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Abstract

Public interest in food quality and production has increased in recent decades. This increase is probably

related to the changes in eating habits, consumer behavior, and the development and increased industrial-

ization of the food supply chains. The demand for high quality and safety in food production calls for high

standards for quality and process control, which requires sensitive and rapid analytical tools to investigate

the food. An excitation-emission matrix (EEM), also known as fluorescence fingerprint, has been widely ap-

plied for the nondestructive measurement of the physical and chemical properties of objects. Determination

of the food quality using fluorescence measurements have been achieved with high accuracy in many previ-

ous studies. However, adopting fluorescence as a technique for determining the quality and authenticating

food products is still limited due to the high cost involved. This thesis presents the novel imaging method

using fluorescence and presents universal band-pass filters made suitable for their introduction in the food

industry.

First, a novel fluorescence imaging method was developed by combining the excitation-emission matrix

(EEM) and imaging techniques to visualize the spatial-temporal changes of K-value and IMP. The result

showed that the distribution of K-value-value and IMP content could be visualized with an accuracy of

R2 = 0.78 and R2 = 0.83, respectively. Furthermore, this innovative approach was applied to differentiate

burnt meat, which is a type of abnormal meat found in many types of fish, and it was found that burnt meat

could be detected even when in a frozen condition.

Next, the versatile band-pass filters for fluorescence imaging of food product for quality assessment was

defined by simulation. The results showed that the proposed band-pass filters are able to reduce the number

of variables in the prediction model, thereby reducing the measurement time and filter cost while having

similar or practical accuracies in most of the cases such as estimating aflatoxin contamination in nutmeg,

inosine 5’-monophosphate (IMP) of frozen fish and geographical origin of mangos compared to the methods

reported previously.

As a conclusion, this thesis proposed a novel method to apply fluorescence as a food quality assessment.

The proposed fluorescence imaging method and versatile band-pass filters offer a more practical way of

adopting fluorescence as a technique for determining the quality and authenticating food products instead of

using point measurements or searching the target-dependent excitation-emission wavelength combinations.
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Chapter 1 Introduction

Chapter 1

Introduction

In recent decades, public interest in food quality and production has increased. This increase is probably re-

lated to the changes in eating habits, consumer behavior, and the development and increased industrialization

of the food supply chains. The demand for high quality and safety in food production calls for high standards

for quality and process control, which requires sensitive and rapid analytical tools to investigate the food [1].

In order to solve this problem, optical methods are currently attracting attention. Optical methods utilize

absorption and radiation caused by the interaction of light such as ultraviolet, visible, and infrared light with

the object [2], and can be used for analysis without any pretreatment (such as using chemicals, deforming or

damaging the object), thus enabling fast inspection.

An excitation-emission matrix (EEM), also known as fluorescence fingerprint [3], is a set of fluorescence

spectra acquired at consecutive excitation wavelengths to create a three-dimensional diagram. The EEM has

been widely applied for nondestructive measurement of physical and chemical properties of objects [4–7].

In food products quality assessment, EEM is able to determine several properties (functional, composition,

nutritional, and origin) of animal (for example dairy, meat, fish, and egg) and vegetable (oils, cereal, sugar,

fruit, and vegetable) products as well as the identification of bacteria of agro-alimentary interest without

the use of chemical reagents [8]. The determination of a chemical property or the classification of the

geographical origin of food can be carried out with high accuracy using EEM. In recent years, numerous EEM

related methods and applications have been published. However, the corresponding actual innovations are

still not significant in the food industry. This is because adopting fluorescence as a technique for determining

the quality and authenticating food products in the industry is still limited.

This thesis presents the novel imaging method using fluorescence and presents universal band-pass filters

made suitable for their introduction in the food industry. Chapter 3 presents a novel fluorescence imaging
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Chapter 1 Introduction

method was developed by combining the excitation-emission matrix (EEM) and imaging techniques. This

approach based on expanding the point estimation of EEM to the image, where each point in EEM corre-

sponds to one image measured under a specific excitation-emission wavelength. An optimization method

also proposed to reduce the dimensions of the EEM by selecting the most efficient excitation wavelength,

which allows visualizing the target using only one excitation light. The proposed fluorescence imaging

method was applied to visualize the spatial-temporal changes of the freshness indices (K-value) and taste

component (IMP) content in frozen fish. Furthermore, this innovative approach was applied to differentiate

burnt meat, which is a type of abnormal meat found in many types of fish. Chapter 4 presents the versatile

band-pass filters for fluorescence imaging of food product for quality assessment was defined by simulation.

In the first phase, 70 compounds related to food nutrition, freshness, and umami components were selected

as samples for fluorescence spectra (EEM) measurement. From the obtained EEM, a synthetic EEM dataset

was generated. Parallel factor analysis (PARAFAC) was applied to the generated synthetic EEM dataset in

order to define the excitation-emission wavelength of the band-pass filters. In the second phase, the practi-

cality of the proposed band-pass filters was verified by employing them to solve a real problem. Finally, the

outcomes of this thesis were summarized in Chapter 5 as the conclution.
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Chapter 2

Excitation-emission matrix and
fluorescence imaging

2.1 Light and spectrum

Light is a collection of electromagnetic waves of various wavelengths. Light of different wavelengths appears

as different colors to the human eye. Humans can only perceive light of visible wavelengths (380 to 780 nm)

as colors, which is a very narrow range of electromagnetic waves. Electromagnetic waves are classified into

radio waves, infrared, light (visible light), ultraviolet, X-rays, gamma rays, and cosmic rays according to

their wavelengths, and each has its own characteristics (Fig. 2.2.1). The order of those wavelengths is called

the spectrum.

2.2 Spectroscopy

Spectroscopy is the study of identifying and quantifying the components of the substance by examining the

spectrum of light emitted, absorbed, or reflected from substance. When a substance is illuminated by light,

the energy state of the atoms that make up the substance shifts from a low energy state (ground state) to a

high energy state (excited state), where absorption occurs. The electrons in atoms are excited in different

orbitals in high energy light such as UV and visible light, while they are excited in the same orbitals in low

energy light such as infrared light.

3



Chapter 2 Excitation-emission matrix and fluorescence imaging

Fig. 2.2.1: Wavelengths of electromagnetic waves and light.

In both cases, when the energy input is cut off, a reverse transition from the excited state to the ground state

occurs, and light is emitted according to the energy absorbed in this process. The frequencies of the absorbed

and emitted light are very selective with respect to the type and structure of atoms and molecules, and thus

the absorption and emission spectra can be used for the identification and quantification of materials. The

advantages of spectroscopy are as follows [2]．

• Since no chemicals are used, the analysis costs are low and there is no risk of environmental contam-

ination by chemicals

• No preprocessing is required, allows rapid analysis

• The same sample can be measured repeatedly

• No special skill is required for analysis

• Short analysis time and suitable for quality monitoring

• Allows multiple items of information to be obtained simultaneously, making it possible to measure

overall quality characteristics
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2.3 Fluorescence spectroscopy

Fluorescence is a phenomenon in which a substance, when irradiated (excited) by light of a certain wave-

length, absorbs this light and emits light of a longer wavelength [9]．Fluorescence spectroscopy is a method

of taking out only the fluorescence from a sample excited by illumination and observing it [9]. There are

two type of fluorescence spectrocopy: autofluorescence method, which uses the inherent fluorescence of the

specimen; and secondary fluorescence method, which stains the specimen with a fluorescent dye. Since the

fluorescence intensity is very weak compared to the excitation light, the excitation light must be completely

cut off during observation. For this reason, an excitation filter that selects the excitation wavelength is placed

in the illumination side and an absorption filter that transmits only the fluorescence is placed in the observa-

tion side. Fluorescence spectroscopy is characterized by its high sensitivity in principle compared to other

absorption-based spectroscopy.

2.3.1 Excitation-emission matrix (EEM)

An excitation-emission matrix (EEM), also known as fluorescence fingerprint, is a set of fluorescence spectra

acquired at consecutive excitation wavelengths to create a three-dimensional diagram [3]. EEM is widely

used in biological sciences due to its high sensitivity and specificity.

