammerstein cancellers [2–11]
have been developed. This type of canceller estimates channel responses for all
nonlinear basis functions by applying a least-squares estimation. A digital canceller
with an auxiliary receiver [1, 12, 13], which is used to receive the output signal
of the PA directly, can perfectly regenerate the nonlinear self-interference signal
caused by the transmitter nonlinearities using lightweight digital signal processing.
However, the nonlinearity due to the receiver LNA cannot be expressed by the
Hammerstein model, and the Hammerstein canceller and the auxiliary receiver
cannot cope with the nonlinear distortion of the LNA. In literature [14], a canceller
that addresses the nonlinearity of both the PA and LNA has been developed. This
canceller estimates the radio channel and the nonlinear characteristics alternately.
However, IQ imbalance is not considered in this scheme. In other works [15–18],
mitigation techniques of receiver nonlinearity were proposed for wideband receivers.
These techniques do not employ self-interference cancellers and cannot deal with the
nonlinear distortion of the transmitter. To use these techniques for self-interference
cancellation, it is necessary to complement them with other cancellers that can
mitigate the nonlinear distortion of the transmitter. The Volterra series-based
cancellers [19–21] have the potential to mitigate the nonlinearities of the PA and
LNA and the IQ imbalance. However, they need significantly higher computational
power to estimate and regenerate the nonlinear self-interference signal than other
practical cancellers. For example, the Hammerstein canceller and the canceller
described in [21] need to estimate 12M = 576 and 7M3 +3M2 +2M+1 ≈ 7.81×105

parameters for fifth-order nonlinearity cancellation, respectively, when the number
of taps of the channel impulse response is M = 48. To the best of the author’s
knowledge, a digital self-interference canceller that addresses the nonlinearities of
the PA and LNA, and the imbalance of IQ mixers with reasonable computational
cost has not been developed yet. The development of such a canceller would enable
the construction of inexpensive full-duplex terminals.

In small and inexpensive terminals, the performance of RF cancellers will be
constrained in terms of size and cost. Therefore, the RF canceller cannot sufficiently
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Table 4.1: Digital Cancellers and RF Impairments in the Literature

Addressed RF Impairments
IQI PA NL LNA NL Phase Noise

Linear [22]
Widely Linear [23] X
Hammerstein [2–11] X X

Auxiliary Receiver [1, 12, 13] X X
[14] X X
[24] X
[25] X X

Volterra Series [19–21] X X X
Proposed X X X

remove the self-interference, and the nonlinearity of the LNA will be a problem
to achieve in-band full-duplex communications. However, a practical digital self-
interference canceller that takes into account the nonlinearities of both the LNA
and PA and the mixer imbalance has not been developed yet. The contributions of
this study are as follows:

• To develop a novel digital canceller, the author defines operators that
characterize the nonlinearity of the self-interference signal. Even if the
self-interference signal contains complex nonlinearities, the signal model with
these operators tells us what operations are needed to estimate the parameters
and eliminate self-interference.

• By referring to the nonlinear signal model with operators, the author
introduces a novel estimation and cancellation scheme of the self-interference
signal that can deal with the nonlinearity of the LNA. The estimation process
of the proposed scheme is divided into three stages: IQ imbalance estimation,
channel impulse response estimation, and PA and LNA nonlinearities
estimation. These stages are executed iteratively in order, and the estimated
parameters converge to better values. The proposed scheme can achieve
high cancellation performance with much fewer learning symbols compared
to Hammerstein cancellers because it estimates the simplest and smallest
parameters that are sufficient to represent the nonlinear self-interference
model.

• To achieve the best self-interference cancellation, the canceller should apply
the inverse distortion of the receiver to the received signal. Conventional
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Figure 4.1: In-band full-duplex transceiver model with the proposed digital self-
interference canceller

methods cannot generate the inverse characteristic of the receiver nonlinearity
because they do not estimate the nonlinear characteristics of the transceiver
and the characteristics of the channel separately. In contrast, the proposed
method can generate the inverse characteristic of each distortion because
the nonlinear distortion characteristics and channel impulse response are
estimated separately. Thus, the proposed canceller applies a post-distortion
to the received signal to compensate for the receiver RF impairments before
self-interference cancellation. In addition, to avoid the synchronization
problem of frequency-domain cancellers, these series of cancellations are
processed in the time domain.

The rest of this chapter is organized as follows. In Section 4.2, a detailed model of
the self-interference, which includes the nonlinearities of IQ mixers and amplifiers of
the transceiver, and the mathematical operators that represent the input-output
characteristic of each component are provided. The proposed estimation and
cancellation scheme are presented in Section 4.3. In Section 4.4, the performance of
the proposed scheme under different scenarios is analyzed with equivalent baseband
signal simulations. Finally, this chapter is concluded in Section 4.5.

4.2 Self-Interference Signal Model

The signal model used in this study is the same as that reported in [9, 23]. In
this section, the author describes the discrete-time and discrete-frequency baseband
equivalent signal models corresponding to the input-output characteristics of each
nonlinear RF components. The properties of each component are provided as
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mathematical operators that only consist of sufficient parameters to represent their
nonlinear properties. In Section 4.3, these operators are used to explain the proposed
method. We assume that there is no signal other than the self-interference in
the training period of the canceller. Hence, in this section, we focus on the
self-interference signal only.

4.2.1 Transmit signal

The transmit OFDM signal with Nsc subcarriers is described as

x[n] =
Nsc/2∑

k=−Nsc/2
k 6=0

Xi[k]ej2πk∆fnTs , (4.1)

where Xi[k] is the kth subcarrier at the ith OFDM symbol, and ∆f and Ts are
the frequency interval of each subcarrier and the sampling interval of the system,
respectively. To estimate and remove the nonlinear self-interference signal, the
bandwidth of the baseband signal processing, which is expressed as 1/Ts, needs to
be larger than PNsc∆f , where P is the maximum nonlinear order of the canceller.

4.2.2 Imbalance of IQ mixers

The transmit signal x[n] is upconverted from the baseband to the RF band on
the IQ mixer of the transmitter. The IQ imbalance is one of the most significant
distortions in direct-conversion transceivers, and it has been discussed extensively in
the literature [23, 26, 27]. The frequency-independent imbalance model is described
as

xIQ[n] = ctx,1x[n] + ctx,2x
∗[n] = ctx,1Itxx[n], (4.2)

where ctx,1 and ctx,2 are the coefficients of the input signal and conjugated signal,
respectively. To simplify the explanation of the proposed scheme in Section 4.3, we
define the operator Itx as follows:

Itxs[n] = s[n] + ctx,2

ctx,1
s∗[n] = s[n] + btxs

∗[n],

ItxSi[k] = Si[k] + ctx,2

ctx,1
S∗i [−k] = Si[k] + btxS

∗
i [−k],

(4.3)
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where s[n] and Si[k] are baseband signals, and btx = ctx,2/ctx,1. In (4.3), the linear
amplification factor is not included in the definition of the operator Itx because we
want it to express the characteristics of IQ imbalance to a minimum form. The
image rejection rate, which is an indicator of the IQ imbalance, is defined as

IRRtx = |ctx,1|2

|ctx,2|2
= |btx|−2 . (4.4)

For the receiver IQ mixer, we also define crx,1, crx,2 and IRRrx similarly to (4.2) and
(4.4), respectively. Then, the operator Irx is defined as

Irxs[n] = s[n] + crx,2

c∗rx,1
s∗[n] = s[n] + brxs

∗[n],

IrxSi[k] = Si[k] + crx,2

c∗rx,1
S∗i [−k] = Si[k] + brxS

∗
i [−k],

(4.5)

where brx = crx,2/c
∗
rx,1. Thus, the received baseband signal can be expressed with

the operator Irx as
y[n] = Irx (crx,1yLNA[n]) , (4.6)

where yLNA[n] is the output signal of the LNA.

4.2.3 Nonlinear distortions of amplifiers

The upconverted RF signal xIQ[n] is amplified by the variable gain amplifier and
the PA to radiate from the antenna subsequently. Similar to the IQ imbalance, the
self-interference signal is distorted by the nonlinearity of the amplifiers, and it is
expressed as [28, page 69]

xPA[n] =
∞∑

p=1,3,···
atx,pxIQ[n] |xIQ[n]|p−1 , (4.7)

where atx,p is the gain of the pth nonlinear distortion of the PA, and atx,1 is the
linear gain of transmitter RF amplifiers. To simplify the explanation in Section 4.3,
we define the operator Dtx for any input signal s[n] as

Dtxs[n] = s[n] +
∞∑

p=3,5,···
dtx,ps[n] |s[n]|p−1 , (4.8)
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where dtx,p = |ctx,1|p−1 atx,p/atx,1, and dtx,1 is equal to 1. Then, the transmit signal
from the transmit antenna is expressed as

xPA[n] = atx,1ctx,1DtxItxx[n]. (4.9)

At the receiver, if the self-interference is strong enough to saturate the LNA, its
nonlinear distortion will also occur from the LNA. The output signal of the LNA
can be expressed as

yLNA[n] =
∞∑

p=1,3,···
arx,pyASIC[n] |yASIC[n]|p−1 , (4.10)

where yASIC[n] is the signal after analog self-interference cancellation, and arx,p is the
gain of the pth distortion signal of the LNA. Similar to the PA distortion operator
of (4.9), we define the operator Drx as

Drxs[n] = s[n] +
∞∑

p=3,5,···
drx,ps[n] |s[n]|p−1 , (4.11)

where
drx,p = arx,p

arx,1 |crx,1arx,1|p−1 . (4.12)

Thus, the output signal of the received IQ mixer can be expressed as

y[n] = IrxDrx (crx,1arx,1yASIC[n]) . (4.13)

4.2.4 SI channel and RF cancellation

The TX and RX antennas are strongly coupled because terminals such as
smartphones and IoT devices have limited size. Therefore, the self-interference
channel can be modeled as a Rician fading channel with 20 dB or higher K factor [29].
Analog self-interference cancellation is used to reduce the received self-interference
signal. Thus, the self-interference signal remaining after RF cancellation is expressed
as

yASIC[n] = (hSI[m]− hCir[m]) ∗ xPA[n]

=
M−1∑
m=0

(hSI[m]− hCir[m])xPA[n−m], (4.14)
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where hSI[m] is the wireless channel response, hCir[m] is the RF canceller circuits
response, and M is the number of taps of the wireless channel. To achieve high
self-interference cancellation performance with an analog self-interference canceller,
many variable attenuators and phase shifters are required, which increases the cost
of the terminal. Thus, we assume that the RF canceller reduces only the direct wave
of the self-interference, and the channel response hSI[m] − hCir[m] can be modeled
as a Rayleigh fading channel.

Then, we define the operator H as follows:

Hs[n] = atx,1arx,1ctx,1crx,1(hSI[m]− hCir[m]) ∗ s[n]
= h[m] ∗ s[n], (4.15)

HSi[k] = H[k]Si[k] (4.16)

where h[m] = atx,1arx,1ctx,1crx,1(hSI[m] − hCir[m]), and H[k] is a frequency-domain
representation of h[m]. To minimize the number of parameters for each operator,
all amplification factors for linear SI components at the transmitter and receiver are
aggregated into the operator H. Then, the received SI signal y[n] can be expressed
simply as

y[n] = IrxDrxHDtxItxx[n], (4.17)

Eq. (4.17) shows that the self-interference signal can be expressed concisely with
operators and block diagrams as in Fig. 4.2. The operators Itx and Irx have only
one parameter each, namely btx and brx, respectively. In addition, the operators Dtx

and Drx have (P−1)/2 parameters each if the nonlinear characteristic of an amplifier
is approximated by a P -order polynomial. Thus, the total number of parameters of
(4.17) is P +M + 1, where M is the number of taps of the channel impulse response
h[m].

4.3 Proposed Scheme

In this section, the author describes the proposed scheme, which consists of three
estimation stages and a cancellation stage. The proposed scheme iteratively
estimates the coefficients of IQ imbalance btx and brx, the impulse response of the SI
channel h[m], and the nonlinear gains of amplifiers dtx,p and drx,p. In this section,
l denotes the iteration index of the estimation stage. On the lth iteration, the
proposed method updates the estimated values to more accurate ones using the
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Itx

I/Q Imb.

Dtx

Nonlin. Dist.
H Channel

Drx

Nonlin. Dist.

Irx

I/Q Imb.

x

y

Figure 4.2: Block diagram and signal flow of the self-interference with each RF
component and operator

values calculated at the (l − 1)th iteration.

4.3.1 Definitions of operators

To explain the proposed scheme, we define the estimated value of each parameter
on the lth iteration as b̂�,l, ĥl[m], and d̂�,p,l, where � ∈ {tx, rx}. The initial values of
these parameters are defined as

b̂�,0 = 0, (4.18)

d̂�,p,0 =

1 for p = 1,
0 for p > 1,

(4.19)

ĥ0[m] = NaN for all m, (4.20)

where NaN indicates that there is no initial value, and the proposed scheme does
not need any initial values of ĥ[m]. Then, the estimated operators are defined using
estimated parameters as

Î�,ls[n] = s[n] + b̂�,ls
∗[n], (4.21)

D̂�,ls[n] = s[n] +
P∑

p=3,5,···
d̂�,p,ls[n] |s[n]|p−1 , (4.22)

Ĥls[n] =
M−1∑
m=0

ĥl[m]s[n−m], (4.23)

ĤlSi[k] = Ĥl[k]Si[k], (4.24)

where P is the maximum estimation order of the nonlinearities, and Ĥl[k] is the
frequency-domain representation of ĥl[m]. The inverse operator of Î�,l can be
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expressed as

Î−1
�,l s[n] = s[n]− b̂�,ls∗[n]

1−
∣∣∣b̂�,l∣∣∣2 . (4.25)

The inverse operator of D̂�,l is defined by Newton’s method withMn times iterations,
and it can be expressed as

D̂−1
�,l s[n] = D−1

�,l (|s[n]|) s[n]
|s[n]| (4.26)

where

D−1
�,l (r0) = rMn

|uMn |
uMn

, (4.27)

rk+1 = rk −
(|uk| − r0) |uk|

Re [uk] Re [vk] + Im [uk] Im [vk]
, (4.28)

uk = D̂�,l rk, (4.29)

vk =
P∑

p=1,3,···
d̂�,p,l p r

p−1
k . (4.30)

Detailed derivations of (4.26)–(4.30) are provided in Appendix A. We also define the
operator F , which denotes cyclic prefix (CP) removal and discrete Fourier transform
for each OFDM symbol, and an operator F−1, which denotes the inverse discrete
Fourier transform of each OFDM symbol.

4.3.2 IQ imbalance estimation

During the estimation of the IQ imbalance coefficients btx and brx, the other
distortions, such as PA and LNA distortions, reduce the estimation accuracy. Thus,
before estimating btx and brx at the lth iteration, we eliminate the distortion of the PA
and LNA with the latest estimated values corresponding to the (l − 1)th iteration.
In the proposed scheme, the transmitted and received signals for estimation are
converted as follows:

x
(1)
l [n] = Î−1

tx,l−1D̂tx,l−1Îtx,l−1x[n], (4.31)
y

(1)
l [n] = Îrx,l−1D̂−1

rx,l−1Î−1
rx,l−1y[n]. (4.32)
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If the latest estimated values converge to the true values sufficiently, the relation of
x

(1)
l [n] and y(1)

l [n] is expressed as

y
(1)
l [n] = IrxHItxx

(1)
l [n] + z

(1)
l [n], (4.33)

where z(1)
l [n] is the error due to the estimation error of the latest estimated values.

In (4.33), there is no distortion of the PA and LNA, and the error z(1)
l [n] can be

decreased with each additional iteration. Thus, we can estimate the IQ imbalance
coefficients btx and brx precisely from x

(1)
l [n] and y

(1)
l [n] when the latest estimated

values have converged to the true values sufficiently. We use the frequency-domain
representation of (4.31) and (4.32) to estimate the IQ imbalance coefficients. After
CP removal and applying a discrete Fourier transform, we obtain the frequency
representations X

(1)
i,l [k] and Y

(1)
i,l [k]. The relation between these signal can be

expressed as

Y
(1)
i,l [k] = {H[k] + brxb

∗
txH

∗[−k]}︸ ︷︷ ︸
H0,l[k]

X
(1)
i,l [k]

+ {btxH[k] + brxH
∗[−k]}︸ ︷︷ ︸

H1,l[k]

(
X

(1)
i,l [−k]

)∗
+ Z

(1)
i,l [k].