Food contains a wide range of fluorescent compounds which are important for nutritive, compositional,

and technological quality. Therefore, food usually has complex chemical properties which in most cases

include several intrinsic fluorophores and other phenomena that influence the targeted fluorescence signal.

EEM has been widely applied to handle the complex fluorescence properties of food, due to the features

described abrove. For example in meat [10–12], fish [13–16], egg [17, 18], fruit and vegetable [19–23],

edible oils [24–27], beer [28–32]. Even though many methods have been proposed in previous studies and

have achieved high accuracy, challenges still exist regarding the implementation of this technology at the

food industry level. Firstly, most of the previous studies are point measurements, which can not measure the

whole and multiple samples at the same time. This means that it is not suitable for food product measurement,

which has a large distribution volume. Secondly, different wavelengths are chosen for different estimation

targets in the calibration stage. Therefore, different band-pass filters are needed for different estimation

targets, making it a costly technique and not practical use.
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Chapter 3

Visualize the quality of frozen fish

3.1 Introduction

Freshness is regarded as one of the vital parameters for the quality assessment of fish and fish products.

With the increasing globalization of the sale of fish products, the demand for frozen marine products, such as

tuna, mackerel, cod, salmon etc., is increasing day by day. Therefore, the quality monitoring of frozen marine

products has become essential in the fishery industry, and efficient and effective quality assurance is becoming

increasingly important. Improved methods for determining freshness and quality are sought by processors,

consumers, and regulatory officials [33]. Nowadays, attention is focused on developing rapid, reliable and

non-destructive techniques at moderate costs for monitoring seafood quality and freshness to verify that

it is safe for human consumption. A number of sensory and instrument methods have been proposed to

evaluate the state of fish freshness [34,35]. Sensory methods require trained personnel and is somewhat time

consuming, and therefore are considered costly and not always practical for large-scale commercial purposes.

As chemical and biochemical methods for the evaluation of freshness eliminate personal opinions in quality

scoring based on organoleptic changes occurring as fish storage time is extended, they are, accordingly,

considered more reliable and accurate than sensory methods.

In the chemical methods, concentrations of adenosine 5’-triphosphate (ATP) and its breakdown

products, which are adenosine 5’-diphosphate (ADP), adenosine 5’-monophosphate (AMP), inosine

5’-monophosphate (IMP), inosine (HxR), and hypoxanthine (Hx), respectively, are used as indices of

freshness quality in a wide variety of fish [36–41]. The ratio among all or some of these nucleotide

breakdown compounds are commonly used as indicators of freshness quality. The IMP content increases

after decomposition of ATP and decreases after maintaining for a certain period of time and is well known
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as a component strongly related to the "umami taste" of fish [42]. K-value, which is defined as the ratio

of non-phosphorylated ATP metabolites to the total ATP breakdown products, was suggested in 1958 by a

Japanese research group as an objective index of fish freshness [43].

Traditional methods using either sensory or instrumental evaluation, can provide reliable information about

fish quality, however, these methods are destructive, expensive, time-consuming, and require highly skilled

personnel. Note that, once fresh and un-fresh fish are frozen, they generally look the same and it would be

rather difficult to differentiate them with the naked eye. Moreover, we must consider the influence of thawing

when frozen fish is evaluated. The only way to discover the difference between fresh and un-fresh states

either optically or destructively is by using conventional chemical analyses on frozen fish. In fish quality

assessment, EEM has been applied to estimate freshness indices (such as K-value) and ATP content in frozen

fish with high precision [14–16]. However, this approach is a point measurement which can only estimate

quality at one point, and the freshness condition of other parts of fish body could not be tracked. Therefore,

the previous methods are not practical for large-scale commercial purposes such as that of mackerel, which

involves a vast number of fish and whose freshness declines quickly, or a big fish such as tuna, where the

progress of freshness change varies for individual fish, lots, and parts.

In this study, we focus on a novel fluorescence imaging method, in which EEM is combined with imaging

techniques, to visualize the distribution of fish quality such as K-value and IMP content. This approach

based on expanding the point estimation of EEM to image, where each point in EEM corresponds to one

image measured under a specific excitation-emission wavelength. We also propose an optimization method

to reducing the dimensions of the EEM by selecting the most efficient excitation wavelength, which allow us

to visualize both K-value and IMP content using only one excitation light. Firstly, we prepared fish samples

with different freshness conditions, then measured the fluorescence spectra (EEM) and the fish quality (K-

value and IMP content) of the samples. By using the measured EEM data to estimate K-value and IMP

content, the most efficient excitation wavelength was selected for visualization. After that, we measured

fluorescence images under the most efficient excitation wavelength and then built the visualization model

from the measured fluorescence images.

In experiment 2, the obtained visualization model was applied to solve the on-site problem. In previous

studies, it has been reported that the quality of fish depends on the killing procedures. In general, fishes in

the market are caught with fishing nets and some of them likely die while struggling in them. The result

of a violent struggle during capture makes muscle soften faster and could not be eaten raw in the struggled

samples compared to instantly killed samples [44]. This problem, which known as "burnt meat" or, in
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Chapter 3 Visualize the quality of frozen fish

Japanese, as "yake niku", is a type of abnormal meat that occurs in many types of fish such as tuna, amberjack,

mackerel etc. Instead of being translucent, firm and possessing a delicate flavor, burnt meat is pale, exudes

a clear fluid, and has a soft texture and slightly sour taste [45]. However, burnt fish and instantly killed fish

generally look the same when frozen and is somewhat difficult to differentiate them using the naked eye. In

experiment 2, the visualization model obtained in experiment 1 was applied to identify burnt fish samples.

9
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3.2 Material and methods

3.2.1 Experiment 1

Fish samples

The first group of alive spotted mackerel (Scomber australasicus) with an average weight of 341±72.3 g and

length of 29.9±1.9 cm was harvested from a fish cage (Kamaishi City, Iwate Prefecture, Japan). Twenty

four fresh fish were immediately killed by neck breaking, put in slurry ice for blood removal as well as to

minimize the changes of the freshness condition and were then transferred to the laboratory. All fish samples

were beheaded, gutted, had their tail cut and then vacuum packed. Three samples were filleted, vacuum

packed and immediately frozen, while the rest were stored in iced water in a low temperature room at 1 ◦C

for 3.5 h, 1, 2, 3, 5, 7, 9 days to simulate the different freshness conditions, then filleted, vacuum packed

and frozen by air blast freezer at −60 ◦C. There were eight different freshness conditions and three spotted

mackerel were used for each condition, yielding 24 fillets of the left-side and 24 fillets of the right-side. The

left-side fillets were used to measure EEM and ATP-related compounds, and the right-side fillets were used

to measure fluorescence image.

Fluorescence spectra (EEM) measurement

The fluorescence spectra of the frozen fillets were measured by using a fluorescence spectrophotometer

F-7000 (Hitachi High-Tech Science Corporation). In this experiment, the left-side fillets were used and

placed inside the portable freezer with dry ice to maintain the temperature of samples and environment

below −30 ◦C. EEM data at two points (A, B) as shown in Fig. 3.2.1 were measured using an external

Y-type fiber optic probe. At each point, EEM was obtained by measuring the emission intensity in 10 nm

intervals between 250∼800 nm while scanning the excitation wavelengths from 250∼800 nm in 10 nm steps.

The slit width was set at 20 nm for both excitation and emission and scan speed was set at 30 000 nm/min.

The photomultiplier voltage (PMT voltage) was adjusted to 350 V throughout the entire experiment.

10
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Fig. 3.2.1: EEM measurement environment and measured points at each fillet sample using fiber probe.

Chemical analysis

Fig. 3.2.2 shown the chemical analysis procedure. After obtaining the fluorescence spectra of all frozen fillet

samples, the cylindrical subsamples were cut from the EEM acquired positions of the frozen fillet (3.2.1)

for the analysis of ATP-related compounds. The muscle extraction was performed according to Ehira and

Uchiyama, 1986 [46]. The dissecting of subsamples was accomplished inside a cold room (4.5 ◦C), and the

frozen fillets and cutting tools were kept cool using dry ice. The solution was frozen and stored at −60 ◦C

until the HPLC analysis.

A rotary saw was used for the sub-sampling and then the skin and red muscles were removed before crush-

ing the excised muscle using a knife, chisel and hammer. The dissecting of subsamples was accomplished

inside a cold room (4.5 ◦C), and the frozen fillets and cutting tools were kept cool using dry ice. The crushed

frozen muscle, which weighed around 5 g, was soaked in 15 ml of 10 % perchloric acid (Wako Pure Chemi-

cal Industries Ltd., Japan) solution immediately, then homogenized using a rotary homogenizer (Model PT

10-35 GT; Kinematica AG, Lucerne, Switzerland). The whole homogenate was centrifuged (Suprema 21;

Tomy Seiko Co. Ltd., Japan) at 2 000×g for 3 min at 4 ◦C. Subsequently, the supernatant was collected and

5 % perchloric acid was added to the precipitate, and then mixed and centrifuged again three times. Then,

the pH adjustment (6.4) was performed using potassium hydroxide. Lastly, the supernatant was diluted with
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ion exchange water in a 50 mL volumetric flask, and then the solution was frozen and stored at −60 ◦C until

the HPLC analysis.

Fig. 3.2.2: Procedure of chemical analysis.

According to Maeda et al. [47], ATP, ADP, AMP, IMP, HxR and Hx in the muscle extracts of frozen fillets

were determined using a high-performance liquid chromatography (HPLC) system. Firstly, the supernatants

containing muscle extract were thawed at 4 ◦C and the solutions were passed through a 0.45 μm syringe

membrane filter. Next, a solution of 5 μl was injected into the HPLC (LC-10 series; Shimadzu Corp.).

For separation of the individual compounds, a stainless-steel column (15 cm× 4.6 mm internal diameter,

Shodex C18M4D; Showa Denko K.K., Japan) was used. A buffer of pH 6.8 of 0.13 M triethylamine, 0.20 M

acetonitrile, and 0.13 M phosphoric acid (Kokusan Chemical Co., Ltd., Japan) was used as the mobile phase

with a flow rate of 0.8 ml/min, at 35 ◦C. The UV adsorption of the eluent was monitored at 260 nm. The

known concentrations of the ATP, ADP, AMP (Oriental Yeast Co. Ltd., Japan), IMP, HxR (Junsei Chemical

Co. Ltd., Japan), and Hx (Wako Pure Chemical Inds. Ltd., Japan) standards were injected for calibration

of the chromatographic peaks of these compounds. After acquiring the data of all ATP-related compounds

from HPLC, the K-value was calculated according to Saito et al. [43] by the following equation:

K − value(%) =
HxR + Hx

AT P + ADP + AMP + IMP + HxR + Hx
× 100 (3.1)
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Fluorescence image measurement

Figure 3.2.3 shows the experimental setup for measuring fluorescence images. In this experiment, the right-

side fillets were used for the image measurement. Each frozen fillet sample was placed in the middle of

a styrofoam box with dry ice inside to minimize temperature changes of the samples. The temperature

inside the styrofoam box was kept under −50 ◦C. The samples were illuminated by an excitation at 340 nm,

which is the most efficient excitation wavelength for freshness prediction of spotted mackerel in a frozen

condition (described at 3.3.1), using MAX-303 light source (ASAHI SPECTRA). The fluorescence emitted

from the sample was filtered through a band-pass filter to obtain a fluorescence image at a specific emission

wavelength. The emission wavelength was controlled by changing the band-pass filter at the filter system.

The BU-56DUV CCD camera (Bitran) was used for measuring the fluorescence image at every 10 nm from

380 to 630 nm. The 2×2 binning [48] was used in the measurement with the exposure time set to 1 500 ms

for each image. A total of 26 images were measured in each sample. The measured fluorescence images

contained dark noise [49, 50] which was corrected by subtracting a dark image acquired by closing the

camera shutter and covering the lens with a lens cap so that no light could enter through the lens. The uneven

distribution of illuminant was corrected by using images of a spectralon diffuse reflectance target (Labsphere)

measured under the same illuminant.
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Fig. 3.2.3: Experiment setup for measuring fluorescence images of the frozen fillet samples.

Camera output with excitation and emission filters

In fluorescence fingerprint imaging, the excitation wavelength and emission wavelength are controlled by

attaching the band-pass filters to both the light source side (excitation) and the camera side (emission). This

section describes a model that represents the camera output when using the narrow band-pass filters. The

filter used in the imaging process is assumed to be an ideal band-pass filter, where the transmittance other

than the wavelength to be transmitted (single wavelength) is zero. Firstly, the spectrum of illuminant I′(λex)

is limited by the excitation filter and is given by:

I′(λex) = I(λex) · Fex(λex) (3.2)

Fex(λex)

> 0 λex = λi

= 0 λex , λi

where，λex is the excitation wavelength, λi is the transmission wavelength of the excitation filter，I(λex) is

the spectrum of the illuminant before transmitting the excitation filter, Fex(λex) is the transmittance of the

excitation filter at λex. Then, the spectrum of the object S (λem) illumiated by I′(λex) can be described as

14
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follows:

S (λem) = I′(λex) · {R(λex, λem) + E(λex, λem)
}

(3.3)

I′(λex) =

I(λex) · Fex(λex) λex = λi

0 λex , λi

R(λex, λem) =

R(λex) λex = λem

0 λex , λem

where, λem is the emission wavelength, R(λex, λem) is the reflectance rate, E(λex, λem) is the fluorescence

quantum yield. The fluorescence quantum yield is the number of photons at the emission wavelength relative

to the number of photons absorbed by the sample at the excitation wavelength and indicates the conver-

sion efficiency between excitation light and emission light (fluorescence). Since the reflected light is much

stronger than the fluorescence, λem is adjusted to be larger than λex during the measurement. Therefore,

S (λem) can be transformed as follow:

S (λem) = I′(λex) · E(λex, λem) (3.4)

From these equations the output of camera with the excitation and emission filters O(λex,em) is given as

follows:

O(λem) = S (λem) · Fem(λem) ·C(λem) (3.5)

Fem(λem)

> 0 λem = λ
′
i

= 0 λem , λ′i

where, λ′i is the transmission wavelength of the emission filter, Fem(λem) is the transmittance of the emission

filter, and C(λem) is the camera sensitivity. Therefore, from (3.4) and (3.5), the camera output O(λex,em)

through the excitation and emission filters can be transformed as follow:

O(λex,em) = I(λex) · Fex(λex) · E(λex, λem) · Fem(λem) ·C(λem) (3.6)

In (3.6), E(λex, λem) represents the fluorescence properties of the sample. While I(λex) · Fex(λex) depends on

the equipment properties on the excitation side and Fem(λem) · C(λem) depends on the equipment properties

on the excitation side.
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Excitation and emission calibration

In order to measure the device-independence fluorescence image, excitation calibration and emission cali-

bration are required. This part shows the method for excitation calibration and emission calibration.

For excitation calibration, the spectral distribution of the random illuminant with excitation filter I′ was

measured using a spectralon diffuse reflectance target (Labsphere) and a spectroradiometer SR-3AR (TOP-

CON). The spectral distribution obtained by the spectroradiometer can be given as (3.2). The excitation

calibration function can be obtained as follows:

Nex(λex) =
1

I(λex) · Fex(λex)
(3.7)

For emission calibration, the spectral distribution of the random illuminant L was measured using a spec-

tralon diffuse reflectance target (Labsphere), a spectroradiometer SR-3AR (TOPCON) and BU-56DUV CCD

camera (Bitran). The spectral distribution obtained by the spectroradiometer S sd(λ) is given by (3.8). The

spectral distribution obtained by the camera S c(λem) is affected by the transmittance of the fluorescence filter

Fem(λem), and the sensitivity of the camera C(λem), resulting in (3.9).