(4.34)

Then, the channel frequency responses H0[k] and H1[k] are estimated by the well-
known least squares method with Ntr OFDM symbols at −Nsc ≤ k ≤ Nsc and k 6= 0
as follows: Ĥ0,l[k]

Ĥ1,l[k]

 =
{(

X(1)
l [k]

)H
X(1)
l [k]

}−1 (
X(1)
l [k]

)H
Y(1)
l [k] (4.35)

where

X(1)
l [k] =

 X
(1)
0,l [k] X

(1)
1,l [k] · · · X

(1)
Ntr−1,l[k](

X
(1)
0,l [−k]

)∗ (
X

(1)
1,l [−k]

)∗
· · ·
(
X

(1)
Ntr−1,l[−k]

)∗
T , (4.36)

Y(1)
l [k] =

[
Y

(1)
0,l [k]Y (1)

1,l [k] · · ·Y (1)
Ntr−1,l[k]

]T
. (4.37)

The estimated channel response Ĥ0,l[k] can be well approximated to the
self-interference channel response H[k] because the value |brxb

∗
tx| � 1 [30, 31].

Therefore, H1,l[k] is expressed as

H1,l[k] ≈ btxĤ0,l[k] + brxĤ
∗
0,l[−k], (4.38)
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and then we get the estimated values of the IQ imbalance coefficients asb̂tx,l

b̂rx,l

 =
(
HH

0,lH0,l
)−1

HH
0,lH1,l, (4.39)

where

H0,l =
 Ĥ0,l[Nsc] · · · Ĥ0,l[1] Ĥ0,l[−1] · · ·Ĥ0,l[−Nsc]
Ĥ∗0,l[−Nsc] · · ·Ĥ∗0,l[−1] Ĥ∗0,l[1] · · · Ĥ∗0,l[Nsc]

T , (4.40)

H1,l =
[
Ĥ1,l[Nsc] · · ·Ĥ1,l[1]Ĥ1,l[−1] · · ·Ĥ1,l[−Nsc]

]T
. (4.41)

4.3.3 Channel estimation

After the IQ imbalance coefficients estimation stage, the proposed canceller
estimates the channel impulse response h[m]. During the estimation of the channel
impulse response, the nonlinear distortions of the IQ imbalance, PA, and LNA reduce
the estimation accuracy of the channel impulse response. Thus, before estimating
h[m] at the lth iteration, we eliminate the distortions with the latest estimated
values. The transmitted and received signals for estimation are converted as follows:

x
(2)
l [n] = D̂tx,l−1Îtx,lx[n], (4.42)
y

(2)
l [n] = D̂−1

rx,l−1Î−1
rx,ly[n]. (4.43)

If the latest estimated values converge to the true values sufficiently, the relation of
x

(2)
l [n] and y(2)

l [n] is expressed as

y
(2)
l [n] = Hx(2)

l [n] + z
(2)
l [n]

=
M−1∑
m=0

h[m]x(2)
l [n−m] + z

(2)
l [n], (4.44)

where z(2)
l [n] is the error caused by the estimation error of the latest estimated

values. Then, the channel impulse response h[m] is estimated by the well-known
least-squares method with Ntr OFDM symbols as


ĥl[0]
...

ĥl[M − 1]

 =
{(

X(2)
l

)H
X(2)
l

}−1

︸ ︷︷ ︸
T−1
l

(
X(2)
l

)H
y(2)
l (4.45)
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Figure 4.3: Frequency region to estimate d�,p.

where X(2)
l is the (M + NtrNsym − 1) ×M matrix whose ith row and jth column

element are

X(2)
l [i, j] =


0 if i− j < 0,
x

(2)
l [i− j] if 0 ≤ i− j < NtrNsym,

0 if NtrNsym ≤ i− j,

(4.46)

and
y(2)
l =

[
y

(2)
l [0] y(2)

l [1] · · · y(2)
l [M +NtrNsym − 2]

]
, (4.47)

and Nsym is the size of an OFDM symbol. In (4.45), Tl is a Hermitian
Toeplitz matrix [32], and fast algorithms to solve (4.45) with O(MNtrNsym + M2)
multiplications and additions exist [33].

4.3.4 Amplifier nonlinearity estimation

After the channel estimation stage, we estimate the nonlinear coefficients of the
amplifiers. To estimate coefficients dtx,p and drx,p, we need to eliminate the effects
of IQ imbalance to obtain a high accuracy result. After applying the operator I−1

rx

to both sides of (4.17) and some manipulations, we obtain the following equation:

I−1
rx y[n] = HItxx[n] +H (Dtx − 1) Itxx[n]

+ (Drx − 1)HDtxItxx[n]. (4.48)

In (4.48), HItxx[n] denotes the linear component of the self-interference signal;
H (Dtx − 1) Itxx[n] is caused by the TX amplifier, and (Drx − 1)HDtxItxx[n] is
caused by the TX and RX amplifiers. When estimating the nonlinear distortion
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coefficient, the signal of the linear component degrades the accuracy of the result.
Thus, we need to eliminate the linear component from the received signal. In the
discrete-frequency domain, when the frequency index k indicates the sidelobe of the
OFDM signal, such as guard bands, the linear component of the self-interference
signal is equal to zero. Therefore, when |k| > Nsc/2, we can write the following
equation on the ith OFDM symbol:

Y
(3)
i,l [k] =

P∑
p=3,5,···

dtx,pΨ(3)
tx,p,i,l[k]

+
P∑

p=3,5,···
drx,pΨ(3)

rx,p,i,l[k] + Z
(3)
i,l [k], (4.49)

where

Y
(3)
i,l [k] = FÎ−1

rx,ly[n], (4.50)
x

(3)
l [n] = Îtx,lx[n], (4.51)
u

(3)
l [n] = F−1ĤlFD̂tx,lx

(3)
l [n], (4.52)

Ψ(3)
tx,p,i,l[k] = ĤlF

(
x

(3)
l [n]

∣∣∣x(3)
l [n]

∣∣∣p−1
)

, (4.53)

Ψ(3)
rx,p,i,l[k] = F

(
u

(3)
l [n]

∣∣∣u(3)
l [n]

∣∣∣p−1
)

, (4.54)

and Z
(3)
i,l [k] is the error caused by the estimation error of the latest estimated

values. Thus, we can estimate the coefficients of the nonlinearities with K sidelobe
subcarriers by

d̂l =
{(

Ψ(3)
l

)H
Ψ(3)
l

}−1 (
Ψ(3)
l

)H
Y(3)
l , (4.55)
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where

d̂l =
[
d̂tx,3,l · · · d̂tx,P ,l d̂rx,3,l · · · d̂rx,P ,l

]T
, (4.56)

Ψ(3)
l =

[(
Ψ(3)

0,l

)T (
Ψ(3)

1,l

)T
· · ·

(
Ψ(3)
Ntr−1,l

)T ]T , (4.57)

Ψ(3)
i,l =



Ψ(3)
tx,3,i,l[k1] · · · Ψ(3)

tx,P ,i,l[k1] Ψ(3)
rx,3,i,l[k1] · · · Ψ(3)

rx,P ,i,l[k1]
Ψ(3)

tx,3,i,l[k2] · · · Ψ(3)
tx,P ,i,l[k2] Ψ(3)

rx,3,i,l[k2] · · · Ψ(3)
rx,P ,i,l[k2]

... . . . ... ... . . . ...
Ψ(3)

tx,3,i,l[kK ] · · ·Ψ(3)
tx,P ,i,l[kK ]Ψ(3)

rx,3,i,l[kK ] · · ·Ψ(3)
rx,P ,i,l[kK ]

, (4.58)

Y(3)
l =

[
Y(3)

0,l Y(3)
1,l · · ·Y

(3)
Ntr−1,l

]T
, (4.59)

Y(3)
i,l =

[
Y

(3)
i,l [k1] Y (3)

i,l [k2] · · · Y (3)
i,l [kK ]

]
, (4.60)

and k1, k2, · · · , kK are selected from the discrete-frequency of sidelobe, as shown in
Fig. 4.3.

4.3.5 Self-interference cancellation

After some iterations, the canceller cancels the self-interference from the received
signal. The received signal, which includes the desired signal from another terminal,
is also distorted by the RX amplifier and the IQ mixer imbalance. Thus, the best
cancellation approach is nonlinear signal reconstruction and cancellation with post-
distortion, which gives the received signal the inverse of the RX distortion. In the
proposed scheme, we have the inverse operators Î−1

rx,L and D̂−1
rx,L, which can be used

for the post-distortion. Therefore, the signal after cancellation is

yDC[n] = D̂−1
rx,LÎ−1

rx,Ly[n]− ĤLD̂tx,LÎtx,Lx[n]. (4.61)

4.3.6 Pseudo code and computational cost

Table 4.2 lists the computational cost of each operator. In addition, Table 4.3,
Table 4.4, and Table 4.5 show the computation steps and computational costs of
the estimation stages of IQ imbalance, channel, and nonlinearity, respectively. In
these tables, Nfft is the number of samples of an OFDM symbol after CP removal,
and “MULs/DIVs” and “ADDs/SUBs” denote “multiplications and divisions” and
“additions and subtractions,” respectively. In the cancellation stage, the proposed
scheme computes (4.61), and needs the following computational cost:
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• # of MULs/DIVs per OFDM symbol is
Nsym

(
M +Mn (1.5P + 5.5) + 1

2P + 6.5
)
.

• # of ADDs/SUBs per OFDM symbol is
Nsym

(
M +Mn (P + 2) + 1

2P + 3.5
)
.

• # of
√
x per OFDM symbol is Nsym (Mn + 2).
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Î−

1
�,
l
s[
i]

(4
.2
5)

3n
2n

0
Ĥ
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4.4 Numerical Simulations

4.4.1 Simulation environment

We perform equivalent baseband simulations of the full-duplex transceiver to verify
the proposed estimation and cancellation scheme. Table 4.6 and Table 4.7 list the
parameters of the simulations. The baseband signal simulator is implemented with
D programming language, and the details of the simulator are as follows.

In the simulations, the self-interference channel, which consists of the wireless
multipath channel and the impulse response of the RF self-interference canceller,
is modeled as a quasi-static Rayleigh fading channel with a constant impulse
response on a simulation trial and has different impulse responses between different
simulations trials. The power delay profile of the self-interference channel is modeled
as an exponential decay profile with 40 dB decay at 48 delay samples, and each tap
of the channel impulse response is independent and identically distributed on the
complex normal distribution.

The most severe bottleneck for self-interference cancellation is the non-idealities
of the IQ mixers, PA, and LNA. The simulation model of IQ mixers achieves IQ
imbalance by adding an image signal, and its coefficients are predetermined based
on the value of IRR. The nonlinearity of the PA and LNA is characterized by the
Rapp model [35], which is often used to simulate the baseband behaviors of class
AB solid-state amplifiers. The output baseband signal of a Rapp modeled amplifier
is described as

vout = Gvin[
1 +

(
|vin|
Vsat

)2s
] 1

2s
, (4.62)

where vin and vout are the input and output signals of the amplifier, respectively; G,
Vsat, and s are the gain, saturated input level, and smoothness factor of the Rapp
model, respectively, and they characterize the nonlinearity of the amplifier.

To cancel nonlinearities up to seventh order, the maximum order of the nonlinear
coefficients estimation, which is a parameter of the operator D̂�,l in (4.22), is P = 7
for the proposed canceller. Furthermore, the number of taps of channel estimation,
which is a parameter of the operator Ĥl in (4.23), is M = 48.

Following the standard convention, we define the self-interference cancellation

98



Chapter 4. Iterative Nonlinear SI Canceller

Table 4.6: OFDM Modulation Specifications

Parameter Value
Modulation OFDM
Constellation 16QAM
FFT size 64

Active subcarriers 52
Cyclic prefix size 16

Bandwidth 20 MHz

ratio (SICR), which indicates the performance of a digital canceller, as

SICR =
E
[
|y[n]|2

]
E
[
|yDC[n]|2

] . (4.63)

In addition, we define the amount of attenuation of the antenna separation and the
RF self-interference cancellation as

ARF =
E
[
|xPA[n]|2

]
E
[
|hSI[m] ∗ xPA[n]− hCir[m] ∗ xPA[n]|2

] . (4.64)

Then, the self-interference to noise power ratio (INR) is defined as

INR (dB) = Transmission Power (dBm)− AWGN Power (dBm)
−LNA Noise Figure (dB)− ARF (dB), (4.65)

which indicates the theoretical limit of the SICR when the LNA is not saturated.
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Table 4.7: Simulation Specifications

Parameter Value
Oversampling rate 8
Sampling rate 20 MHz × 8 = 160 MHz

SI channel after RF-SIC Rayleigh fading
SI channel length 48 samples
Channel profile Exponential decay

IRR 25 dB
Transmission power 23 dBm

PA Gain 30 dB

PA input saturation level Vsat,PA = 0 dBm
( IBO = 7 dB @ Transmission power = 23 dBm)

PA smoothness factor 3
LNA noise figure 4 dB

LNA Gain 20 dB

LNA input saturation level Vsat,LNA = −6 dBm
(IIP3 is about 0.6 dBm)

LNA smoothness factor 1
# of ADC bits 14 bit

Order of canceller P = 7
# of taps of canceller M = 48

Trials 201
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Figure 4.4: Performance of the proposed canceller with different numbers of
iterations of Newton’s method. The INR is 60 dB, and the proposed canceller
estimates parameters in ten iterations. The canceller is trained with 20 OFDM
symbols.

4.4.2 Results and discussions

Fig. 4.4 shows the performance of the proposed canceller with different numbers
of iterations of Newton’s method. In this result, the received signal saturates the
LNA, and it is highly distorted. If the number of iterations is zero, Newton’s method
outputs the input signal without any changes. Thus, the estimated coefficients of the
LNA nonlinearity are not used effectively for the next iteration, and the cancellation
performance of the proposed scheme is degraded. When the number of the iteration
is one, the cancellation performance is saturated at approximately 54 dB. Therefore,
in the rest of this chapter, the number of Newton’s method iterations is set as
Mn = 1.

In Fig. 4.5, the performance of the proposed canceller is shown with different
numbers of iterations of the estimation process in the same condition as that in
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Figure 4.5: Performance of the proposed canceller with different numbers of iterative
estimation and different orders of estimation. The INR is 60 dB, and the number
of iterations of Newton’s method is one. The canceller is trained with 20 OFDM
symbols.

Fig. 4.4. Labels, e.g. “IHD”, indicate the order of estimation stages, such as I�, H,
and D�, and “IHD” indicates the order described in Section 4.3. When the number of
iterations is one, the proposed scheme does not use the first estimated parameters to
improve the estimation quality. Thus, the cancellation performance with the single
estimation iteration is approximately 22 dB lower than the saturated performance. If
the number of iterations increases from one to two, the performance of the proposed
scheme is significantly improved. Moreover, “IHD” achieves the best performance
over the other orders. The reason is that the estimation stage of the imbalance
coefficients does not depend on the estimated value of channel impulse response,
and the number of these parameters is only two. In other words, the stage which is
easiest to estimate is the estimation of the IQ imbalance coefficients. Therefore, we
applied “IHD”-order and three-time iterations for the parameter estimation process
because the proposed scheme can achieve sufficiently high cancellation performance
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Figure 4.6: Performance of the proposed canceller with different numbers of
subcarriers for estimation of nonlinear coefficients. The INR is 60 dB; the number
of iterations of Newton’s method is one; the number of iterations of the estimation
process is three. The canceller is trained with 20 OFDM symbols.

with these settings.
Fig. 4.6 shows the performance of the proposed canceller with different values of

K, which is the number of sidelobe subcarriers for nonlinear coefficients estimations.
The performance difference between K = 2 and K = 20 is less than 1 dB. Thus,
there is no significant performance degradation, even if only a small number of
sidelobe subcarriers can be used for estimation. Besides, the performance with
K = 8 or more is almost the same as that with K = 20, and it is possible to
estimate by using the guard band. Therefore, in the rest of this section, we use
eight sidelobe subcarriers (K = 8) to estimate nonlinear coefficients.

In Fig. 4.7, we compare the performance of the proposed canceller (denoted
as “It”) and a Hammerstein canceller with 20 basis functions (denoted as
“Ha”) that can estimate and regenerate seventh-order PA nonlinearities and a
48-samples-delayed signal correctly. To make fair comparisons with the proposed
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Figure 4.7: Performance of each canceller with 100 training symbols on different
amounts of RF attenuation ARF and different transmission powers. The numbers
in parentheses in the legend denote the values of ARF. In the proposed scheme,
Mn = 1, L = 3, and K = 8.

canceller, the LS algorithm is used as the estimation algorithm for the Hammerstein
canceller. For comparison with other methods that consider LNA nonlinearity, the
author also shows the performance of a canceller (denoted as “HaRx”) based on
the technique described in [15]. Because the RX nonlinearity mitigation technique
presented in [15] is designed for wideband receivers, the HaRx canceller combines the
technique described in [15] and the Hammerstein canceller. In Fig. 4.7, we give 100
training OFDM symbols to each canceller to compare their best performance. If the
RF attenuation ARF, which contains antenna separation and RF circuit cancellation,
is larger than 60 dB, the performance of the three cancellers is almost the same.
Additionally, if ARF is 50 dB, the proposed canceller and the HaRx canceller achieve
higher performance than the Hammerstein canceller when the transmission power
is higher than 17 dBm. In this region, the received signal is larger than −33 dBm,
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Figure 4.8: Performance of each canceller with 100 training symbols and different
self-interference powers. In this result, Mn = 1, L = 3, and K = 8.

and the nonlinear distortion of the LNA becomes larger than the thermal noise
level. The Hammerstein canceller cannot reduce the nonlinearity of the LNA,
and its performance decreases significantly as the received power increases. In
contrast, the HaRx canceller and the proposed canceller can mitigate the received
self-interference signal distorted by the LNA. However, the HaRx canceller only
improves the cancellation performance by a few dB because it is just a simple
combination of the Hammerstein canceller and technique reported in [15], and
each of its components operates independently. The proposed canceller achieves
a better performance improvement than the HaRx canceller because parameters are
estimated in cooperation with the three stages.

For a more detailed discussion, we compare the cancellers in Fig. 4.8, which shows
the canceller performance when the INR is changed from 20 to 70 dB. Because the
power of the received self-interference signal increases as the INR increases, the
nonlinearity of the LNA increases as the INR increases. When the INR is larger
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Figure 4.9: Convergence of each canceller at INR = 50 dB. In this result, Mn = 1,
L = 3, and K = 8.

than approximately 52 dB, the performance of the Hammerstein canceller reaches
51 dB because it cannot regenerate the nonlinearity of the LNA. Fig. 4.8 shows that
the proposed canceller achieves a performance up to 20 dB higher than that of the
Hammerstein canceller, which indicates that the proposed canceller can apply the
inverse of the LNA nonlinearity to the received signal and endure higher power of
self-interference.

To discuss the convergence speed, we consider the results shown in
Fig. 4.9 and 4.10. Fig. 4.9 shows the convergence performance of each canceller
when the number of training symbols changes from 5 to 100. When a canceller is
trained sufficiently, it achieves a cancellation performance close to 50 dB because the
INR is 50 dB in these results. In these figures, we do not include the performance
of the HaRx canceller because the power of the signal distorted by the LNA is
lower than the thermal noise level in the situation, and the performance of the
HaRx canceller is almost the same as that of the Hammerstein canceller. To achieve
45 dB cancellation, the Hammerstein canceller needs 50 OFDM symbols, while the
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Figure 4.10: Short span convergence of each canceller at INR = 50 dB. In this
result, Mn = 1, L = 3, and K = 8.

proposed canceller requires only five or fewer. From Fig. 4.10, we can confirm
that the proposed canceller achieves around 47 dB cancellation with three training
OFDM symbols and has a convergence speed more than 16 times higher than the
Hammerstein canceller. Although the models of the two cancellers are different, the
number of parameters is a rough measure of the convergence speed of both. The
Hammerstein canceller has 20 × 48 = 960 coefficients. In contrast, the proposed
canceller has 48 + 1 + 3 + 1 + 3 = 56 coefficients, which are approximately 1/17 less
than those of the Hammerstein canceller. From the comparison of the number of
parameters, it can be shown that the proposed canceller has a faster convergence
speed than the Hammerstein one.

4.4.3 Limitations of the proposed canceller

It is important to evaluate under what condition the proposed canceller performs
worse than the Hammerstein canceller. Fig. 4.7 and Fig. 4.8 show comparisons

107



Chapter 4. Iterative Nonlinear SI Canceller

16 18 20 22 24 26 28 30
IRR (dB)

20

25

30

35

40

45

50

55

60
Ca

nc
ell
at
io
n
Pe

rfo
rm

an
ce
:
SI
CR

(d
B)

HaRx (ARF = 70 dB)
HaRx (ARF = 60 dB)
HaRx (ARF = 50 dB)

It (ARF = 70 dB)
It (ARF = 60 dB)
It (ARF = 50 dB)

Figure 4.11: Performance of each canceller with 100 training symbols and different
IRR values. In this result, Mn = 1, L = 3, and K = 8.

of the performance of the cancellers when the transmission power and the gain of
the self-interference channel ARF are changed, respectively. We confirm that the
proposed canceller achieves the same or better performance than the Hammerstein
canceller even if the nonlinearities of the PA and LNA are severe. We further discuss
the limitation of the proposed canceller considering the performance of cancellers at
various IRR values, as shown in Fig. 4.11. When the IQ imbalance is so strong that
the IRR is less than 20 dB, the performance of the proposed canceller deteriorates
significantly. When the IRR is very low, the assumption |brxb

∗
tx| � 1, which is

necessary to obtain (4.38) and derive the imbalance estimation stage, no longer
holds. Thus, the proposed canceller cannot estimate the coefficients of the IQ
imbalance well with severe IQ imbalance. The IRR of less than 20 dB is extremely
severe case [30, 31], so that the degradation will hardly be a problem on actual
terminals.
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4.4.4 Computational cost

The computational cost is an important performance indicator of self-interference
cancellers. The parameters, and their values, related to computational cost
are listed in Table 4.8. The number of both multiplications and additions for
training the Hammerstein canceller with 20 basis functions can be expressed as
20MNtrNsym ≈ 3.07 × 107 when we perform the pseudo-inverse matrix of the
LS algorithm a priori [3]. If the Hammerstein canceller is trained with a data
signal instead of a training signal, substantial computational power is required due
to the pseudo-inverse matrix. For training with the data signal, the least mean
squares (LMS) algorithm is a practical solution. The number of both multiplications
and additions of the LMS algorithm for the Hammerstein canceller with 20 basis
functions is 40M per sample [9]. For training with 50 OFDM symbols, the LMS
algorithm needs 6.14×107 multiplications and additions, which are more than those
required by the LS algorithm with the pre-calculation technique. Moreover, the
LMS algorithm is less convergent than the LS algorithm, so it needs a longer signal
compared to the LS algorithm; more specifically, it requires more than 50 OFDM
symbols and 6.14 × 107 multiplications and additions. The recursive-LS algorithm
exhibits fast convergence like the LS algorithm, but its computational cost is not
practical for the time-domain Hammerstein canceller [9].

We have discussed the computational cost of the proposed scheme in
Section 4.3.6. According to the values in Table 4.8, the number of MULs/DIVs,
ADDs/SUBs, and

√
x required for training the proposed canceller are approximately

1.23× 106, 1.28× 106, and 3.49× 104, respectively. Note that this cost is the same
whether the used signal is a training signal or a data signal because we cannot
implement any pre-calculation techniques for the proposed canceller. There is a
multiplier-free algorithm to compute

√
x [36], which needs only 10 times addition

for 14 bit fixed-point real value, which requires accuracy of 10−5 or less. Thus,
the total cost to compute 3.49× 104 times

√
x is sufficiently smaller than the total

cost of 1.28 × 106 ADDs/SUBs. Therefore, the proposed canceller can complete
training with less than one-tenth of the computational cost required to train the
Hammerstein canceller.

For self-interference cancellation of an OFDM symbol, the proposed canceller
needs about 4.73×104 MULs/DIVs, 4.10×104 ADDs/SUBs, and 1.92×103 square-
roots. The computational cost of the Hammerstein canceller for cancellation of an
OFDM symbol is 20MNsym ≈ 6.14 × 105 multiplications and additions. Thus, the
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Table 4.8: Parameters, and Their Values, for Comparing Computational Costs

Parameter Proposed Hammerstein
Nsym (64 + 16)× 8 = 640
Nfft 64× 8 = 512
Nsc 52
M 48
P 7
Ntr 3 50
Mn 1 –
K 8 –
L 3 –

proposed canceller can significantly reduce the computational cost of cancellation
compared with the Hammerstein canceller.

4.5 Conclusion

The author has introduced operators that express characteristics of each RF
component in a minimum form and have derived a nonlinear self-interference signal
model. Then, the author has proposed a novel nonlinear self-interference canceller
to effectively reduce the nonlinear self-interference caused by TX and RX IQ mixers,
the PA, and the LNA. The estimation process of the proposed canceller consists of
three stages, which estimate the characteristic of the corresponding operator of each
RF component. Simulation results show that the proposed canceller can estimate
and remove the received self-interference signal, which is distorted by the LNA. In
addition, the proposed canceller achieves higher cancellation performance with fewer
learning symbols and lower computational cost than the Hammerstein canceller.

Appendix 4.A Derivations of (4.26)–(4.30)
The relation of the input x and output y of an estimated nonlinear amplifier � ∈
{tx, rx} can be written as

y = D̂�,lx =
P∑

p=1,3,···
d̂�,p,lx |x|p−1

= f̂�,l(|x|)
x

|x|
exp

(
jφ̂�,l(|x|)

)
, (4.66)
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where f̂�,l(|x|) and φ̂�,l(|x|) are the amplitude-to-amplitude (AM/AM) modulation
and amplitude-to-phase (AM/PM) modulation of the estimated amplifier, respec-
tively. The amplitude of the output y can be written as

|y| = f̂�,l(|x|) =
∣∣∣∣∣∣

P∑
p=1,3,···

d̂�,p,lx |x|p−1

∣∣∣∣∣∣ . (4.67)

Then, we can compute the amplitude of the input signal |x| from the amplitude of
the output signal |y| by Newton’s method as

rk+1 = rk −
|uk| − |y|
f̂ ′�,l(rk)

, (4.68)

where

f̂ ′�,l(r) = Re [uk] Re [vk] + Im [uk] Im [vk]
|uk|

, (4.69)

uk = D̂�,lrk, (4.70)

vk = d

dr

(
D̂�,lr

)∣∣∣
r=rk

=
P∑

p=1,3,···
d̂�,p,l p r

p−1
k . (4.71)

Then, (4.28) is derived from (4.68)–(4.71). Moreover, from (4.66), the phase of input
signal can be written as

x

|x|
= y

f̂�,l(|x|)
exp (−jφ�,l(|x|)) ≈

y

|y|
|uMn |
uMn

. (4.72)

The final approximation of (4.72) holds when |x| ≈ rMn . Finally, (4.26) is derived
from (4.28) and (4.72).

111



References

[1] S. Li and R. D. Murch, “An investigation into baseband techniques for single-
channel full-duplex wireless communication systems,” IEEE Trans. Wireless
Commun., vol. 13, no. 9, pp. 4794–4806, Sept. 2014.

[2] D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” in Proc. ACM
SIGCOMM'13, 2013.

[3] L. Anttila, D. Korpi, V. Syrjälä, and M. Valkama, “Cancellation of power
amplifier induced nonlinear self-interference in full-duplex transceivers,” in
Proc. 47th Asilomar Conf. Signals, Syst., Comput., Nov. 2013.

[4] L. Anttila, D. Korpi, E. Antonio-Rodriguez, R. Wichman, and M. Valkama,
“Modeling and efficient cancellation of nonlinear self-interference in MIMO full-
duplex transceivers,” in Proc. IEEE GC Wkshps, Dec. 2014, pp. 777–783.

[5] M. Heino, D. Korpi, T. Huusari, E. Antonio-Rodriguez, S. Venkatasubra-
manian, T. Riihonen, L. Anttila, C. Icheln, K. Haneda, R. Wichman, and
M. Valkama, “Recent advances in antenna design and interference cancellation
algorithms for in-band full duplex relays,” IEEE Commun. Mag., vol. 53, no. 5,
pp. 91–101, May 2015.

[6] D. Korpi, Y.-S. Choi, T. Huusari, L. Anttila, S. Talwar, and M. Valkama,
“Adaptive nonlinear digital self-interference cancellation for mobile inband full-
duplex radio: Algorithms and RF measurements,” in Proc. IEEE GLOBECOM,
Dec. 2015.

[7] D. Korpi, T. Huusari, Y.-S. Choi, L. Anttila, S. Talwar, and M. Valkama, “Dig-
ital self-interference cancellation under nonideal RF components: Advanced
algorithms and measured performance,” in Proc. IEEE SPAWC, June 2015,
pp. 286–290.

112



References

[8] K. Komatsu, Y. Miyaji, and H. Uehara, “Frequency-domain Hammerstein self-
interference canceller for in-band full-duplex OFDM systems,” in Proc. IEEE
WCNC, Mar. 2017.

[9] ——, “Basis function selection of frequency-domain Hammerstein self-
interference canceller for in-band full-duplex wireless communications,” IEEE
Trans. Wireless Commun., vol. 17, no. 6, pp. 3768–3780, June 2018.

[10] L. Tian, S. Wang, Z. Cheng, and X. Bu, “All-digital self-interference
cancellation in zero-IF full-duplex transceivers,” China Communications,
vol. 13, no. 11, pp. 27–34, Nov. 2016.

[11] P. P. Campo, D. Korpi, L. Anttila, and M. Valkama, “Nonlinear digital
cancellation in full-duplex devices using spline-based hammerstein model,” in
Proc. IEEE GC Wkshps, Dec. 2018.

[12] E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation
technique for full-duplex systems,” IEEE Trans. Wireless Commun., vol. 14,
no. 7, pp. 3519–3532, July 2015.

[13] J. Li, H. Zhang, and M. Fan, “Digital self-interference cancellation based
on independent component analysis for co-time co-frequency full-duplex
communication systems,” IEEE Access, vol. 5, pp. 10 222–10 231, 2017.

[14] E. Ahmed, A. M. Eltawil, and A. Sabharwal, “Self-interference cancellation
with nonlinear distortion suppression for full-duplex systems,” in Proc. 47th
Asilomar Conf. Signals, Syst., Comput., Nov. 2013, pp. 1199–1203.

[15] M. Grimm, M. Allen, J. Marttila, M. Valkama, and R. Thoma, “Joint mitiga-
tion of nonlinear RF and baseband distortions in wideband direct-conversion
receivers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 1, pp. 166–182,
Jan. 2014.

[16] M. Valkama, A. S. H. Ghadam, L. Anttila, and M. Renfors, “Advanced
digital signal processing techniques for compensation of nonlinear distortion in
wideband multicarrier radio receivers,” IEEE Trans. Microw. Theory Techn.,
vol. 54, no. 6, pp. 2356–2366, June 2006.

[17] E. A. Keehr and A. Hajimiri, “Equalization of third-order intermodulation
products in wideband direct conversion receivers,” IEEE J. Solid-State Circuits,
vol. 43, no. 12, pp. 2853–2867, Dec. 2008.

[18] Q. Zou, M. Mikhemar, and A. H. Sayed, “Digital compensation of
cross-modulation distortion in software-defined radios,” IEEE J. Sel. Topics
Signal Process., vol. 3, no. 3, pp. 348–361, June 2009.

113



References

[19] J. Liu, H. Quan, Z. Li, H. Sun, and D. Yuan, “Digital nonlinear self-interference
cancellation based on LMS-Volterra algorithm,” in Proc. 3rd Int. Conf. Inf. Sci.
Control Eng. (ICISCE), July 2016, pp. 1298–1302.

[20] D. Korpi, M. Turunen, L. Anttila, and M. Valkama, “Modeling and cancellation
of self-interference in full-duplex radio transceivers: Volterra series-based
approach,” in Proc. IEEE ICC Wkshps, May 2018.

[21] M. A. Islam and B. Smida, “A comprehensive self-interference model for single-
antenna full-duplex communication systems,” in Proc. IEEE ICC, May 2019.

[22] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis,
S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in Proc.
ACM MobiCom'11, 2011.

[23] D. Korpi, L. Anttila, V. Syrjälä, and M. Valkama, “Widely linear digital self-
interference cancellation in direct-conversion full-duplex transceiver,” IEEE J.
Sel. Areas Commun., vol. 32, no. 9, pp. 1674–1687, Sept. 2014.