S sd(λem) = I(λem) (3.8)
S c(λem) = I(λem) · Fem(λem) ·C(λem) (3.9)

From (3.8) and (3.9), the calibration function for the filter transmittance and camera sensitivity N(λem) can

be obtained as follows:
Nem(λem) =

S sd(λem)
S c(λem)

=
1

Fem(λem) ·C(λem)
(3.10)

In this study, the excitation side is illuminated by a single-wavelength light source with a narrow band-pass

filter. Therefore, the camera outputs are only affected by the transmittance of the fluorescence filter Fem(λem)

and the camera sensitivity C(λem). Thus, only emission calibration was applied.
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3.2.2 Experiment 2

Fish samples

In Experiment 2, two groups of spotted mackerel samples harvested from the same fish cage (Kamaishi

City, Iwate Prefecture, Japan) were prepared. For the first group, normal meat was prepared using the same

procedure (neck breaking) as in Experiment 1. For the second group, fish samples were killed by struggle in

air for 30 min to create the burn meat. All fish samples were stored in iced water at 0 ◦C for 2, 4, 24, 40 h

to stimulate the different freshness conditions, then filleted, vacuum packed and frozen by air blast freezer

at −60 ◦C. There were three neck break fish samples and two struggle fish sampless for each condition. The

average weight of samples was 349.7±84.9 g and the length of samples was 32.6±2.1 cm

Fluorescence image measurement

The fluorescence images of each samples were measured and calibrated with the same condition as in experi-

ment 1. The samples were illuminated by an excitation at 340 nm. The fluorescence emitted from the sample

was filtered through a band-pass filter to obtain a fluorescence image at every 10 nm from 380 to 630 nm.
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3.3 Results and discussion

3.3.1 Experiment 1

EEM preprocessing and analysis for predicting the fish freshness

Figure 3.3.1(a) shows the EEM spectra obtained from the fish fillet measurement. The EEM was formed

by recording fluorescence intensities at an emission wavelength range of 250∼800 nm under the same exci-

tation wavelength range of 250∼800 nm. The raw data of EEM includes some parts that do not contain a

fluorescence property. There is hypothetically no emission below the excitation based on Stokes’ shift [51].

Besides, owing to light scattering effects such as the Raman and Rayleigh effects, a typical scattering prob-

lem normally exists in any excitation-emission matrix [52, 53]. Scattering signals and those areas whose

emission wavelengths are shorter than the excitation wavelengths do not carry relevant chemical information

and should be entirely excluded from the EEM before commencing the building of the calibration models.

The preprocessed EEM spectra masked only the fluorescence area after removing those irrelevant areas is

shown in Fig. 3.3.1(b).
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Fig. 3.3.1: EEM preprocessing to remove areas that contains emission wavelengths shorter than the exci-

tation wavelengths and scattering effect. (a) Raw EEM data obtained from measurement. (b)

Result of EEM preprocessing.
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After EEM preprocessing (i.e. removed irrelative area), the data size of each EEM was reduced to 1 054

from 3 136 variables (each variable corresponds to one excitation-emission wavelength combination of orig-

inal spectra). The reduced EEM data (1 054 variables) was used to predict the measured K-value and IMP

content by a partial least squares (PLS) regression model. The PLS model was built under a leave-one-out

cross-validation that used one sample as the validation and the remaining samples as the training set. The

prediction accuracy is compared quantitatively using the coefficient of determination (R2), standard error

of prediction (SEP) and latent variable (LV). The PLS models revealed that EEM could be used to predict

K-value and IMP content with high accuracy (R2 = 0.86 and R2 = 0.84, respectively. This is very similar to

the result of ElMasry et al. [15], which used all fluorescence intensity at 1 054 variables to predict K-value,

with a prediction accuracy of R2 = 0.86.

Selecting the most efficient excitation wavelength

In the PLS prediction models, we used all fluorescence intensity at 1 054 variables on each EEM as predictors,

where each variable corresponds to one excitation-emission wavelength combination. Accordingly, when

expanding this prediction model to the image, it is necessary to measure a fluorescence image at 1 054

excitation-emission wavelength combinations for each target, which mean 1 054 images. Therefore, in order

to visualize the frozen fish quality expressed as K-value and IMP content more competently, reducing the

high dimensionality of EEM data is required.
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Fig. 3.3.2: Prediction of K-value and IMP content in frozen fish at each excitation wavelength. (a), (b)

Repeated PLS regression modeling using all emission wavelengths in the range under each

excitation wavelength. (c) Average of (a) and (b).
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In this study, the dimension of EEM was reduced by performing repeated PLS regression modeling using

all emission wavelengths in the range under each excitation wavelength to identify the most effective exci-

tation wavelength. The results of wavelength selection for K-value and IMP content were shown in Figs.

3.3.2(a) and 3.3.2(b), respectively and average of them in Fig. 3.3.2(c). The prediction accuracy differs for

each excitation wavelength and freshness index (K-value and IMP content). In the graph of average accu-

racy, at the excitation wavelength range of 300∼350 nm, the prediction of these freshness indices is lower

than those of all 1 054 variables though accuracy is still high (R2 is more than 0.79). The highest prediction

accuracy is at an excitation wavelength of 310 nm (R2 = 0.83) and the next highest prediction accuracy is at

an excitation wavelength of 340 nm (R2 = 0.80).

Due to the limitations of the equipment used in the experiment, there is no spectroradiometer that can

measure whole emission wavelength (350∼570 nm) under an excitation wavelength of 310 nm. For this

reason, 340 nm was chosen as the most efficient excitation wavelength instead of 310 nm to visualize fish

freshness. Note that, the prediction accuracy under 340 nm is almost equivalent to 310 nm.

Emission calibration and illuminant unevenness calibration

Figure 3.3.3 shows the example of illuminant unevenness calibration. Figure 3.3.4 shows the calibration

function for emission filters and BU-56DUV CCD camera (Bitran), which was used for measuring fluores-

cence images. In order to get the device-indepenent fluorescence images, illuminant unevenness calibration

and emission calibration function was used to calibrate the fluorescence images obtained from measurement.

(b)(a) (c)

Fig. 3.3.3: Illuminant unevenness calibration. (a) Measured fluorescence image. (b) Illuminant distribu-

tion. (c) Calibrated fluorescence image.
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Fig. 3.3.4: Calibration function for emission filters and BU-56DUV CCD camera (Bitran).

Visualization of the quality of frozen fish

In samples preparation (see Section 3.2.1), the fish samples were filleted after being stored in a refrigerator

for a specific period, just before being vacuum packed and frozen in a freezer. Thus, in this study, we

assumed that the freshness (K-value and IMP content) of the left-side fillets are the same as the freshness of

the right-side fillets at the corresponding point.

In order to visualize the frozen fish freshness expressed by K-value and IMP content, we need to build

a prediction model from the measured fluorescence images. The areas corresponded to the fluorescence

measurement and the chemical analysis (Fig. 3.2.1) were used for analysis. For each fluorescence image,

those areas were masked and the pixels value inside the mask was averaged. There were 26 fluorescence

images, yielding 26 variables obtained for each point. In this study, we have 24 fish samples and two points

were measured for EEM for each fish sample, consequently 26 variables at 48 points were obtained. Those

26 variables were used for predicting the K-value and IMP content at corresponding points by PLS regression

model. The PLS model was built utilizing leave-one-out cross-validation which used data at one point as the

validation and the remaining points as the training set. The prediction accuracy is evaluated by using the

coefficient of determination (R2) and standard error of prediction (SEP).
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Fig. 3.3.5: Prediction of K-value (a) and IMP content (b) by PLS regression models using all 26 fluores-

cence images.

Fig. 3.3.5 shows the result of predicting K-value and IMP content (measured in the left-side fillets) at EEM

measurement points (Fig. 3.2.1) by using fluorescence images. The prediction accuracy of the PLS models

from the measured fluorescence images were R2 = 0.78 for K-value and R2 = 0.82 for IMP content. These are

lower than those prediction models using all 1 054 variables of EEM (R2 = 0.86 for K-value and R2 = 0.84 for

IMP content). However, the aim of the visualization is to make visible the spatial-temporal freshness changes

of a whole sample with acceptable accuracy. Thus, the prediction accuracy of these PLS models (R2 = 0.78

for K-value and R2 = 0.82 for IMP content) is high enough and are acceptable for the visualization.