[24] E. Ahmed, A. M. Eltawil, and A. Sabharwal, “Self-interference cancellation
with phase noise induced ICI suppression for full-duplex systems,” in Proc.
IEEE GLOBECOM, Dec. 2013, pp. 3384–3388.

[25] R. Li, A. Masmoudi, and T. Le-Ngoc, “Self-interference cancellation with
nonlinearity and phase-noise suppression in full-duplex systems,” IEEE Trans.
Veh. Technol., vol. 67, no. 3, pp. 2118–2129, Mar. 2018.

[26] M. Valkama and M. Renfors, “Digital filter design for I/Q imbalance
compensation,” in Proc. 10th European Signal Process. Conf. (EUSIPCO),
Sept. 2000, pp. 1–4.

[27] M. Sakai, H. Lin, and K. Yamashita, “Self-interference cancellation in full-
duplex wireless with IQ imbalance,” Elsevier Phy. Commun., vol. 18, pp. 2–14,
Mar. 2016.

[28] S. Benedetto and E. Biglieri, Principles of Digital Transmission: With Wireless
Applications. Norwell, MA, USA: Kluwer Academic Publishers, 1999.

[29] M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characterization of
full-duplex wireless systems,” IEEE Trans. Wireless Commun., vol. 11, no. 12,
pp. 4296–4307, Dec. 2012.

[30] M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q
imbalance compensation in communication receivers,” IEEE Trans. Signal
Process., vol. 49, no. 10, pp. 2335–2344, 2001.

114



References

[31] A. Tarighat and A. Sayed, “Joint compensation of transmitter and receiver
impairments in OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 1,
pp. 240–247, Jan. 2007.

[32] T. Bäckstöm, “Vandermonde factorization of Toeplitz matrices and applications
in filtering and warping,” IEEE Trans. Signal Process., vol. 61, no. 24, pp.
6257–6263, Dec. 2013.

[33] G. Heinig and K. Rost, “Fast algorithms for Toeplitz and Hankel matrices,”
Linear Algebra and its Applications, vol. 435, no. 1, pp. 1–59, 2011.

[34] R. Hunger, “Floating point operations in matrix-vector calculus,” Technische
Universität München, Associate Institute for Signal Processing, Tech. Rep.,
2007.

[35] C. Rapp, “Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital
sound broadcasting system,” in Proc. the Second Europian Conf. on Satellite
Commun., Oct. 1991, pp. 179–184.

[36] F. Auger, Z. Lou, B. Feuvrie, and F. Li, “Multiplier-free divide, square root,
and log algorithms [DSP tips and tricks],” IEEE Signal Process. Mag., vol. 28,
no. 4, pp. 122–126, July 2011.

115



Chapter 5

Theoretical Analysis of IBFD Radios

In-band full-duplex (IBFD) communication systems utilize self-interference can-
cellation to mitigate high-power self-interference caused by simultaneous trans-
mission and reception at the same frequency in the digital baseband domain.
Self-interference is distorted by transceiver nonlinearity. Thus, the IBFD literature
includes reports of nonlinear self-interference cancellers developed to achieve better
cancellation performance. However, there are no detailed theoretical studies
analyzing the performance of nonlinear cancellers in IBFD systems. This work
develops a theoretical analysis technique for IBFD systems using a nonlinear
self-interference canceller. The nonlinear characteristics of the system are expanded
by a generalized Fourier series using orthonormal Laguerre polynomials. Then,
the canceller’s performance and the system’s symbol error rate (SER) are analyzed
using the obtained Fourier coefficients. The analytical results are compared with
simulation results, demonstrating good correlation in a wide range of situations,
from extremely nonlinear cases to good linear cases. Additionally, results show that
the SER of the IBFD system is reduced by moderately nonlinearizing rather than
linearizing the amplifier.

5.1 Introduction

The parallel Hammerstein canceller is one of most well-studied nonlinear cancellers
in the IBFD literature. This type of canceller was initially developed to deal
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with amplifier nonlinearity [1, 2], but versions have subsequently been developed
to deal with IQ imbalance [3–5] and crosstalk in multiple-input and multiple-output
(MIMO) systems [6]. These papers [1–6] have analyzed the performance of such
Hammerstein cancellers using computer simulation. However, the literature does
not contain any detailed theoretical analyses, or comparisons between simulation
and theoretical results.

5.1.1 IIP-based distortion analysis

In the conventional radio-frequency (RF) engineering literature, the distortion from
an RF component is usually calculated from the input intercept point (IIP). The
power of the n-th order distortion from an RF component can be estimated as

Dn = Pout

(IIPn/Pin)n−1 , (5.1)

where Pin and Pout are the input and output power of the RF component,
respectively, and IIPn is the n-th order IIP of the component. Some papers [2, 3, 7]
have calculated the power of distortions caused in a transceiver using the IIP-based
method.

Although this method is suitable for simple estimations of distortion power, it
cannot be used in applications that require detailed analysis. Figure 5.1 shows
the power growth of linear and nonlinear components with a two-tone signal and
orthogonal frequency-division multiplexing (OFDM) signal as the input to a Rapp
model [8] with AM-AM characteristic of |x| (1 + |x|4)−

1
4 . IIP-based analysis assumes

that distortion power increases monotonically as the power of the input signal
increases. However, we can see that the power of the fifth-order distortion has
a local minimum value in Fig. 5.1 even in the two-tone case. In addition, in the high
input power region in Fig. 5.1, as input power increases, the slope of the increase
in distortion power decreases due to saturation. In the low input power region in
Fig. 5.1, we can see that the slope of the third-order distortion does not increase for
the third power of the input power, but clearly increases for the fifth power. These
behaviors are not represented in (5.1).

Additionally, the results of the two-tone test are not useful for analyzing
OFDM systems because the probability distributions and peak-to-average-power
ratio (PAPR) of these two signals are completely different. In Fig. 5.1, the
third-order component of the OFDM signal is about 10 dB or larger than that of the
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Figure 5.1: The linear and nonlinear component powers of two-tone and OFDM
signals in the Rapp model. The smoothness factor of the Rapp model is s = 2,
and the saturation level is Vsat = 1. In the two-tone case, each component power is
computed by simulation. In the OFDM case, each component power is theoretically
calculated as [9].

two-tone signal since the OFDM signal is more susceptible to nonlinear distortion
due to its higher PAPR. As in the examples shown so far, the IIP-base analysis
cannot be used for applications that require detailed analysis of current wireless
systems.

5.1.2 Contributions

State-of-the-art studies of the theoretical analysis on in-band full-duplex radios [2,
3,7] have calculated the power of distortions using IIP-based method. These studies
are very useful and very important, e.g., for the design of full-duplex terminals and
digital cancellers, as they allow easy estimation of distortion power using the IIP.
However, as written in Section 5.1.1, IIP-based method is not an exact analysis
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and involves rough approximations. Thus, these studies only analyze power level
of distortions, and these techniques cannot calculate the performance of in-band
full-duplex communications such as symbol error rate (SER) or bit error rate
(BER). In this chapter, the author uses a generalized Fourier series expansion with
orthonormal Laguerre polynomials to analyze the performance of in-band full-duplex
radios with parallel Hammerstein cancellers. While amplifiers are modeled with
a few parameters of IIP in the papers [2, 3, 7], they are modeled as arbitrary
functions, which increases the degree of freedom of analysis. Arbitrary functions
used here are mathematically infinite dimensional vectors, and the proposed method
has infinite dimensional degrees of freedom for modeling of memoryless amplifiers.
The core of our analysis is based on studies of OFDM systems in half-duplex
communication [9–13]. The author extends them to include the analysis of nonlinear
self-interference cancellers and in-band full-duplex systems that have nonlinear
amplifiers in their transmitters and receivers. The proposed method can be used
to analyze both the performance of parallel Hammerstein cancellers and the SER
of in-band full-duplex systems. In addition, results of the proposed analysis and
simulation show that both results match well each other.

5.1.3 Organization and notations

The rest of this chapter is organized as follows: In Section 5.2, the author provides
a summary of papers [9–13] on nonlinear analysis, and present additional useful
theorems for analysis of nonlinear cancellers. In Section 5.3, the author presents the
detailed analysis method for nonlinear cancellers, which is the main contribution
of this chapter. In Section 5.4, results obtained using this analysis approach are
compared with results from equivalent baseband simulations, and discussed in detail.
Finally, Section 5.5 concludes the paper.

In this chapter, the complex Gaussian distribution with mean µ and variance
σ2 is denoted CN (µ,σ2), and the exponential distribution with mean ρ2 is denoted
Exp(ρ2), i.e., |x|2 ∼ Exp(σ2) when x ∼ CN (0,σ2). The expected value of a random
variable R is written as E [R] = R. The binary operator ∗ denotes convolution.
For a matrix M , the transpose of M is denoted by MT, and the inverse of M is
denoted by M−1. In denotes a n × n identity matrix, and 0m×n denotes a m × n
zero matrix. We write the Fourier transform for a signal s(t) as F [s(t)]. A tilde
above a variable (e.g., x̃) indicates it to be a coefficient of a generalized Fourier
series expansion with orthonormal Laguerre polynomials, as defined in Section 5.2.
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Table 5.1: Variables used in this chapter

Variable Defined by Mean
cn(t) Fig. 5.4, Eq. (5.44) Regenerated SI signal by the canceller on the terminal#n
c̃p(τ), C̃p(f) Eq. (5.27) Response related to ψp(x) of the canceller related on Fig. 5.3
ċp(τ) Eq. (5.25) Response related to x|x|p−1 of the canceller on Fig. 5.3
dα(t) Eq. (5.15), Eq. (5.17) Distorted output signal from α(x(t))
Dij(f) Eq. (5.52) PSD of the distorted signal from the terminal#i to the terminal#j
gn Fig. 5.4 Gain of the VGA of the terminal#n
h̃p(τ), H̃p(f) Eq. (5.21) Response related to ψp(x) of the SI model on Fig. 5.3
ḣp(τ) Eq. (5.31) Response related to x|x|p−1 of the SI model on Fig. 5.3
hij(τ),Hij(f) Eq. (5.33), Eq. (5.35) Response from the terminal#i to the terminal#j on DSP
Inn Eq. (5.47) Mean power of the SI before digital cancellation on the terminal#n
IR
nn Eq. (5.48) Mean power of the residual SI after digital cancellation on the terminal#n
IR
nn(f) Eq. (5.53) PSD of the residual SI after digital cancellation on the terminal#n
IR
nn(f) Eq. (5.59) Mean PSD of the residual SI after digital cancellation on the terminal#n
lm,i Eq. (5.4) The i-th coefficient of the power series of ψ2m+1(x)
Lnm(x) Eq. (5.3) Generalized Laguerre polynomial
NNL,1 Eq. (5.39) Mean power of zNL,n(t)
N thermal Eq. (5.49) Power of the thermal noise
N thermal(f) Eq. (5.49) PSD of the thermal noise
N tot,n Eq. (5.49) Mean power of the total noise ztot,n(t) on the terminal#n
N tot,n(f) Eq. (5.54) PSD of the total noise ztot,n(t) on the terminal#n
P Eq. (5.44) Order of the nonlinear canceller
R(·)(·) – Cross-correlation function or auto-correlation function
SERn Eq. (5.61) Mean SER on the terminal#n
SICRn Eq. (5.46) Performance of the SI canceller on the terminal#n
SIDNRn(f) Eq. (5.50) SIDNR on the terminal#n
Uij(f) Eq. (5.51) PSD of the useful signal from the terminal#i to the terminal#j
U ij Eq. (5.60) Mean PSD of the useful signal from the terminal#i to the terminal#j
wn(t) Fig. 5.4, Eq. (5.45) Residual signal after SI cancellation on the terminal#n
xn(t) Fig. 5.4 Transmitted baseband signal from the terminal#n
yn(t) Fig. 5.4, Eq. (5.35) Received baseband signal of the terminal#n
zn(t) Eq. (5.33) Thermal noise on the terminal#n
zNL,n(t) Eq. (5.37) Distorted signal from the LNA of the terminal#n
ztot,n(t) Eq. (5.43) Total noise: thermal noise plus distortion from the terminal#n’s LNA
α(x) Fig. 5.2 Nonlinear transfer function on Fig. 5.2
α̃p Eq. (5.9) The p-th coefficient of the generalized Fourier series of α(x)
αn(x) Fig. 5.4 Transfer function of the PA on the terminal#n
α̃n,p Eq. (5.42) The p-th coefficient of the generalized Fourier series of αn(gnx)
βn(x) Fig. 5.4 Transfer function of the LNA on the terminal#n
β̃n,1 Eq. (5.38) Linear gain of the LNA of the terminal#n
λsdr,n(f) Eq. (5.56) Inverse of SDR on the terminal#n
λsinr,n(f) Eq. (5.57) Inverse of SINR on the terminal#n
ν2
n Eq. (5.40) Transmission power from the terminal#n
ρp Theorem 2 Gain of the response H̃p(f)
ρij Eq. (5.36) Channel gain of hij(τ)
ψp(x) Eq. (5.2) Orthonormal polynomial for CN (0, 1)
|Ψp(f)|2 Eq. (5.12), Eq. (5.64) PSD of ψp(x(t))

In contrast, a dot above a variable (e.g., ȧ) indicates it to be a coefficient of a power
series expansion. The variables used in this chapter are listed in Table 5.1.

5.2 Theoretical Background and Theorems

In this section, the author describes a generalized Fourier series expansion and some
related theorems that form the core of my theoretical analysis. In Section 5.2.1,
the author provides a summary of papers [9–13] relevant to the analysis of the
nonlinearities shown in Fig. 5.2. In Section 5.2.2, the author describes some useful
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x(t) ∼ CN (0, 1) y(t) = α(x(t))

α(x) = α(|x|) x
|x|

Figure 5.2: The signal model used in Section 5.2.1. The input signal has a complex
Gaussian distribution with zero mean and unit variance. The nonlinear transfer
function α(x) has AM-AM and AM-PM nonlinearities.

theorems for analyzing nonlinear self-interference cancellers using the signal model
of Fig. 5.3.

5.2.1 Generalized Fourier series expansion with orthonor-
mal Laguerre polynomials

We define orthonormal Laguerre polynomials as

ψ2m+1(x) = (−1)m√
m+ 1

L1
m(|x|2)x =

m∑
i=0

lm,i x|x|2i (5.2)

where L1
m(z) is a generalized Laguerre polynomial defined as

L1
m(z) =

m∑
n=0

(−1)n
n!

(
m+ 1
n+ 1

)
zn, (5.3)

and the coefficients lm,i can be expressed as

lm,i = (−1)i+m

i!
√
m+ 1

(
m+ 1
i+ 1

)
. (5.4)

Equation (5.2) is orthonormal with the following inner product:

〈ψp(x),ψq(x)〉 = E
[
ψp(x)ψ∗q (x)

]
= 1
π

∫
C
ψp(x)ψ∗q (x)e−|x|

2
dx (5.5)

=

1, (p = q)
0, (p 6= q)
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where ∫
C
f(x)dx =

∫ 2π

0
dθ
∫ ∞

0
f(rejθ)rdr, (5.6)

for an arbitrary function f(x). Also, the cross-correlation of ψp(x(t)) has
orthogonality as

Rψpψq(τ) =

Rxx(τ) |Rxx(τ)|p−1 , (p = q)
0, (p 6= q)

(5.7)

where Rxx(τ) is the cross-correlation function of x(t) [11]. This means than the
orthogonal polynomials of different orders are all uncorrelated. Then, for the signal
model in Fig. 5.2, we define the generalized Fourier series expansion of nonlinear
amplifier α(x) with orthonormal Laguerre polynomials as follows:

Definition 1 (generalized Fourier series expansion). If an amplifier whose transfer
function α(x) = α(|x|) x

|x| has only AM-AM and AM-PM nonlinearity, and
E
[
|α(x)|2

]
<∞ is satisfied by x ∼ CN (0, 1), the transfer function can be expanded

with the orthonormal Laguerre polynomials as

α(x) =
∞∑

p=1,3,···
α̃pψp(x), (5.8)

where α̃p is the p-th Fourier coefficient, given by

α̃p = 1
π

∫
C
α(x)ψ∗p(x)e−|x|

2
dx

=
∫ ∞

0
α(r)ψp(r) · 2re−r

2dr. (5.9)

The series expansion of (5.8) is referred to as the generalized Fourier series
expansion with orthonormal Laguerre polynomials.

The generalized Fourier series expansion has suitable properties for analyzing
nonlinear characteristics with a CN (0, 1)-distributed input signal. In [9, 11], the
following theorem is introduced and proved.