From the obtained prediction models, the distributions of K-value and IMP content can be estimated

by combining the parameters of the prediction models with fluorescence image at corresponding emission

wavelength to obtain the freshness distribution image as follows:

yn = β380xn 380 + β390xn 390 + · · · + β630xn 630 + β0 (3.11)

where n is the sample number, β is the parameters of the prediction model, x is the fluorescence image of

sample n at specific emission wavelength measured at Section 3.2.1. The result of the visualization of the

distributions of K-value and IMP content are shown in Fig. 3.3.6 and Fig. 3.3.7. There were three samples

for each storage time condition. The samples in Fig. 3.3.6 are same as samples in Fig. 3.3.7, which are result
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of visualize K-value and IMP content, respectively. As a result, K-value increased in accordance with ice

storage time. On the other hand, IMP content rapidly increased for the storage period from 0 to 1 day, and

then gradually decreased from 2 to 9 days.
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Fig. 3.3.6: Visualization of the spatial-temporal changes of K-value in frozen fish fillets.
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Fig. 3.3.7: Visualization of the spatial-temporal changes of IMP content in frozen fish fillets.
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The measured K-value and IMP content obtained from chemical analysis are shown in Figs. 3.3.8(a) and

Fig. 3.3.8(c), respectively. As a result, K-value increased linearly with storage time. On the other hand,

IMP content increased dramatically from 0 % to 90 % for the samples from 0 to 1 day, and then gradually

decreased for the samples from 2 to 9 days. From the visualization result obtained in Fig. 3.3.6 and Fig.

3.3.7, the average of estimated K-value and IMP content in each of the fish samples were calculated. The

estimated K-value and IMP content are shown in Figs. 3.3.8(b) and 3.3.8(d), respectively. As expected,

the changes of K-value and IMP content obtained from chemical analysis and estimated from fluorescence

images showed the same trend and as same as the previous studies [43, 54, 55], ATP inside the muscle is

decomposed rapidly. After the decomposition of ATP, ADP and AMP are also decomposed quickly and

advance to IMP in a stroke, occur instantaneous accumulation of IMP. Furthermore, IMP thus formed is

slowly converted to HxR and then to Hx, which means the slowly increasing of K-value. The comparison of

measured and estimated K-value and IMP content obtained from chemical analysis at three parts (back, belly,

tail) are shown in Fig. 3.3.9. The change in both K-value and IMP content differ for each part of the fish.

The back part and tail part, which were used for chemical analysis, showed the highest K-value compared to

other parts. Therefore, the average of estimated K-value and IMP content change is slightly smoother than

the measured value, which was point measurement.

This result suggested that the purposed method could accurately visualize the distribution of both K-value

and IMP content using only one excitation light and be practical for large-scale commercial purposes with a

vast number of fish or large fish such as tuna.

26



Chapter 3 Visualize the quality of frozen fish

(a)

Storage time [day]

M
e

a
s
u

re
d

 K
-v

a
lu

e
 [

%
]

(d)

E
s
ti
m

a
te

d
 I

M
P

 c
o

n
te

n
t 

[%
]

Storage time [day]

(b)

M
e

a
s
u

re
d

 I
M

P
 c

o
n

te
n

t 
[%

]

Storage time [day]

(c)

E
s
ti
m

a
te

d
 K

-v
a

lu
e

 [
%

]

Storage time [day]

Fig. 3.3.8: Comparison of measured and estimated values of K-values and IMP content. (a) (c) The mea-

sured K-value, IMP content obtained from chemical analysis. (b) (d) The estimated K-value,

IMP content calculated by averaging the distribution images obtained in Fig. 3.3.6 and Fig.

3.3.7, respectively.
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Fig. 3.3.9: Comparison of measured and estimated K-values and IMP content at different parts. (a) (c)

The measured K-value, IMP content at three parts (back, belly, tail) obtained from chemical

analysis. (b) (d) The estimated K-value, IMP content at three parts (back, belly, tail) calculated

by averaging the distribution images obtained in Fig. 3.3.6 and Fig. 3.3.7, respectively.
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3.3.2 Experiment 2

Figure 3.3.10 and Figure 3.3.11 shows the K-value distributions of the neck break sample and struggle

sample, respectively. As expected, the changing of K-value in the struggle samples is different compared to

the neck break samples (instantly killed). Concretely, the K-value of the struggle samples is much higher

for meat around the backbone compared to the neck break samples. In general, while the fish is struggling,

muscles around the backbone move more intensely. For this reason, meat around the backbone tends to be

burnt meat and the K-value is considered to be increased faster [56].

Storage time [hour]

2 24 404

K-value

Fig. 3.3.10: Visualization of the K-value distributions of the struggle samples by applying the visualization

models obtained in experiment 1.
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Fig. 3.3.11: Visualization of the K-value distributions of the struggle samples by applying the visualization

models obtained in experiment 1.
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Fig. 3.3.12: (a) Comparison of K-value of the neck break samples in experiment 1 and the struggle samples

in experiment 2. Vertical axis is average of K-value in area around backbone, while horizontal

axis is average of K-value of remaining area. (b) Zoom in on the samples have almost the same

K-value.
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Figure 3.3.12(a) shows the average of K-value in area around the backbone and remaining area. As a

result, from the average K-value of the area around the backbone and the average K-value of the remaining

area, Fig. 3.3.12(b) shows the zoom in on the neck break samples and the struggle samples, which have

almost the same K-value. As expected, the neck break samples and the struggle samples can be divided into

two groups. It is suggested that burnt meat could be detected even in frozen condition by visualizing the

distributions of K-value. As the freshness condition of frozen fish meat cannot be tracked without thawing

the sample, this visualization method could be a promising tool to solve the problem.
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Chapter 4

Versatile band-pass filters for fluorescence
imaging

4.1 Introduction

In order to estimate the chemical properties of the target, the previous studies fixing the excitation at a specific

wavelength [17, 18, 57], or using specific excitation-emission combinations [13, 23, 58], or using the ratio of

fluorescence intensity at two specific excitation-emission combinations [59, 60] instead of using the whole

data of EEM. Furthermore, hyperspectral imaging was applied under multiple excitation-emission combi-

nations in order to visualize the distribution of target property instead of the point estimation [61, 62]. The

determination of a chemical property or the classification of geographical origin of food can be carried out

with high accuracy using EEM. However, adopting fluorescence as a technique for determining the quality

and authenticating food products is still limited, as different wavelengths are chosen for different estima-

tion targets in the calibration stage. Therefore, different band-pass filters are needed for different estimation

targets, making it a costly technique. This study proposes the versatile band-pass filters for fluorescence

imaging of the food product for quality assessment, which is expected to estimate or classify different targets

by using one system. For example, the versatile band-pass filters can be applied to the fruit and vegetable

sorting system, where required to sort different kinds of fruits and vegetables.

The study is conducted in two phases. In the first phase, we selected 70 compounds related to food

nutrition, freshness, and umami components as samples for fluorescence spectra (EEM) measurement. From

the obtained EEM, we generated a synthetic EEM dataset for analysis. Parallel factor analysis (PARAFAC)

was applied to the generated synthetic EEM dataset in order to define the exaction-emission wavelength of
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the band-pass filters. In the second phase, the practicality of the proposed band-pass filters was verified by

employing them to solve a real problem.
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4.2 Material and methods

4.2.1 Defining new excitation-emission band-pass filters

Sample selection

Molecular structure and chemical environment affect whether or not a substance fluoresces. Generally, the

molecules that fluoresce have conjugated systems, which have alternating single and multiple bonds. The

food we eat contains many substances; however, not all of them have the conjugated system and emit fluo-

rescence.

In this study, compounds related to food nutrition (e.g., vitamins and essential amino acids), freshness,

and umami components were selected as samples for fluorescence spectral measurement. Furthermore,

compounds reported in previous studies, such as chlorophyll and ferulic acid, were also selected for the

experiments [19, 20, 63]. Moreover, a list of the top 100 compounds in food was compiled from FooDB ver-

sion 1.0, the world’s largest and most comprehensive resource on food constituents, chemistry, and biology

(www.foodb.ca). Then only compounds with a conjugated system were selected as experiment samples

since they have capability to produce fluorescence. In total, 72 compounds were selected as samples for

fluorescence spectral measurement. All reagents used in the experiments were of special grade or higher (see

Table A.1 - A.3).

Fluorescence spectral measurement (EEM)

For EEM measurement, Milli-Q water, phosphate buffer, ethanol, and acetonitrile were used as solvents. The

reagents were dissolved in solvents at concentrations of 0.1, 1, 10, and 100 ppm (1 ppm = 1 mg/L). Then, 300

μL of each dissolved sample was placed into the SQ grade quartz micro cuvette (GL Sciences FM20-SQ-3).

EEM was measured using a fluorescence spectrophotometer (F-7000, Hitachi High-Tech Science Corpo-

ration) with a right-angle geometry. The cuvette was placed in the spectrophotometer with the shorter path

length side facing the excitation light source. The excitation wavelength was changed at 5 mm intervals in the

range 200∼800 nm, and the emission wavelength was detected at 2 mm intervals in the range 200∼800 nm.

The slit width on both sides was 5 nm. The photomultiplier voltage was adjusted between 400 and 900 V

with a scanning speed of 30 000 nm/min. The solution concentrations and the photomultiplier voltage were
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adjusted to acquire an EEM with the lowest signal-to-noise ratio.

EEM preprocessing and generation of the synthetic EEM data

The raw EEM data includes some non-fluorescence components. There is hypothetically no emission below

the excitation wavelength based on Stokes’ shift. Further, owing to light scattering effects such as Raman and

Rayleigh scattering, a wavelength region where fluorescence and scattered light are superimposed typically

exists in any EEM [52,53]. Therefore, the scattering signals and areas with emission wavelengths are shorter

than the excitation wavelengths do not carry relevant chemical information and were excluded from the EEM.

Based on the detected fluorescence, standard reagents were selected. The EEM for the standard reagents

contains the fluorescence spectra of the corresponding compounds. However, food contains a large variety of

compounds with overlapping fluorescence spectra. For this reason, in this study, the EEMs for the standard

reagents were used to generate synthetic EEM data, which were the random weighted sum of EEMs for the

standard reagents with a uniform distribution, and with the sum of the weights normalized to 1. In total,

1 000 synthetic EEM spectra were generated.

Parallel factor analysis

The obtained EEM data is three-way data (excitation, emission, and samples), which provides a large amount

of information. Parallel factor analysis (PARAFAC) is a multivariate analysis method originating from psy-

chometrics [64,65]. In contrast to conventional methods such as principal component analysis (PCA), which

deals with two-way array data (variable and sample axes), PARAFAC is a method for separating components

from multi-way data. In EEM data analysis, PARAFAC separates overlapping fluorescence spectra into in-

dividual spectra corresponding to component chemicals in the sample. The results of PARAFAC are a set of

scores and loadings, which is the same as for PCA. However, in contrast to PCA, PARAFAC yields two sets

of loadings, which are emission loadings and excitation loadings.

A major practical obstacle for using the PARAFAC model is the need to determine the appropriate number

of components. The number of components in the PARAFAC model can be obtained from the core consis-

tency diagnostic, which evaluates the ’appropriateness’ of the model [66]. The core consistency is always

less than or equal to 100 % and may also be negative. A core consistency close to 100 % implies an appro-

priate model. If a dataset is modeled using PARAFAC with an increasing number of components, the core

consistency will typically decrease more or less monotonically and gradually, and then will decrease abruptly
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beyond a certain number of components [66].

In practice, for real-world non-ideal datasets, the core consistency is not always a reliable diagnostic for

finding the required number of PARAFAC components [67]. Harshman proposed a method called split-half

analysis to confirm that a PARAFAC model is appropriate [68]. The split-half analysis examines different

subsets of the data independently, and the same result (same loadings) will be obtained in the non-split modes

from models of any suitable subset of the data if the correct number of components is chosen. If too few or

too many components are chosen, the model parameters will differ if the model is fitted to different datasets.

In this study, PARAFAC and split-half analysis were applied to extract the principle components from the

generated EEM dataset. Core consistency and similarity of split-half analysis were used as indicators for

determining the appropriate number of components. Savitzky-Golay smoothing [69] along with emission

wavelength axis and data normalization, in which the fluorescence intensity at each wavelength is divided by

the summed d value of the intensities at all wavelengths (i.e., normalized to have the same multivariate vector

length), were applied before the analysis. The PLS_Toolbox v8.8.1 (Eigenvector Inc. Wenatchee, WA, USA)

was used for PARAFAC and split-half analysis. Subsequently, the excitation-emission band-pass filters were

determined from the principle component loadings.
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4.2.2 Verifying the practicality of the proposed band-pass filters

Three EEM datasets related to food from previous studies are used for verification [21, 22, 62]. A summary

of the parameters for these datasets is shown in Table 4.2.1. The PLS_Toolbox v8.8.1 was used for the

analysis. The analysis methods and calibration vs. validation ratio were the same or as similar as possible

to those in previous studies [21, 22, 62]. The 4-filter and 7-filter datasets were calculated by summing the

fluorescence intensities of the corresponding wavelength ranges in the original EEM data. Accordingly, four

and seven variables corresponding to 4-filter and 7-filter datasets were obtained. Subsequently, four types

of preprocessing methods (mean center, autoscale, normalize + mean center, normalize + autoscale) were

applied to the filter data, and the one with the best result was selected as the optimum preprocessing method.

Table 4.2.1: Details of datasets from previous studies: Nutmeg, Frozen fish, and Mango.

Dataset Nutmeg [21] Frozen fish [62] Mango [22]

Ex 250∼700 nm, 10 nm step 250∼800 nm, 10 nm step 200∼870 nm, 10 nm step

Em 260∼720 nm, 10 nm step 250∼800 nm, 10 nm step 230∼900 nm, 10 nm step

Sample calibration 61, validation 30 48 544

Target aflatoxin contamination K-value, IMP geographic origin

Previous method PLS PLS canonical discriminant analysis

Applied method PLS PLS PLSDA
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4.3 Results and discussion

4.3.1 Defining new excitation-emission band-pass filters

EEM preprocessing and generation of synthetic EEM data

Of the 70 reagents tested, 41 reagents emitted fluorescence, and two of these (caffeic acid and pyridoxine)

emitted fluorescence in two different solvents (see Table A.1 - A.3). Therefore, 43 EEMs showing fluores-

cence were obtained. Fig. 4.3.1(a) shows the EEM spectra of adenosine 5’-triphosphate (ATP) obtained from

fluorescence spectral measurement. The preprocessed EEM spectra masked only the fluorescence area after

removing the irrelevant areas as shown in Fig. 4.3.1(b). Those reagents were selected as standard reagents,

and the preprocessed EEM spectra were used to generate a synthetic EEM dataset. In total, 1 000 synthetic

EEM spectra were generated by synthesizing 43 EEMs for standard reagents with random weights. One

representative generated EEM spectra is shown in Fig. 4.3.1(c).
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Fig. 4.3.1: EEM preprocessing to remove areas that contains emission wavelengths shorter than the exci-

tation wavelengths and scattering effect. (a) Raw EEM data obtained from measurement. (b)

EEM data after preprocessing. (c) Generated synthetic EEM.

PARAFAC

The result of applying PARAFAC on generated synthetic EEM dataset at different component numbers is

shown in Fig. 4.3.2(a). In this study, the split-half analysis was also applied to generated synthetic EEM

dataset at different component numbers. The result of five times split-half analysis is shown in Fig. 4.3.2(b).

In Fig. 4.3.2(a), for one to three number of components, the core consistency was close to 100 %. The core
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consistency decreased with increasing the number of components and became negative with a component

number of nine and above. This is because the influence of noise and other non-trilinear variation increases

with increasing the number of components [66]. In Fig. 4.3.2(b), at the number of components from one to

four the similarity of the results (loadings) from the split-half analysis were high. For component number

from five to seven, the similarity was high (more than 70 %) depending on the the splitted subsets.