Theorem 1. For the signal model in Fig. 5.2, the autocorrelation function of the
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output signal α(x(t)) is given by

Rαα(τ) =
∞∑

p=1,3,···
|α̃p|2Rxx(τ) |Rxx(τ)|p−1 , (5.10)

where Rxx(τ) is the autocorrelation function of the input signal x(t). Also, the power
spectral density (PSD) of the output signal α(x(t)) is given by

|A(f)|2 =
∞∑

p=1,3,···
|α̃p|2 |Ψp(f)|2 , (5.11)

where |Ψp(f)|2 is defined as

|Ψ2m+1(f)|2 = F
[
Rxx(τ) |Rxx(τ)|2m

]
= |X(f)|2 ∗ · · · ∗ |X(f)|2︸ ︷︷ ︸

(m+ 1)-times convolution

∗ |X(−f)|2 ∗ · · · ∗ |X(−f)|2︸ ︷︷ ︸
m-times convolution

, (5.12)

and |X(f)|2 = F [Rxx(τ)] is the PSD of x(t).

Proof. See the proof in the paper [9, Eq. (9) and Appendix A with 2σ2 = 1]

We can then use Theorem 1 to prove Parseval’s theorem and Bussgang’s
theorem as follows:

Corollary 1 (Parseval’s theorem). In the signal model of Fig. 5.2, the expected
output power of α(x) is given by

E
[
|α(x)|2

]
=

∞∑
p=1,3,···

|α̃p|2 . (5.13)

Proof. Substituting τ = 0 in (5.10), we get the following equation:

E
[
|α(x(t))|2

]
=

∞∑
p=1,3,···

|α̃p|2
(
E
[
|x(t)|2

])p
. (5.14)

Then, we obtain (5.13) since E
[
|x(t)|2

]
= 1.

Corollary 2 (Bussgang’s theorem). In the signal model of Fig. 5.2, we can express
the output signal from a nonlinear transfer function α(x) with an input signal x(t) ∼
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CN (0, 1) as

α(x(t)) = α̃1x(t) + dα(t), (5.15)

where dα(t) is a distorted signal uncorrelated with x(t). Also, the power of the output
distorted signal dα(t) can be written as

E
[
|dα(t)|2

]
=

∞∑
p=3,5,···

|α̃p|2 = E
[
|α(x(t))|2

]
− |α̃1|2 . (5.16)

Proof. By comparing (5.8) and (5.15), we can see that the distorted signal dα(t) is
described by

dα(t) =
∞∑

p=3,5,···
α̃pψp(x(t)). (5.17)

Then, the cross-correlation of x(t) and dα(t) can be written as

Rxdα(τ) =
∞∑

p=3,5,···
α̃pRxψp(τ), (5.18)

where Rxψp(τ) is the cross-correlation of x(t) and ψp(x(t)). Since ψ1(x(t)) = x(t),
Eq. (5.18) can be rewritten as

Rxdα(τ) =
∞∑

p=3,5,···
α̃pRψ1ψp(τ) = 0 (5.19)

due to the orthogonality of (5.7). Thus, dα(t) is uncorrelated with x(t). In addition,
from Corollary 1, the power of the distorted signal can be written as

E
[
|dα(t)|2

]
=

∞∑
p=3,5,···

|α̃p|2 =
 ∞∑
p=1,3,···

|α̃p|2
− |α̃1|2 = E

[
|α(x(t))|2

]
− |α̃1|2 . (5.20)
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x(t) ∼ CN (0, 1) y(t)

ψ1(x) h̃1(τ)

ψ3(x) h̃3(τ)
...

...

x ċ1(τ)

x|x|P−1 ċP (τ)

...
...

Self-interference model

Canceller model

c(t)

w(t)

Figure 5.3: The signal model for Section 5.2.2. The self-interference model has
infinite-order nonlinear components corresponding to the orthonormal polynomials
ψp(x). In contrast, the canceller can regenerate and cancel finite-order nonlinear
components corresponding to the simple powers x|x|p−1.

5.2.2 Theorems related to the parallel Hammerstein can-
celler

Theorem 1, Corollary 1, and Corollary 2 are useful for evaluating the output
signal of the nonlinear transmitter. However, these theorems are inadequate for
analyzing the received self-interference since they do not consider a channel’s impulse
response. In Fig. 5.3, we assume that the input signal x(t) is distributed on
CN (0, 1). The following theorem can address the parallel Hammerstein model with
orthonormal polynomials for Fig. 5.3.

Theorem 2. For self-interference signal model of Fig. 5.3, it is assumed that the
signal y(t) can be expressed as

y(t) =
∞∑

p=1,3,···
h̃p(τ) ∗ ψp(x(t)), (5.21)

where h̃p(τ) is an impulse response corresponding to the orthonormal Laguerre
polynomials ψp(x), and their frequency response is H̃p(f) = F

[
h̃p(τ)

]
. Then, the
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following expressions hold:

|Y (f)|2 =
∞∑

p=1,3,···

∣∣∣H̃p(f)
∣∣∣2 ∣∣∣Ψp(f)

∣∣∣2 (5.22)

E
[
|Y (f)|2

]
=

∞∑
p=1,3,···

ρ2
p |Ψp(f)|2 , (5.23)

E
[
|y(t)|2

]
=

∞∑
p=1,3,···

ρ2
p, (5.24)

where Y (f) = F [y(t)] is the frequency-domain representation of the output signal
y(t), and ρ2

p = E
[∣∣∣H̃p(f)

∣∣∣2].
Proof. See Appendix 5.A.

To perform a theoretical analysis of nonlinear cancellers within a functional
analysis framework, we must first define them in a manageable form. Thus, we
define the parallel Hammerstein canceller as follows:

Definition 2 (parallel Hammerstein canceller). For the signal model of Fig. 5.3,
the output signal of the parallel Hammerstein canceller composed of up to P -order
polynomials is defined as

c(t) =
P∑

p=1,3,···
ċp(τ) ∗ x(t) |x(t)|p−1 , (5.25)

where hp(τ) are impulse responses that minimize the following residual self-
interference power:

E
[
|y(t)− c(t)|2

]
. (5.26)

Then, we can prove the existence of impulse responses c̃p(τ) to satisfy (5.27)
with some trivial manipulations.

c(t) =
P∑

p=1,3,···
c̃p(τ) ∗ ψp(x(t)) (5.27)
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The impulse responses ċp(τ) and c̃p(τ) have the following relationships:


c1(τ)
c3(τ)
...

cP (τ)


︸ ︷︷ ︸

ċ(τ)

=



l0,0 l1,0 l2,0 · · · lm,0

0 l1,1 l2,1 · · · lm,1

0 0 l2,2 · · · lm,2
... ... . . . . . . ...
0 0 0 · · · lm,m


︸ ︷︷ ︸

Lm+1


c̃1(τ)
c̃3(τ)
...

c̃P (τ)


︸ ︷︷ ︸

c̃(τ)

⇔ c̃(τ) = L−1
m+1ċ(τ), (5.28)

where m = (P−1)/2. In other words, there is a method for completely transforming
(5.25) and (5.27), and Eq. (5.27) also minimizes (5.26). Additionally, we can provide
the following noteworthy theorem by taking advantage of the useful properties of
(5.27) and orthonormal polynomials.

Theorem 3. In the signal model of Fig. 5.3, the impulse responses c̃p(τ)
corresponding to the generalized Fourier expansion of the parallel Hammerstein
canceller (5.27) are given by

c̃p(τ) = h̃p(τ). (5.29)

Proof. Equation (5.26) can be transformed into the following expression:

E
[
|y(t)− c(t)|2

]
=

P∑
p=1,3,···

∫ ∞
−∞

E
[∣∣∣H̃p(f)− C̃p(f)

∣∣∣2] |Ψp(f)|2 df

+
∞∑

p=P ,P+2,···

∫ ∞
−∞

E
[∣∣∣H̃p(f)

∣∣∣2] |Ψp(f)|2 df + E
[
|z(t)|2

]
, (5.30)

where H̃p(f) and C̃p(f) are the frequency response of h̃p(τ) and c̃p(τ), respectively.
When H̃p(f) = C̃p(f) is satisfied, the above expression is minimized. Thus, (5.29)
can be derived.

Theorem 3 states that if the received self-interference is approximated in
the form of (5.21), we can analyze the theoretical characteristics of the parallel
Hammerstein canceller. Additionally, we can analyze the characteristic of the
residual self-interference signal, denoted w(t) = y(t) − c(t). Although the
author has described the time-domain Hammerstein canceller in Theorem 3, a
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−+
w1(t)

x1(t)
α1(·)

hSI,1(τ)

LNA
β1(·)

PA

RF-SIC

y1(t)
c1(t)

VGA

g1

Digital SI
regen. LO

From
terminal#2

Terminal#1

Figure 5.4: Analysis model of the full-duplex transceiver.

similar relationship, H̃p(f) = C̃p(f), can be established for the frequency-domain
Hammerstein canceller [5, 14] due to the one-to-one correspondence between the
frequency response and the impulse response.

Note that even if the received signal is expanded to a Hammerstein model of
x|x|p−1 and impulse responses ḣp(τ) as

y(t) =
∞∑

p=1,3,···
ḣp(τ) ∗ x(t)|x(t)|p−1 + z(t), (5.31)

the p-th impulse response of the Hammerstein canceller ċp(τ) is not represented by
ḣp(τ), i.e.,

ċp(τ) 6= ḣp(τ). (5.32)

The author provides the proof for the above inequality in Appendix 5.B. In contrast,
(5.29) is an identity, and it is always holds true for an arbitrary transfer function.
Hence we use the generalized Fourier series expansion for the theoretical analysis of
nonlinear self-interference cancellers. Of course, the model of (5.31) can be analyzed
by transforming it into the model of (5.21) using the matrix Lm+1. Equation (5.79)
of Appendix 5.B is a formula of the transformation between the two models.

5.3 Theoretical Analysis of Nonlinear Self-
Interference Canceller

In this section, the author describes a theoretical analysis technique for full-duplex
transceivers and nonlinear self-interference cancellers. First, the author shows the
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analytical model and apply equation deformations to make the analysis easier. Then,
the author shows how the performance of the canceller and the symbol error rate
can be analyzed.

5.3.1 Analytical model

In preparation for the analysis, the author describes the analytical model
summarized in Fig. 5.4. Only one terminal is depicted, but the author assumes that
there are two terminals, terminal#1 and terminal#2. The transmitted baseband
signal is the OFDM signal with many subcarriers, and we can assume that its
envelope amplitude and power have a Rayleigh distribution with σ2

x = 0.5 and an
exponential distribution Exp(1), respectively.

In the transmitter of terminal#1, the transmitted signal is distorted by the power
amplifier (PA), and the signal received by the receiver antenna can be described as

yANT,1(t) = hSI,1(τ) ∗ α1(g1x1(t)) + h21(τ) ∗ α2(g2x2(t)) + z1(t), (5.33)

where hSI,1(τ) is the impulse response between the TX and RX antennas, h21(τ) is
the channel impulse response between terminal#1 and terminal#2, and z1(t) is the
thermal noise. Also, x1(t) and x2(t) are the signal transmitted from terminal#1 and
terminal#2, respectively. The nonlinear functions α1(·) and α2(·) are the AM-AM
and AM-PM transfer functions of both terminals’ PAs.

Generally, in full duplex, an RF canceller is used to prevent saturation of the
receiver LNA or A/D converter. The residual self-interference, which is the input
signal to the LNA, can be expressed as

yRFSIC,1(t) = (hSI,1(τ)− hCir,1(τ)) ∗ α1(g1x1(t)) + h21(τ) ∗ α2(g2x2(t)) + z1(t),
(5.34)

where hCir(τ) is the impulse response of the RF canceller. Then, the nonlinear
distorted signal from the LNA can be described as

y1(t) = β1

(
h11(τ) ∗ α1(g1x1(t)) + h21(τ) ∗ α2(g2x2(t)) + z1(t)

)
, (5.35)

where h11(τ) = hSI,1(τ)− hCir,1(τ), and the nonlinear function β1(·) is the AM-AM
and AM-PM transfer function of the LNA. In this chapter, we assume that the self-
interference channel after RF cancellation h11(τ) and the channel between terminals
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h21(τ) are Rayleigh fading channels, and the mean power gain of h11(τ) and h21(τ)
are ρ11 and ρ21, respectively. In other words, ρij can be written as

ρ2
ij = E

[
|Hij(f)|2

]
, (5.36)

where Hij(f) is the frequency response of hij(τ), and Hij(f) is distributed on
CN (0, ρ2

ij). To obtain the coefficients of the nonlinear canceller using Theorem 3,
we need to transform (5.35) to the form of (5.21). Thus, we derive (5.37) from (5.35)
using Bussgang’s theorem.

y1(t) = β̃1,1h11(τ) ∗ α1(g1x1(t)) + β̃1,1h21(τ) ∗ α2(g2x2(t)) + β̃1,1z1(t) + zNL,1(t),
(5.37)

where β̃1,1 is the linear gain of the LNA, and zZL,1(t) is the nonlinear distortion
caused by the LNA. For simplicity, we make the following assumptions:

• If there is no self-interference signal, the LNA does not saturate and operates
as a linear amplifier.

• The power of the self-interference is much larger than the received desired
signal and noise.

From above assumptions, we can formulate the following equations:

β̃1,1 = 1
ρ11ν1

∫ ∞
0

β1(ρ11ν1r)r · 2re−r
2dr, (5.38)

NNL,1 = E
[
|zNL,1(t)|2

]
=
∫ ∞

0
|β1(ρ11ν1r)|2 · 2re−r

2dr −
∣∣∣β̃1,1ρ11ν1

∣∣∣2 , (5.39)

where ρ2
11 is the mean power gain of h11(τ), NNL,1 is the mean power of zNL,1(t), and

ν2
1 is the mean transmission power of terminal#1, expressed as

ν2
1 =

∫ ∞
0
|α1(g1r)|2 · 2re−r

2dr. (5.40)

Applying the generalized Fourier series expansion with the orthonormal Laguerre
polynomials to (5.37), we obtain

y1(t) = β̃1,1h11(τ) ∗
∞∑

p=1,3,···
α̃1,pψp(x1(t)) + β̃1,1h21(τ) ∗

∞∑
p=1,3,···

α̃2,pψp(x2(t)) + ztot,1(t),

(5.41)
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where

α̃n,p =
∫ ∞

0
αn(gnr)ψp(r) · 2re−r

2dr, (5.42)

ztot,1(t) = β̃1,1z1(t) + zNL,1(t). (5.43)

From Theorem 3, the regenerated self-interference signal of the nonlinear canceller
composed of up to P -order polynomials can be written as

c1(t) = β̃1,1h11(τ) ∗
P∑

p=1,3,···
α̃1,pψp(x1(t)). (5.44)

Thus, the residual signal after self-interference cancellation can be expressed as

w1(t) = y1(t)− c1(t) =β̃1,1h11(τ) ∗
∞∑

p=P+2,P+4,···
α̃1,pψp(x1(t))

+ β̃1,1h21(τ) ∗
∞∑

p=1,3,···
α̃2,pψp(x2(t)) + ztot,1(t). (5.45)

5.3.2 Cancellation performance

The following self-interference cancellation ratio (SICR), which indicates the
performance of a digital canceller, can be expressed as

SICR1 = I11 +N tot,1

IR
11 +N tot,1

, (5.46)

where I11 is the mean power of the self-interference before digital cancellation, and
IR

11 is the mean power of the residual self-interference after digital cancellation.
From Theorem 2, I11 and IR

11 can be written as

I11 = E
[∣∣∣β̃1,1h11(τ) ∗ α1(g1x(t))

∣∣∣2] =
∣∣∣β̃1,1

∣∣∣2 ρ2
11ν

2
1 . (5.47)

IR
11 = E


∣∣∣∣∣∣β̃1,1h11(τ) ∗

∞∑
p=P+2,P+4,···

α̃1,pψp(x1(t))
∣∣∣∣∣∣
2
 =

∣∣∣β̃1,1

∣∣∣2 ρ2
11

ν2
1 −

P∑
p=1,3,···

|α̃1,p|2
 .

(5.48)
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Also, the total noise power Ztot,1, which is the power of ztot,1(t), can be written as

N tot,1 =
∣∣∣β̃1,1

∣∣∣2N thermal +NNL,1, (5.49)

where N thermal is the power of the thermal noise, and NNL,1, which is defined in
(5.39), is the power of the nonlinear distortion caused by the LNA.