Fig. 4.3.2: Core consistency of PARAFAC model (a), and similarity of five times split-half analysis (b) at

different component number.

In this study, PARAFAC and split-half analysis were applied to determine the appropriate number of

excitation-emission band-pass filters and not for separating components from generated synthetic EEM

dataset. Therefore, four to seven seven were selected as the appropriate number of excitation-emission

band-pass filters. PARAFAC at four to seven components were applied on generated synthetic EEM dataset.

At each loading obtained from PARAFAC, all possible combinations of excitation-emission wavelengths

within the preprocessed range (see Fig. 4.3.1(c)) were calculated. After that, the excitation-emission band is

defined as the one with the largest loading sum among them (purple rectangle of Fig 4.3.3 and Fig. 4.3.6).

The obtained loadings and defined excitation-emission bands at four components and seven components are

shown in Fig. 4.3.3, Fig. 4.3.6, and Table 4.3.1.
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Fig. 4.3.3: Loadings of four components PARAFAC and defined excitation-emission bands of 4-filter

(purple rectangle).
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Fig. 4.3.4: Loadings of five components PARAFAC and defined excitation-emission bands of 5-filter

(purple rectangle).
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Fig. 4.3.5: Loadings of six components PARAFAC and defined excitation-emission bands of 6-filter

(purple rectangle).
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Fig. 4.3.6: Loadings of seven components PARAFAC and defined excitation-emission bands of 7-filter

(purple rectangle).
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Table 4.3.1: Wavelength ranges of the defined band-pass filters.

No. 4-filter 5-filter 6-filter 7-filter
Ex [nm] Em [nm] Ex [nm] Em [nm] Ex [nm] Em [nm] Ex [nm] Em [nm]

1 265∼375 396∼504 270∼375 396∼514 260∼365 386∼494 220∼300 322∼414

2 215∼295 316∼404 215∼295 316∼404 210∼295 316∼394 300∼405 426∼574

3 320∼475 496∼614 320∼475 496∼614 305∼400 422∼584 260∼385 406∼494

4 380∼615 636∼734 380∼615 636∼734 325∼480 502∼624 295∼360 382∼564

5 200∼235 256∼374 200∼235 256∼374 330∼485 506∼634

6 380∼615 636∼734 200∼245 266∼374

7 380∼615 636∼734

The results show that defined 4, 5, 6, and 7-filter sets cover the same or similar wavelength range. Each

filter seems to represent common fluorescence peaks of several compounds. Filters 1, 2, 3, and 4 in the

4-filter set are the same or similar to filters 1, 2, 3, and 4 in the 5-filter set; and filters 3, 1, 5, and 7 in the

7-filter set. The first filter covers the fluorescence peaks for lycopene, NADH, NADPH, some vitamins (folic

acid, menadione, and phytonadione), isoflavones (daidzein and formononetin), chlorogenic acid, eicosapen-

taenoic acid, ferulic acid, sinapinic acid, vanillin, and α-carotene. The second filter mainly covers the fluo-

rescence peaks for ATP-related compounds (AMP, ADP, ATP, IMP, β-NAD+, and β-NADP+), amino acid

(tryptophan, tyrosine, and phenylalanine), phenols (tyrosol and pyrocatechol), some vitamins (α-tocopherol,

nicotinic acid, and pyridoxine), lignan (matairesinol and piroresinol), indole, and protocatechuic acid. The

third filter mainly covers the fluorescence peaks for some vitamins (retinol, retinol acetate, riboflavin, and

phytonadione). The last filter mainly covers the fluorescence peaks for some carotenoids (β-cryptoxanthin,

chlorophyll a, and chlorophyll b), and doconexent.

Filter 5 in the 5-filter set are the same or similar to filters 5 in the 6-filter set; and filters 6 in the 7-filter

set. This filter is close to filter 2 in the 4-filter set and therefore covers the fluorescence peaks for amino

acid (part of tryptophan, tyrosine, and phenylalanine), phenols (tyrosol and pyrocatechol), some vitamins (α-

tocopherol and part of pyridoxine), lignan (matairesinol and piroresinol), and indole. Filter 3 in the 6-filter

set are the same or similar to filters 2 in the 7-filter set. Those filters overlap parts of filters 1 and 3 in the

4-filter set and therefore cover the fluorescence peaks for the same compounds. In addition, filters 3 in the

6-filter set covers the fluorescence peaks for caffeic acid (ethanol and phosphate solvent). The remaining

filters in the 7-filter set is filter 4, which overlaps parts of filters 1 and 3 in the 4-filter set and therefore cover

the fluorescence peaks for the same compounds. Besides, filters 4 in the 7-filter set covers the fluorescence

peaks for caffeine.
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4.3.2 Verifying the practicality of the proposed band-pass filters

The results of applying the band-pass filters to datasets for previous studies [21, 22, 62] are shown in Table

4.3.2. In this study, the EEM for the reagents was measured at 5 nm intervals for excitation wavelengths and

2 nm intervals for emission wavelengths. The results showed that all the defined band-pass filter sets have

5 nm intervals for excitation wavelengths and 2 nm intervals for emission wavelengths. However, the EEM

datasets from previous studies were measured with 10 nm intervals [21, 22, 62]. Therefore, in this analysis,

the wavelength range for band-pass filter were rounded to the nearest and larger wavelength range to cover the

whole defined band-pass area. For example, filter 1 in the 4-filter for Ex= 265∼375 nm, Em= 396∼504 nm

was rounded to Ex= 260∼380 nm, Em= 390∼510 nm in the 10 nm interval dataset. "All EEM" means that

the entire EEM data after removing the scattering signals and non-fluorescence areas of the datasets [21, 22,

62] were used for analysis.

Table 4.3.2: Results of applying the defined band-pass filters to Nutmeg, Frozen fish and Mango dataset.

Dataset Nutmeg Frozen fish Mango
Target Aflatoxin contamination

R2

K-value

R2

IMP

R2

Geographic origin

Classification accuracy -%

Previous study
0.69 (all EEM*, 853)

0.78 (26) 0.82 (26) 92.30 (14)

All EEM* 0.91 (1 054) 0.87 (1 054) 91.92 (2 063)

4-filter (4) 0.69 0.30 0.78 70.69

5-filter (5) 0.68 0.31 0.78 83.11

6-filter (6) 0.68 0.69 0.80 83.12

7-filter (7) 0.71 0.56 0.84 82.20
* Analysis results using whole EEM data after removal of the scattering signals and non-fluorescence area.
** Numbers in ( ) along with R2 or classification accuracy indicate number of variables used.

For the nutmeg dataset, the coefficient of determination (R2) for predicting antitoxin contamination was

0.69 when using the 4-filter set, 0.68 when using the 5-filter set and 6-filter set, and 0.71 when using the

7-filter set, which are similar to the result obtained in the previous study (0.69) [21]. However, in the pre-

vious study, a whole EEM with 853 variables was used for prediction, and the number of variables was

significantly higher than for the band-pass filters with four to seven variables used in the present study.

According to the previous study [21], the variable importance in projection (VIP) value for the aflatoxin con-

centrations prediction model showed some peaks at Ex= 250, 320, 390, 460, and 520 nm, and Em= 420,
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420, 490, 720, and 640 nm, where Ex= 250 nm /Em= 420 nm reflects the fluorescence of aflatoxin and

Ex= 390 nm /Em= 490 nm reflects the fluorescence of kojic acid derivatives. These five excitation-emission

areas are all covered or are very close to the wavelength range of the 4-filter, 5-filter, 6-filter and 7-filter sets.

This explains why all types of filter showed similar performance as in the previous study [21].