5.3.3 Symbol error rate

To analyze the symbol error rate (SER), we need to derive statistical properties
for the signal to interference, distortion, and noise ratio (SIDNR). The SIDNR on
terminal#1 is described by

SIDNR1(f) = U21(f)
D21(f) + IR

11(f) +N tot,1(f) , (5.50)

where U21(f) and D21(f) are the powers of the useful and distortion signals of the
received desired signal, and IR

11(f) is the residual self-interference power after digital
cancellation. U21(f), D21(f), and IR

11(f) can be written as

U21(f) =
∣∣∣β̃1,1

∣∣∣2 |H21(f)|2 |α̃2,1|2 |X(f)|2 , (5.51)

D21(f) =
∣∣∣β̃1,1

∣∣∣2 |H21(f)|2
∞∑

p=3,5,···
|α̃2,p|2 |Ψp(f)|2 , (5.52)

IR
11(f) =

∣∣∣β̃1,1

∣∣∣2 |H11(f)|2
∞∑

p=P+2,P+4,···
|α̃1,p|2 |Ψp(f)|2 . (5.53)

The total noise contains the nonlinear distortion caused by the LNA, and its PSD
N tot,1(f) is not flat in the band −1

2 < f < 1
2 . In the proposed analysis, we

approximate the PSD of the total noise as

N tot,1(f) =
∣∣∣β̃1,1

∣∣∣2N thermal(f) +NNL,1 |Ψ3(f)|2 , (5.54)

where N thermal(f) is the PSD of the thermal noise. Thus, SIDNR1(f) can be
expressed as

SIDNR1(f) = 1
λsinr,1(f) + λsdr,1(f) , (5.55)
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where

λsdr,1(f) = D21(f)
U21(f) = 1

|α̃2,1|2
∞∑

p=3,5,···
|α̃2,p|2 |Ψp(f)|2 , (5.56)

λsinr,1(f) = IR
11(f) +N tot,1(f)

U21(f) . (5.57)

Since (5.56) does not depend on the channels’ frequency responses, Eq. (5.56) is
not a random variable and can have a fixed value. Thus, if the probability density
function (PDF) of (5.57) is derived, we can formulate the PDF of the SIDNR and
analyze the SER of the full-duplex system. From Appendix 5.C, the PDF of (5.57)
can be written as

pλsinr,1(x; f) = N tot,1(f)(xU21 + IR
11(f)) + xU21I

R
11(f)

x(xU21 + IR
11(f))2 exp

(
−N tot,1(f)

xU21

)
, (5.58)

where

IR
11(f) =

∣∣∣β̃1,1ρ11

∣∣∣2 ∞∑
p=P+2,P+4,···

|α̃1,p|2 |Ψp(f)|2 , (5.59)

U21 =
∣∣∣β̃1,1ρ21α̃2,1

∣∣∣2 . (5.60)

Therefore, the average SER can be analyzed by averaging the random variable in
the band −1

2 < f < 1
2 and can be expressed by the following integral:

SER1 =
∫ 1/2

−1/2

∫ ∞
0

Ps

(
1

x+ λsdr,1(f)

)
pλsinr,1(x; f)dxdf , (5.61)

where Ps(γ) is the symbol error probability of the subcarrier modulation. If we use
M -ary QAM for each subcarrier, Ps(γ) can be written as [15]

Ps (γ) = 1−
[
1−

(
1− 1√

M

)
erfc

(√
3γ

2(M − 1)

)]2

(5.62)

5.3.4 Analysis summary

In summary, we can analyze the performance of full-duplex communication using
the following procedure:

1. Determine the following parameters:
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• Nonlinear transfer function of amplifiers: α1(x), α2(x), β1(x), and β2(x)
• The gain of the VGA gn

• The input back-off:

IBOn (dB) = 20 log10
Asat,n

gnGn

, (5.63)

where Asat,n and Gn are the output saturation level and linear gain of
αn(x), respectively.

• Sum of propagation and RF cancellation (dB) = −20 log10 ρnn

• The propagation gain between terminals: ρ21 and ρ12

• Thermal noise level, including the noise figure of the LNA: N thermal

• The nonlinear order of the canceller P
2. Compute the transmission power of the n-th terminal using (5.40).
3. Compute the Fourier coefficients α̃n,p of the n-th terminal’s transmitter

using (5.42).
4. Compute the linear gain β̃n,1 and nonlinear distortion power NNL,n of the

n-th terminal’s LNA with (5.38) and (5.39), respectively.
5. Analyze the cancellation performance of a digital canceller SICR with (5.46)–

(5.49).
6. Analyze the SER with (5.54), (5.56), and (5.58)–(5.61), where the PSD of

the orthonormal Laguerre polynomial can be written as [11]

|Ψp(f)|2 =
p∑

k=0

(−1)k
(p− 1)!

(
p

k

)(
|f | − k + p

2

)p−1

+
, (5.64)

where

(u)p+ =

u
p, u > 0

0, u ≤ 0.
(5.65)

In the above procedure, we use numerical integration formulae because there some
integrals cannot be evaluated with closed-form expressions.
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Table 5.2: OFDM Modulation Specifications

Parameter Value
Constellation 16QAM
FFT size 64

Active subcarriers 52
Cyclic prefix size 16

Bandwidth 20 MHz

Table 5.3: Simulation and Analysis Specifications

Parameter Value
Oversampling rate 8
Sampling rate 20 MHz × 8 = 160 MHz

SI channel after RF-SIC Rayleigh fading
# of taps of SI channel 64 taps
Transmission power 23 dBm

PA Gain 30 dB
PA output saturation level 30 dBm

PA smoothness factor 3
LNA noise figure 4 dB

LNA Gain 20 dB
LNA output saturation level 14 dBm

LNA smoothness factor 3
# of taps of canceller 64 taps

# of training symbols of canceller 200 symbols
Trials 10001

# of transmission bits 105 bits on each trial

5.4 Examples and Verification

In this section, the author provides some results from the proposed analysis, and
some simulation results for verifying the proposed analysis. Table 5.2 and Table 5.3
list the simulation parameters. In the simulations, the self-interference channel
hnn(τ), comprising the wireless channel and the RF self-interference canceller on the
n-th terminal, was modeled as a quasi-static Rayleigh fading channel with a constant
impulse response in a given simulation trial, with different impulse responses used
in different simulation trials. We assumed there to be two full-duplex terminals,
with identical nonlinear characteristics and parameters. Thus, in the simulation,
the SICRn and SERn of the two terminals were identical. The nonlinearities of the
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PAs and LNAs were implemented using the Rapp model [8], which is often used to
simulate the baseband behaviors of class AB solid-state amplifiers. The AM-AM
conversion of the Rapp model can be expressed as

Rapp(x;G,Asat, s) = Gx(
1 +

(
|Gx|
Asat

)2s
) 1

2s
, (5.66)

where G is the linear gain of the amplifier, Asat is the output saturation level, and
s is the smoothness factor of the Rapp model. The larger the smoothness factor
s, the stronger the linearity of the Rapp model. When the smoothness factor s is
infinity, the Rapp model becomes an ideally predistorted amplifier, represented by
the following AM-AM conversion:

IdealPA(x;G,Asat) = Rapp(x;G,Asat,∞) =

Gx, (|Gx| ≤ Asat),
Asat

x
|x| , (|Gx| > Asat).

(5.67)

We also implemented a time-domain parallel Hammerstein canceller [1, 2] in
the simulator. We trained the canceller with the least squares algorithm with
200 OFDM symbols to achieve best performance. In this section, the author provides
results from the Rapp model. For reference, in Appendix 5.D the author also
provides results from the Saleh model [16], including both AM-AM and AM-PM
nonlinearities.

5.4.1 Cancellation performance

Figure 5.5 shows the cancellation performance of the parallel Hammerstein canceller
with different value of order P under various conditions of propagation and RF
domain cancellation. We can confirm that the theoretical results and simulation
results match well for nonlinear cancellers, demonstrating the accuracy of the
proposed analysis method.

A more detailed discussion of Fig. 5.5 is as follows: The self-interference and
noise ratio, INR, is defined as

INR1 =
E
[
|h11(τ) ∗ α1(g1x1(t))|2

]
E
[
|z1(t)|2

] = ρ2
11ν

2
1

N thermal
, (5.68)
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Figure 5.5: The performance of nonlinear self-interference cancellers with different
values of received self-interference powers. The nonlinear amplifiers αn(x) and βn(x)
were modeled using the Rapp model.

where the numerator indicates the power of the self-interference on the first terminal.
The upper bound of the cancellation performance SICR1 can be expressed by using
INR1 as

SICR1 ≤
I11 +N thermal

N thermal
≤ INR1 + 1. (5.69)

Cancellers achieve the above upper bound when they have been trained with
a sufficient number of OFDM symbols, and the LNA is not saturated by
self-interference. In Fig. 5.5, we can see that the performance of the canceller with
P = 7 reaches to the upper bound when ρ2

11 < −60 dB. In contrast, when the order
of the canceller P is less than seven, the performance cannot reach the upper bound
when ρ2

11 < −60 dB because the residual nonlinear self-interference distorted by the
PA becomes larger than the thermal noise level. In Fig. 5.5, we can also see that the
cancellation performance is significantly degraded by saturation of the LNA when
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Figure 5.6: The performance of nonlinear self-interference cancellers with different
values of smoothness factors for both terminals’ PAs. The nonlinear amplifiers αn(x)
and βn(x) were modeled using the Rapp model. Arrows on the y-axis indicate the
SICR1 value of the infinite smoothness factor (ideally predistorted amplifier).

ρ2
11 > −55 dB even if P = 7. The parallel Hammerstein canceller cannot estimate

and regenerate the nonlinear self-interference caused by the LNA; to achieve higher
performance, we need to consider the nonlinearity of the LNA [17–24].

Figure 5.6 shows the cancellation performance of the parallel Hammerstein
canceller with various smoothness factors for both terminals’ PAs. Firstly, we
can confirm good correlation between the theoretical and simulation results.
Furthermore, the linear canceller (i.e., P = 1) achieves the best cancellation
performance when the PAs are ideally predistorted. The higher smoothness factor
improves amplifier linearity. Thus, amplifier linearization is an effective technique for
a full-duplex system with linear canceller. More interestingly, nonlinear cancellers
such as P = 3, 5, and 7 achieve maximum cancellation performance when the
PAs show moderate nonlinearity. This means that the linearization degrades the
cancellation performance of nonlinear cancellers. The author provides a detailed
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Figure 5.7: The average SER of the two full-duplex terminals with different values
of input back-offs for both terminals’ PAs. The nonlinear amplifiers αn(x) and βn(x)
were modeled using the Rapp model.

discussion of this phenomenon in Section 5.4.3.

5.4.2 Symbol error rate

Figure 5.7 shows the average SER of the full-duplex system under various back-offs
for both terminals’ PAs, i.e., under various transmit powers. Similar to the results
of the cancellation performance shown in Fig. 5.5 and Fig. 5.6, the theoretical and
simulation results match well in Fig. 5.7. When the input back-off is less than 10 dB,
the SER degrades rapidly because the distortion introduced by the PAs increases.
When the input back-off is greater than 15 dB, the SER also degrades slowly because
the power of the desired signal decreases. Thus, there is an optimum back-off value,
which depends on the nonlinear canceller’s order P .

Figure 5.8 shows the average SER of the full-duplex system with various PA
smoothness factors. Again, the theoretical and simulation results show good
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Figure 5.8: The average SER of the two full-duplex terminals with different values
of smoothness factors for both terminals’ PAs. The nonlinear amplifiers αn(x) and
βn(x) were modeled using the Rapp model. Arrows on the y-axis indicate results
for the infinite smoothness factor (ideally predistorted amplifier).

correlation. The full-duplex system with a linear canceller such as P = 1 achieves
the minimum SER when the PAs are ideally predistorted. In contrast, when we use
nonlinear cancellers such as P = 3, 5, and 7, the full-duplex system achieves the
minimum SER for the smoothness factor 1 < s < 2. As in Fig. 5.6, these results
indicate that amplifier linearization is not the best approach for a full-duplex system
with nonlinear cancellers. Although this result deviates from the common knowledge
of half-duplex systems, it is confirmed by the theoretical analysis and simulation
results shown in Fig. 5.8 for a full-duplex system with nonlinear self-interference
canceller. These results are very interesting; in the following section we will clearly
show why such results are obtained.

140



Chapter 5. Theoretical Analysis of IBFD Radios

5.4.3 How can a nonlinear amplifier performance be better
than the linearized amplifier?

From Fig. 5.6 and Fig. 5.8, we can confirm that the full-duplex terminal with a
nonlinear canceller does not achieve the best performance using ideally linearized
amplifiers for the transmitters. We can explain these results in terms of the residual
self-interference power IR

11 defined as (5.26) and rewritten as

IR
11 =

∣∣∣β̃1,1

∣∣∣2 ρ2
11

(
|α̃1,P+2|2 + |α̃1,P+4|2 + · · ·

)
. (5.70)

To achieve high cancellation performance and low SER, it is important to reduce
the residual self-interference IR

11. For the linear canceller, P = 1, reducing the sum
of all nonlinear distortions |α̃1,3|2 + |α̃1,5|2 · · · leads to a reduction in IR

11. Thus, the
linearization reducing the total distortion power is effective for the full-duplex system
with a linear canceller. However, for nonlinear cancellers such as P = 3, 5, 7, · · · ,
reducing the sum of all nonlinear distortions |α̃1,3|2 + |α̃1,5|2 · · · does not lead to a
reduction in IR

11. This is because when the total power of distortions is reduced,
the nonlinear component, with a higher order than P , does not necessarily become
smaller. The third-order distortion has the greatest power among the nonlinear
distortions. If the total distortion power can be reduced, the linearization will
try to reduce the third-order distortion even if it increases the fifth- or seventh-
order distortion power. Therefore, linearization does not reduce the residual self-
interference when we use nonlinear cancellers. In summary, linearization is not the
best approach for full-duplex systems with nonlinear cancellers. In addition, if we
want to achieve higher performance in full-duplex communications, we should design
predistorters such that the SER is small. The proposed analysis technique can be
used to guide the design of such predistorters.

5.5 Conclusion

This chapter first presented some useful theorems for nonlinear self-interference
cancellers and residual self-interference in full-duplex systems. Using these theorems,
the author demonstrated that the performance of a full-duplex system with a
nonlinear self-interference canceller can be expressed by coefficients of the general
Fourier series expansion for nonlinear amplifiers. We compared results from the
proposed analysis with simulation results in terms of self-interference cancellation
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performance and SER, and confirmed that they match well. In addition, discussion
of the results revealed that amplifier linearization is not the best approach in
full-duplex systems with nonlinear cancellers. As a future challenge, we need to
integrate the proposed analysis with the theoretical analysis of other nonidealities,
such as IQ imbalance and phase noise, which have been analyzed in other literature.

Appendix 5.A Proof of Theorem 2

In this appendix, the author provides the proof of Theorem 2. The autocorrelation
function of y(t) is expressed as

Ryy(τ) = Et [y(t)y∗(t+ τ)] =
∞∑

p=1,3,···

∞∑
q=1,3,···

R(p,q)
yy (τ) (5.71)

where Et [·] denotes the expected value for time t, and R(p,q)
yy (τ) is defined as

R(p,q)
yy (τ) = Et


(∫ ∞

0
h̃p(τ1)ψp(x(t− τ1))dτ1

)
×
(∫ ∞

0
h̃∗q(τ2)ψ∗q (x(t+ τ − τ2))dτ2

)


=
∫ ∞

0

∫ ∞
0

h̃p(τ1)h̃∗q(τ2)Rψpψq(τ + τ1 − τ2)dτ1dτ2, (5.72)

where Rψpψq(τ) is the cross-correlation function of ψp(x(t)) and ψq(x(t)). From (5.7),
Rψpψq(τ) = 0 when p 6= q. Thus, the frequency domain representation of R(p,q)

yy (τ)
can be expressed as

F
[
R(p,q)
yy (τ)

]
=


∣∣∣H̃p(f)

∣∣∣2 |Ψp(f)|2 , (p = q)
0, (p 6= q)

(5.73)

where H̃p(f) is the frequency response of h̃p(τ). Then, the PSD of y(t) can be
written as

|Y (f)|2 =
∞∑

p=1,3,···

∣∣∣H̃p(f)
∣∣∣2 ∣∣∣Ψp(f)

∣∣∣2 . (5.74)

142



Chapter 5. Theoretical Analysis of IBFD Radios

By taking the expected values of both sides of the above equation, Eq. (5.23) can
be derived. Also, the expected power of y(t) can be expressed as

E
[
|y(t)|2

]
=
∫ ∞
−∞

E
[
|Y (f)|2

]
df =

∞∑
p=1,3,···

∫ ∞
−∞

ρ2
p |Ψp(f)|2 df

=
∞∑

p=1,3,···
ρ2
pE
[
|ψp(x(t))|2

]
=

∞∑
p=1,3,···

ρ2
p. (5.75)

Thus, Eq. (5.24) can be derived.

Appendix 5.B Condition of ċp(τ ) = ḣp(τ )
In this appendix, we prove the following theorem:

Theorem 4. It is assumed that the received self-interference is expressed by a Q-
order Hammerstein model as

y(t) =
Q∑

p=1,3,···
ḣp(τ) ∗ x(t) |x(t)|p−1 + z(t), (5.76)

where ḣp(τ) is an impulse response corresponding to x(t) |x(t)|p−1, and z(t) is a
signal uncorrelated with the transmitted signal x(t). Then, the impulse responses
ċp(τ) of the parallel Hammerstein canceller in (5.25) composed of up to P -order
power series are given by the following identity

ċp(τ) = ḣp(τ), (5.77)

when P ≥ Q. In contrast, when P < Q, ċp(τ) 6= ḣp(τ). In other words, we
cannot theoretically analyze the residual nonlinear self-interference by using the non-
orthogonal polynomial expansion.

Proof. The received signal y(t) can be expressed as the following orthonormal
Laguerre polynomial expansion:

y(t) =
Q∑

p=1,3,···
h̃p(τ) ∗ ψp(x(t)) + z(t), (5.78)

where h̃p(τ) is an impulse response corresponding to ψp(x(t)). Similar to (5.28), we
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can write the relationship between ḣp(τ) and h̃p(τ) as

h̃(τ) = L−1
n+1ḣ(τ), (5.79)

where n = (Q− 1)/2, and

ḣ(τ) =
[
ḣ1(τ) ḣ3(τ) · · · ḣQ(τ)

]T
, (5.80)

h̃(τ) =
[
h̃1(τ) h̃3(τ) · · · h̃Q(τ)

]T
. (5.81)

From Theorem 3, when P ≥ Q, c̃(τ) is given by

c̃(τ) =
 In+1

0m−n×n+1

 h̃(τ), (5.82)

where m = (P − 1)/2. Using (5.28) and (5.79), ċ(τ) is given by

ċ(τ) = Lm+1

 In+1

0m−n×n+1

L−1
n+1ḣ(τ) =

 ḣ(τ)
0m−n×n+1

 (5.83)

Thus, ċp(τ) = ḣp(τ) is derived: when the order of the self-interference model Q is
less than the order of the canceller P (i.e., P ≥ Q), all self-interference of (5.76) can
be removed. However, the theoretical analysis of the case where all self-interference
is removed is easy. Also, our main focus is the case where there is a residual nonlinear
self-interference, i.e., P < Q. When P < Q, ċp(τ) is given by

ċ(τ) = Lm+1
[
Im+1 0m+1×n−m

]
L−1
n+1ḣ(τ)

=


ḣ1(τ)
ḣ3(τ)

...
ḣP (τ)

+


l′0,m+1 l′0,m+2 · · · l′0,n

l′1,m+1 l′1,m+2 · · · l′1,n
... ... . . . ...

l′m,m+1 l′m,m+2 · · · l′m,n




ḣP+2(τ)
ḣP+4(τ)

...
ḣQ(τ)

 (5.84)

where l′i,j =
(
L−1
n+1

)
i,j
. Then, we derive ċp(τ) 6= ḣp(τ) when P < Q. The result

shows that the analysis of residual self-interference is very difficult when using the
non-orthogonal polynomial expansion.
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Figure 5.9: Domain of the two-dimensional integration in (5.89).

Appendix 5.C Probability Density Function
of (5.57)

In this appendix, we derive the PDF of (5.57). We assume that |H11(f)|2 and
|H21(f)|2 are have exponential distributions Exp(ρ2

11) and Exp(ρ2
21), respectively.

Thus, IR
11(f) and U21(f) are distributed exponentially, and expected values for these

random variables in −1
2 < f < 1

2 can be expressed as

IR
11(f) = E

[
IR

11(f)
]

=
∣∣∣β̃1,1ρ11

∣∣∣2 ∞∑
p=P+2,P+4,···

|α̃1,p|2 |Ψp(f)|2 , (5.85)

U21 = E [U21(f)] =
∣∣∣β̃1,1ρ21α̃2,1

∣∣∣2 . (5.86)

Thus, the probability distribution function of IR
11(f) and U21(f) can be described as

pIR
11

(x; f) = 1
IR

11(f)
exp

(
− x

IR
11(f)

)
, (5.87)

pU21(x) = 1
U21

exp
(
− x

U21

)
. (5.88)
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Then, the cumulative distribution function of (5.57) in −1
2 < f < 1

2 can be written
as

Prob {λsinr,1(f) < x} = Prob
{
IR

11(f) +N tot,1 < xU21(f)
}

=
∫ ∞
Ntot,1/x

(∫ xU−Ntot,1

0
pIR

11
(I; f)dI

)
pU21(U)dU

= exp
(
−N tot,1

xU21

)1− 1
U21

(
x

IR
11(f)

+ 1
U21

)−1
 , (5.89)

where pIR
11

(x; f) and pU21(x) are PDFs of the exponential distributions of IR
11(f) and

U21(f), respectively. In (5.89), the domain of the two-dimensional integration is as
shown in Fig. 5.9. Thus, the PDF of (5.57) can be described as

pλsinr,1(x; f) = d
dxProb {λsinr,1(f) < x}

= N tot,1(xU21 + IR
11(f)) + xU21I

R
11(f)

x(xU21 + IR
11(f))2 exp

(
−N tot,1

xU21

)
. (5.90)

Appendix 5.D Analysis Examples on Saleh
Model

To prove that the proposed technique can analyze AM-PM characteristics as well
as AM-AM characteristics, the author shows additional analysis results using the
Saleh model [16]. The transfer function of the Saleh model can be expressed as

f(x) = A1x

1 +B1|x|2
exp

(
j A2|x|2

1 +B2|x|2

)
, (5.91)

where A1, A2, B1, and B2 are parameters that characterize the nonlinearity of the
Saleh model. When the linear gain, output saturation level, and phase displacement
at the saturation point are G, Asat, and Φsat respectively, the parameters of the Saleh
model can be expressed as

A1 = G, A2 = 2ΦsatG
2

4A2
sat

, B1 = B2 = G2

4A2
sat

. (5.92)

In this chapter, we use Φsat = π/6, and G and Asat, as with the Rapp model.
Figure 5.10 shows the average symbol error rate of the full-duplex system which
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Figure 5.10: The average symbol error rate (SER) of the two full-duplex terminals
with different values of input-back-offs of both terminals’ PAs. The nonlinear
amplifiers αn(x) and βn(x) are modeled using the Saleh model.

has Saleh-modeled amplifiers with various back-offs. The simulation and analysis
parameters of Fig. 5.10 are the same as those in Fig. 5.7 except for the nonlinear
transfer function. As with the results of the Rapp model, which does not have
an AM-PM characteristic, we can also confirm that the theoretical results and
simulation results match well even if the transfer functions have an AM-PM
characteristic.
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Chapter 6

Overall Conclusions

Nonlinear SI cancellers exhibit certain problems, such as a high computational cost,
the requirement of large training data, and vulnerability to the nonlinearity of LNAs.
Moreover, no theoretical studies have been conducted on the performance of IBFD
radios with nonlinear cancellers. This thesis has presented studies on nonlinear SI
cancellers for IBFD radios regarding these problems.

In Chapter 1, the background to this thesis was provided. Moreover, a detailed
model of non-idealities in IBFD radios was presented. Thereafter, the time-domain
parallel Hammerstein SI canceller, which is one of the most well-studied nonlinear
cancellers, has been summarized.

In Chapter 2, a novel frequency-domain parallel Hammerstein SI canceller
to reduce the computational cost while taking into account the nonlinearity of
I/Q mixers and PAs was described. OFDM signals have discontinuities between
symbols. Time-domain cancellers can estimate the effect of the discontinuities,
but conventional frequency-domain cancellers cannot. To estimate the effect of
the discontinuities, swapped OFDM symbols consisting of the first and second
half of different symbols were introduced. The proposed scheme decreases the
computational cost by estimating the characteristic of the SI channel in the frequency
domain and by using the overlap-save method for regenerating SI signals. Moreover,
the proposed scheme exhibits good compatibility with time-domain parameter
estimation algorithms such as LS, RLS, and normalized LMS. The simulation results
demonstrate that the proposed scheme can achieves as high cancellation performance
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as the time-domain scheme and fast convergence with a low computational cost.
In Chapter 3, a basis function selection technique for the frequency-domain

Hammerstein SI canceller, which was presented developed in Chapter 2, was
proposed. This selection technique enables the computational cost of the canceller
to be reduced further. The estimation technique of the PSD of the received SI is
developed from the detailed nonlinear characteristics of a full-duplex terminal. The
proposed selection technique reduces unnecessary basis functions for cancellation
prior to the training stage according to the estimated SI power at each discrete
frequency. The simulation results demonstrate that the proposed technique
improves the computational cost and convergence performance of the original
frequency-domain Hammerstein canceller. It is revealed that the computational
cost can be reduced to approximately one-fifth in the low SI situation by reducing
the basis functions according to the estimated SI signal power. Moreover, by
using the proposed selection technique, the SI cancellation performance of the
frequency-domain Hammerstein canceller hardly decreases and similar cancellation
performance to that of the original is achieved.

The frequency-domain Hammerstein canceller presented in Chapters 2 and 3
achieves a much lower computational cost than that of time-domain Hammerstein
cancellers. However, the frequency-domain Hammerstein canceller cannot remove
distortions caused by the receiver LNA as effectively as time-domain Hammerstein
cancellers. Both cancellers are based on the parallel Hammerstein model and the
SI signal with the LNA cannot be described by the parallel Hammerstein model.
Thus, in Chapter 4, operators were introduced that express the characteristics of
each RF component in a minimum form, and a nonlinear SI signal model was
derived instead of the parallel Hammerstein model. Thereafter, a novel nonlinear
SI canceller was proposed to reduce the nonlinear SI caused by the transmitter and
receiver and I/Q mixers, PA, and LNA effectively. The estimation process of the
proposed canceller consists of three stages, which estimate the characteristics of the
corresponding operator of each RF component. The simulation results demonstrate
that the proposed canceller can estimate and remove the received SI signal that is
distorted by the LNA. Moreover, the proposed canceller achieves higher cancellation
performance with fewer learning symbols and a lower computational cost than the
Hammerstein canceller.

Through the studies of Chapters 2 to 4, high-performance and low computational
complexity nonlinear SI cancellers have been developed that can be integrated into
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small and inexpensive terminals. In particular, the iterative canceller in Chapter 4
can achieve higher cancellation and training performance, while reducing the
computational cost to a tenth of that of the least computationally expensive training
method of conventional time-domain parallel Hammerstein cancellers. However, the
general knowledge of nonlinear cancellers has not been expanded in these studies; for
example, how to increase the cancellation performance of these cancellers further.
Therefore, a detailed theoretical analysis on nonlinear cancellers is required to
promote the research on more advanced IBFD systems. The envelope of an OFDM
signal with a sufficiently large number of subcarriers can be assumed to follow a
complex Gaussian distribution according to the central limit theorem. Chapter 5
focused on PA and LNA nonlinearities, and presented several useful theorems for
nonlinear SI cancellers and residual SI in full-duplex systems based on the analysis
of nonlinear half-duplex systems with a complex Gaussian signal. Using these
theorems, it was demonstrated that the performance of a full-duplex system with
a nonlinear SI canceller can be expressed by the coefficients of the general Fourier
series expansion for nonlinear amplifiers. The results from the proposed scheme
analysis have been compared with simulation results in terms of SI cancellation
performance and SER, and it was confirmed that the results match well. Moreover, a
discussion of the results revealed that amplifier linearization is not the best approach
in full-duplex systems with nonlinear cancellers. That is, the further performance
improvement of full-duplex radios requires the design of terminals combined with
nonlinear SI cancellers and nonlinearizing predistorters.

As a future challenge, it is necessary to integrate the proposed analysis described
in Chapter 5 with the theoretical analysis of other non-idealities, such as I/Q
imbalance and phase noise, which have been analyzed in other works. Moreover, if
we wish to achieve higher performance in full-duplex communications, predistorters
should be designed such that the SER is small. Our proposed analysis technique can
be used to guide the design of such predistorters. It is predicted that the development
of such predistorters will require a precise estimation of the PA characteristics,
and Appendix A, which presents a novel estimation method for the memoryless
nonlinearity of an amplifier, will aid in this.
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Appendix A

Weighted Least Squares with Orthonormal
Polynomials and Numerical Integration for

Estimation of Memoryless Nonlinearity

The nonlinearity of amplifiers is one of the major impairments in wireless
communications. In this appendix, the author proposes a novel estimation method
for the memoryless nonlinearity of amplifiers using weighted least squares and
provide its theoretical error analysis on complex Gaussian signals. In the proposed
method, the input signal and weight value are obtained via numerical integration
formulas. Simulation results show that the proposed method can achieve a
sufficiently low reconstruction error with 10 measurement samples on the estimation
of the 13th-order nonlinearity. In addition, the simulation and theoretical results
are consistent with each other.

A.1 Introduction

Wireless communication systems suffer from the nonlinearities of amplifiers or other
radio-frequency (RF) circuits. Accordingly, the estimation and compensation of
these nonlinearities are important research objectives. The memoryless nonlinearity
of an amplifier needs to be estimated accurately to achieve better pre-distortion [1]
or better self-interference cancellation [2]. In the simplest model of the nonlinearity
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estimation problem, the relation between the input signal xn and the output signal
yn can be written as

yn = f(xn) + zn, (A.1)

where f(x) is the nonlinear transfer function of the target amplifier and zn is additive
white Gaussian noise that is independent of xn and distributed on CN (0,σ2

z). In the
model of (A.1), we focus on the accurate estimation of the transfer function of the
amplifier with a small number of observation samples under the assumption that
the output of the amplifier can be observed directly. The simplest solution of this
problem is achieved using polynomial approximation and least squares estimation.
Accordingly, the transfer function of the amplifier f(x) is approximated to the
following P -th order memoryless polynomial:

f(x) ≈ a1x+ a3x|x|2 + · · ·+ aPx|x|P−1, (A.2)

and the coefficients a1, a3, · · · , aP are estimated using the following least squares
method with N measurement samples:

â =
[
â1 â3 · · · âP

]T
=
(
XHX

)−1
XHy, (A.3)

where (·)T and (·)H denote the transpose and Hermitian transpose of a matrix,
respectively, âp represents the estimated coefficients, and

X =


x1 x1|x1|2 · · · x1|x1|P−1

x2 x2|x2|2 · · · x2|x2|P−1

... ... . . . ...
xN xN |xN |2 · · · xN |xN |P−1

 , (A.4)

y =
[
y1 y2 · · · yN

]T
. (A.5)

However, this solution has severe numerical instability due to the large condition
number of the Gram matrix XHX on high-order nonlinearity estimation [1, 3, 4].
Existing literature [1,3,4] provides an improved method for mitigating the instability,
using orthonormal polynomials instead of x|x|p−1. Because of their advantages of
orthonormality and orthogonality, orthogonal polynomials have been applied to not
only estimation problems but also the latest studies on nonlinearities in a wide
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range of wireless communications such as the analysis of massive multiple-input
multiple-output (MIMO) systems [5] and nonlinear equalizers [6].

In the improved version of the least squares estimation, the transfer function
f(x) is approximated to the following P -th order expansion:

f(x) ≈ b1ψ1(x) + b3ψ3(x) + · · ·+ bPψp(x), (A.6)

where ψp(x) is a p-th order orthonormal polynomial. For the expansion (A.6), among
the various types of orthogonal polynomials, a polynomial that satisfies the following
orthonormality is used, to achieve better stability:

E
[
ψp(x)ψ∗q (x)

]
=
∫
C
ψp(x)ψ∗q (x)px(x)dx = δpq, (A.7)

where δpq is the Kronecker delta, px(x) is the probability density function of x, and∫
C dx indicates integration on the complex plane. The orthonormal polynomial ψp(x)
depends on the distribution of the communication signal because the expectation
of (A.7) depends on it. Most current communication systems use orthogonal
frequency-division multiplexing (OFDM) as the modulation scheme. The OFDM
signal is distributed on the complex Gaussian distribution due to a high number
of subcarriers and the central limit theorem [3, 7]. When the complex Gaussian
signal has a unit variance, i.e., unit power, the orthonormal polynomial ψp(x), which
satisfies the orthonormality of (A.7), can be written as

ψ2m+1(x) = (−1)m√
m+ 1

L1
m(|x|2)x, (A.8)

where L1
m(z) is the following generalized Laguerre polynomial:

Lαm(z) =
m∑
n=0

(−1)n
n!

(
m+ α

m− n

)
zn. (A.9)

Therefore, the estimated coefficient vector of the orthonormal expansion (A.6)
obtained using the improved least squares can be expressed as

b̂ =
[
b̂1 b̂3 · · · b̂P

]T
=
(
ΨHΨ

)−1
ΨHy, (A.10)
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where

Ψ =


ψ1(x1) ψ3(x1) · · · ψP (x1)
ψ1(x2) ψ3(x2) · · · ψP (x2)

... ... . . . ...
ψ1(xN) ψ3(xN) · · · ψP (xN)

 . (A.11)

In (A.10), the (i, j) element of the Gram matrix ΨHΨ can be written as

(
ΨHΨ

)
i,j

=
N∑
n=1

ψ∗2i−1(xn)ψ2j−1(xn). (A.12)

When the number of measurements N is sufficiently large, the equation

lim
N→∞

1
N

(
ΨHΨ

)
i,j

= E
[
ψ∗2i−1(x)ψ2j−1(x)

]
= δij (A.13)

holds due to the orthonormality of ψp(x) because 1
N

(
ΨHΨ

)
i,j

is a sample average,
and it converges to the expected value when N →∞. Thus, (A.13) indicates that,
if a sufficiently large number of measurement samples is available, the condition
number of the Gram matrix converges to 1.

However, the convergence speed of (A.13) is very low when the measurement
signal xn is randomly generated from a complex Gaussian distribution. The intuitive
reason is that (A.12) is the Monte Carlo integration. It is known that the error of
the Monte Carlo integration decreases as 1/

√
N , and it is much slower than other

numerical integration schemes. The same issue arises on ΨHy of (A.10). The i-th
element of ΨHy is written as

(
ΨHy

)
i

=
N∑
n=1

ψ∗2i−1(xn)yn. (A.14)

When the number of measurements N is sufficiently large, the equation

lim
N→∞

1
N

(
ΨHy

)
i

= E
[
ψ∗2i−1(x)f(x)

]
= 1
π

∫
C
f(x)ψ∗2i−1(x)e−|x|2dx = b2i−1 (A.15)

holds due to the orthonormality of ψp(x). However, the convergence speed of (A.15)
is very low due to the Monte Carlo integration.
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To summarize, the conventional least squares method has the following problems:
• Large condition number: When the number of measurement signals is not

sufficient, the condition number of the Gram matrix becomes a large value.
• Low convergence speed: When the number of measurement signals is not

sufficient, the estimated value does not converge to a true value.
These problems are related to random sampling observation, and the authors of
the paper [8] proposed a sample selection method based on the genetic algorithm
to solve these problems on digital pre-distortion with non-orthogonal polynomials.
In contrast, in this appendix, the author proposes a weighted least squares method
with orthonormal polynomials and numerical integration. In the proposed method,
the measurement input signal xn and the weights of the least squares are easily
obtained via numerical integration formulas.

The details of the proposed method are described in Section A.2. In Section A.3,
the proposed scheme and the conventional least squares method are compared via
numerical simulations. Section A.4 presents the conclusion of the letter.

A.2 Proposed Method

The proposed method uses the weighted least squares method. The measurement
samples and weights are obtained using a numerical integration formula. In
the proposed method, we approximate the transfer function to the orthonormal
polynomial expansion of (A.6). Then, the vector of the estimated coefficients is
expressed as

b̂ =
(
ΨHWΨ

)−1
ΨHWy, (A.16)

where Ψ and y are the same as (A.11) and (A.5), respectively, and W =
diag {w1,w2, · · · ,wN} is a diagonal weight matrix. The main difference between
the conventional and proposed methods is that the measurement samples xn and
the weight wn are obtained using a numerical integration formula that can calculate
the following two integrals:

E
[
ψ∗2i−1(x)ψ2j−1(x)

]
= 1
π

∫
C
ψ∗2i−1(x)ψ2j−1(x)e−|x|

2
dx, (A.17)

E
[
f(x)ψ∗2i−1(x)

]
= 1
π

∫
C
f(x)ψ∗2i−1(x)e−|x|

2
dx, (A.18)
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with a high accuracy even if the number of measurements N is very small. Generally,
a numerical integration formula with N samples can be written as

E [g(x)] ≈
N∑
n=1

g(xn)wn, (A.19)

where g(x) is an arbitrary function, and xn and wn are the computing points and
weights of the numerical integration, respectively. In the proposed method, we use
the computing points as measurement samples, and the n-th element of the diagonal
weight matrix W is wn. Then, we can expect that the following two equations:

(
ΨHWΨ

)
i,j

=
N∑
n=1

ψ∗2i−1(xn)ψ2j−1(xn)wn, (A.20)

(
ΨHWy

)
i

=
N∑
n=1

ynψ
∗
2i−1(xn)wn, (A.21)

rapidly converge to the expected values of (A.17) and (A.18), respectively, if the
noise is ignored. Therefore, the Gram matrix ΨHWΨ becomes the identity matrix,
and the estimated vector b̂ stably converges to the true coefficient vector b, even if
the number of measurement samples is very small. In addition, if the Gram matrix
is approximately the identity matrix, the estimate can be given as b̂ ≈ ΨHWy.

A.2.1 Example 1: Gauss–Laguerre quadrature

The integrations of (A.17) and (A.18) can be rewritten as

E [g(x)] = 1
π

∫ 2π

0

∫ ∞
0

g(rejθ)e−r2
rdrdθ

=
∫ ∞

0
g(r) · 2re−r2dr =

∫ ∞
0

g(
√
t)e−tdt, (A.22)

where g(x) = ψ2i−1(x)ψ∗2j−1(x) for (A.17), and g(x) = f(x)ψ∗2i−1(x) for (A.18). The
reason for the above transformation is that g(x) = g(|x|) holds in both cases. The
last term of (A.22) is a semi-infinite integral with an exponentially decaying weight
function, and the Gauss–Laguerre quadrature is a good choice for integrating it
with high accuracy. In the Gauss–Laguerre quadrature, the computing point tn is
the n-th root of the Laguerre polynomial LN(x) = L0

N(x), and the weights are given
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by [9, Eq. 25.4.45]

w′n = xn

(N + 1)2 [LN+1(xn)]2
. (A.23)

Then, the measurement samples and weights of the proposed method are xn =
√
tn

and wn = w′n, respectively. Moreover, the error of the Gauss–Laguerre quadrature
is given by [9, Eq. 25.4.45]

RN [g] = (N !)2

(2N)!
d2N

dt2N g(
√
t)
∣∣∣∣∣
t=ξ

. (0 < ξ <∞) (A.24)

Thus, the convergence speed of the Gauss–Laguerre quadrature is much higher than
that of the Monte Carlo integration because (N !)2

(2N)! � 2−N .
In Section A.3, when the number of measurements is larger than 100, the

100 measurement samples and weights are repeated N/100 times to generate N
measurement samples and weights because the Gauss–Laguerre quadrature has very
high accuracy, even if N = 20. Thus, we use xn =

√
t(n%100) and wn = 100

N
w′(n%100)

when N > 100, where the binary operator % indicates the remainder after division,
and tn and wn are obtained from 100-points Gauss–Laguerre quadrature.

A.2.2 Example 2: Rectangular rule

Generally, the rectangular rule is not a highly accurate integration method, but it is
practical for the proposed method. The middle term of (A.22) is an integration with
a rapidly decreasing weight e−r2 , and we can obtain sufficient accuracy even if the
integration interval is only [0, 5] instead of [0,∞). Then, the measurement samples
and weights of the proposed method with the rectangular rule can be written as

xn = 5
N
n, wn = 10

N
xne−x2

n . (A.25)

In (A.22), the integrand can be approximated to zero at both ends of the integration
domain, i.e., g(r) · 2re−r2 ≈ 0 at r = 0 and r = 5. Then, the rectangular rule
for (A.22) is almost equal to the trapezoidal rule, and the error of the integration
can be expressed as [9, Eq. 25.4.2]

RN [g] ≈ 125
12N2

d2

dr2

[
g(r) · 2re−r2]∣∣∣∣∣

r=ξ
. (0 < ξ < 5) (A.26)
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Thus, the convergence speed of the rectangular rule is higher than that of the Monte
Carlo integration because RN [g] ∼ O(N−2).

It can be observed from (A.25) that the measurement samples can be viewed as
a ramp signal. This is an interesting aspect of the rectangular rule for the proposed
method.

A.2.3 Theoretical error analysis

In this subsection, we analyze the following total reconstruction error:

E2
tot = E

[∣∣∣f(x)− f̂(x)
∣∣∣2] , (A.27)

where f̂(x) is the reconstructed nonlinearity defined as

f̂(x) = b̂1ψ1(x) + b̂3ψ3(x) + · · ·+ b̂PψP (x). (A.28)

Furthermore, the nonlinear function f(x) can be expanded to an infinite series as

f(x) = b1ψ1(x) + b3ψ3(x) + · · · =
∞∑

p=1,3,···
bpψp(x). (A.29)

Thus, the total error can be rewritten as

E2
tot = E


∣∣∣∣∣∣

P∑
p=1,3,···

(bp − b̂p)ψp(x) +
∞∑

p=P+2,P+4,···
bpψp(x)

∣∣∣∣∣∣
2


(a)=
P∑

p=1,3,···
E
[∣∣∣bp − b̂p∣∣∣2]︸ ︷︷ ︸

Estimation error: E2
est

+
∞∑

p=P+2,P+4,···
|bp|2︸ ︷︷ ︸

Approximation error: E2
app

. (A.30)

The transform of (a)= is due to the orthonormality of (A.7). The proposed method
has two errors: the estimation error E2

est and the approximation error E2
app. The

approximation error is the error caused by approximating the series expansion of
f(x) in finite dimensions. The conventional method also has this error due to the
approximation of (A.6). The approximation error can be written as [10, eq. (3.2.7),
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section 3.2, p. 217]

E2
app = E

[
|f(x)|2

]
−

P∑
p=1,3,···

∣∣∣E [f(x)ψ∗p(x)
]∣∣∣2 . (A.31)

In (A.31), the approximation error monotonically decreases as the order P increases.
This error has the same value in both the proposed and conventional methods if the
order P is the same.

In contrast, the estimation error E2
est leads to a performance variation between

the proposed and conventional methods. When the Gram matrix converges to the
identity matrix sufficiently, the estimated coefficient b̂p can be written as

b̂2i−1 =
(
ΨHWy

)
i

=
N∑
n=1

f(xn)ψ∗2i−1(xn)wn +
N∑
n=1

znψ
∗
2i−1(xn)wn. (A.32)

Thus, the estimation error E2
est can be rewritten as

E2
est =

P∑
p=1,3,···

∣∣∣∣∣
N∑
n=1

f(xn)ψ∗p(xn)wn − bp
∣∣∣∣∣
2

+
P∑

p=1,3,···
E

∣∣∣∣∣
N∑
n=1

znψ
∗
p(xn)wn

∣∣∣∣∣
2 . (A.33)

In the right-hand side of (A.33), the first term indicates the square of the quadrature
error, and the second term indicates the error caused by the noise. The square of
the quadrature error is

(
RN [f(r)ψ∗p(r)]

)2
, and the error rapidly decays at a rate

of O(N−4), even for the rectangular rule. In addition, the noise error can be
rewritten as

P∑
p=1,3,···

E

∣∣∣∣∣
N∑
n=1

znψ
∗
2i−1(xn)wn

∣∣∣∣∣
2 = σ2

z

P∑
p=1,3,···

N∑
n=1
|ψp(xn)wn|2 . (A.34)

Equation (A.34) shows that the effect of noise depends on the values of the
measurement samples and weights determined by the numerical integration method
employed, and the sum of their squares is an indicator of the influence of noise.
When the rectangular rule is used for the proposed method, the summation of the
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right-hand side of (A.34) with a large N can be asymptotically expressed as

N∑
n=1
|ψp(xn)wn|2 ≈

5
N

∫ ∞
0

{
ψp(xn) · 2re−r2}2

dr ∼ O(N−1). (A.35)

The noise error decays at a rate of O(N−1), and the quadrature error is negligibly
small compared with the noise error.

To summarize this section, we can estimate the error of the proposed method as

E2
tot ≈ E2

app + σ2
z

P∑
p=1,3,···

N∑
n=1
|ψp(xn)wn|2 . (A.36)

The first term is a constant for the number of measurements N , and the second term
decays at a rate of O(N−1). Thus, the convergence rate of the proposed method
is the same as that of the conventional Monte-Carlo-based least squares method
whose rate of square error is O(N−1). This is because the conventional method
is exactly same as the proposed method with randomly generated samples xn and
weights wn = 1/N . However, the rate is a characteristic of N →∞, and we compare
the characteristics of each method from a small to a large number N in numerical
experiments in the following section.

A.3 Results of Numerical Experiments

In this section, we evaluate and compare the condition number and total
reconstruction error, which is defined as (A.27), for the proposed and conventional
methods using 104 times Monte Carlo simulation. In the simulation, we use the
Rapp model [11] as an amplifier, and its transfer function can be written as

f(x) = x(
1 + (|x|/B)2s

) 1
2s

, (A.37)

where B indicates the input back-off (IBO), and s is the smoothness factor.
Furthermore, we use B =

√
10 (i.e., 10 dB IBO) and s = 3.

Figure A.1 shows the condition number of the Gram matrix of each method. As
mentioned in the Introduction, the condition number of the conventional method
is much larger than that of the proposed method because it is based on the Monte
Carlo integration. The proposed method successfully reduces the condition number
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Figure A.1: Condition number of the Gram matrix of each method when P = 7.
The value is averaged over 104 times independent Monte Carlo simulation.

because of its high accuracy of numerical integration. This indicates that the
proposed method can achieve better stability than the conventional least squares
method.

Figures A.2, A.3, A.4, and A.5 show the simulation results and theoretical results
of the total reconstruction error for each method, with P = 7 and P = 13, from a
very noisy case to an almost noise-free case for a wide range of applications such
as pre-distortion, post-distortion, and self-interference cancellers. The error of the
proposed method is much smaller than that of the conventional method, as the
proposed method has good stability and better accuracy of integration. Surprisingly,
even when only 10 measurements are used, the proposed method maintained the
reconstruction error below the noise. In contrast, in Fig. A.2, the error of the
conventional method is smaller than that of the proposed method when N > 104.
Therefore, the conventional method is more effective than the proposed method
when a sufficient number of samples are used under low signal-to-noise ratio (SNR).
In addition, the theoretical and simulation results are consistent with each other in
these figures. Thus, the analysis in this chapter is useful for the error estimation of
the proposed method. Moreover, if the error is to be reduced further, a numerical
integration method that reduces the value of (A.34) needs to be used.
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Figure A.2: Total reconstruction error E2
tot of each method with P = 7 and σ2

z = 101.
The lines indicate theoretical results, and the markers indicate simulation results.
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Figure A.3: Total reconstruction error E2
tot of each method with P = 13 and σ2

z =
10−1. The lines indicate theoretical results, and the markers indicate simulation
results.
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Figure A.4: Total reconstruction error E2
tot of each method with P = 7 and σ2

z =
10−4. The lines indicate theoretical results, and the markers indicate simulation
results.

A.4 Conclusion

In this appendix, the author proposed a novel estimation method for the memoryless
nonlinearity of an amplifier. The method uses weighted least squares with
orthonormal polynomials and numerical integration. The measurement signal and
weights of the proposed method were designed based on the numerical integration
method to converge the Gram matrix to the unit matrix with high accuracy, even
with a small number of observations. Moreover, we derived the theoretical error
of the proposed method. The simulation results showed that the proposed method
dramatically improved the accuracy of the conventional least squares method and
achieved sufficient accuracy with 10 measurement samples. The theoretical results
and simulation results were consistent with each other.
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