For the frozen fish dataset, in predicting inosine 5’-monophosphate (IMP), the coefficient of determination

of prediction was 0.78 when using the 4-filter set and 5-filter set, and 0.84 when using the 7-filter set, which

is similar to the result of the previous study (0.82) [62]. In predicting the K-value, which is the freshness

index of fish, the coefficient of determination for the prediction was 0.30 when using the 4-filter set, 0.30

when using the 5-filter set, 0.69 when using the 6-filter set, and 0.56 when using the 7-filter set, which are

considerably worse than the results of the previous study (0.78) [62]. The K-value is calculated using the

concentrations of six compounds, that is, adenosine 5’-triphosphate (ATP), 5’-diphosphate (ADP), adenosine

5’-monophosphate (AMP), IMP, inosine (HxR), and hypoxanthine (Hx) [43], where only ATP, ADP, AMP,

and IMP emit fluorescence. In the previous study [62], the K-value was estimated by using the fluorescence

image obtained at Ex= 340 nm, Em= 380∼630 nm with a 10 nm interval. In the study by ElMasry et al. [14],

the K-value was estimated using 11 excitation-emission combinations (Ex= 480 nm; Em= 550, 590, 610,

670, 700, 710, 730, 750, and 770 nm). In the present study, the fluorescence peak areas for ATP, ADP, AMP,

and IMP were only covered by filters 1 and 2 in the 4-filter, 5-filter, and 6-filter sets; and filters 1 and 3 in

the 7-filter set, which might have restricted the resolution. Hence, the predicted K-values were less accurate

than those obtained in the previous study [62].

For the mango dataset, three localities in different geographical regions (Taiwan, Miyazaki, and Okinawa)

were used as classification targets. The classification accuracy was 70.69 % when using the 4-filter set,

83.11 % when using the 5-filter set, 83.12 % when using the 6-filter set, and 82.20 % when using the 7-filter

set. These accuracy values were less than those using the whole EEM (91.92 %) and the previous study

(92.30 %) [22], but this is a reasonable accuracy for such a small number of filters. There were 14 combi-

nations of excitation-emission wavelengths used for classification in the previous study, and the number of

variables is significantly larger than the defined band-pass filters. In the previous study [22], it was suggested

that the fluorescence information in the wavelength range of Ex= 260∼290 nm and Em= 340∼360 nm con-

tributed significantly to the determination of the geographic origin for mangoes. This wavelength range was

covered by filter 2 in the 4-filter, 5-filter, and 6-filter sets; and filter 1 in the 7-filter set, which suggests that

these filter sets worked with reasonable accuracy for a smaller number of variables.

In this study, however, the performance of the proposed band-pass filters was not tested using actual
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instruments, but only through simulations. This means that the camera sensitivity, filter transmittance, and

environmental noise were not considered. These results show that the proposed band-pass filters have similar

or practical accuracy to previously reported methods [21,22,62]. The prediction and classification accuracies

are higher for the 5 to 7-filter set than for 4-filter set. Moreover, the filters were able to reduce the number of

variables in the prediction model to seven variables or less, respectively, thereby reducing the measurement

time and filter cost compared to applying the same wavelength combinations as in previous studies [21, 22,

62] to the fluorescence imaging system. This suggests that the proposed filters could be used as versatile

filters for fluorescence imaging of food products for quality assessment. The experimental validation of the

performance is a subject for future work.
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Chapter 5

Conclusion

This thesis proposed a novel method to apply fluorescence as food quality assessment. This chapter summa-

rized the main finding from two studies.

5.1 Contributions

The first study developed a novel approach for evaluating frozen fish quality and freshness by combining

the fluorescence EEM with an imaging technique. Visualization was successfully performed to reveal the

spatial-temporal changes of frozen fish quality such as K-value and IMP content with accuracy of R2 = 0.78

and R2 = 0.82, respectively using only one excitation light. The results also showed that the changing trends

of both K-value and IMP content in fish differ between each part. Besides, this new method was applied

to differentiate burnt meat and suggested that burnt meat could be detected even in a frozen condition. The

proposed method offers a more practical way for large-scale commercial purposes. Further development will

be needed to visualize the distribution of fish quality from the skin side, which will be a more pragmatic

approach in actual use.

The second study proposed versatile band-pass filters for fluorescence imaging of the food product for

quality assessment. The practical accuracy was achieved in most of the cases even though the number of

auto-fluorescent compounds used in filter design was limited. Of course, if other auto-fluorescent com-

pounds, such as plant pigments, are added to the filter design, a highly accurate filter can be created. How-

ever, the number of fluorescent compounds is enormous, and it is not realistic to measure all the fluorescent

compounds. Thus, the top 100 compounds contained in food as listed by FooDB were tested. Therefore,

the proposed band-pass filters cover the majority range of compounds contained in food. In addition, the
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proposed band-pass filters were able to reduce the number of variables in the prediction model. In traditional

methods, different wavelengths are chosen for different estimation targets in the calibration stage, thus, dif-

ferent band-pass filters are needed for different estimation targets, making fluorescence imaging a costly

technique. If the same filters are employed for different targets, mass production and cost reductions, as have

been achieved for filters for RGB cameras, can be expected. Therefore, this approach offers a more practical

way of adopting fluorescence measurements for determining quality and authenticating food products than

using target-specific filters.

5.2 Limitations and future perspectives

5.2.1 Measure fluorescence image without using a darkroom

The proposed imaging system uses fluorescence images, which are required to measure inside a darkroom.

This is because the intensity of fluorescence is usually weak. Of course, there is a way to increase the fluores-

cence intensity of the target, for example, increasing the intensity of the excitation light by using a stronger

light source. In this thesis, two Xenon light sources were used for measurement (Fig. 3.2.3). However, the

intensity of fluorescence is still weaker than that of room light. As a future prospect, a technological devel-

opment that can measure fluorescent images under the room light is required. The image-based reflective and

fluorescent components separation method was proposed by Zhang et al. [70]. Although this is a separation

of simple fluorescence properties and the and the result is an RGB image, not the spectral information, based

on this study, the estimation of more complex fluorescence properties, such as those found in food, can be

expected.

5.2.2 Larger dataset, better versatility

In this thesis, the versatile band-pass filters were defined base on a synthetic EEM dataset, which is generated

from EEM of forty-one compounds. These compounds cover the majority range of fluorescent compounds

contained in food, however, there are a vast number of fluorescent compounds in nature. Of course, if more

auto-fluorescent compounds are added to the filter design, higher accuracy and higher versatile filters can be

defined. On-going and future studies of EEM in foods will provide larger dataset, and allow us to apply on

more extensive of food products and more complex estimation/classification tasks.
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5.2.3 Imaging system with proposed versatile band-pass filters

This thesis verified the practicality of the proposed versatile band-pass filters with the three datasets related

to food from the previous studies [21, 22, 62]. The ideal data that would be obtained by the proposed filters

are simulated and then the accuracy of estimation/classification are calculated. This means that the camera

sensitivity, filter transmittance, and actual experimental environment noise as described in Chapter 3, are not

considered. For this reason, it is needed to build and validate an imaging system with proposed versatile

band-pass filters.

5.2.4 Applications in other fields

This thesis presented the novel imaging method using fluorescence, and presented versatile band-pass filters

made suitable for their introduction in the food industry. The proposed imaging method can be widely used

not only for food, however the versatile band-pass filters are food-specific. By adding more fluorescent

compounds to the dataset or using new dataset related to other fields to re-defined the versatile band-pass

filters, the proposed method is expected to be able applied to fields other than food.
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Appendix A

Table A.1: List of compounds used in the experiment (1/3).

No. CAS No. Name Company Fluorescence Solvent
Concentration

(ppm)

Photomultiplier

(V)

1 10191-41-0 (±)-α-Tocopherol FUJIFILM Wako Pure Chemical Corporation yes ethanol 10 600

2 16178-48-6 ADP disodium salt Oriental Yeast Co., Ltd. yes phosphate 100 100

3 18422-05-4 AMP Oriental Yeast Co., Ltd. yes Mili-Q 100 900

4 520-36-5 Apigenin FUJIFILM Wako Pure Chemical Corporation none

5 51963-61-2 ATP disodium salt hydrate Oriental Yeast Co., Ltd. yes Mili-Q 100 800

6 58-85-5 Biotin Sigma-Aldrich none

7 331-39-5 Caffeic acid FUJIFILM Wako Pure Chemical Corporation
yes ethanol 100 800

yes phosphate 100 900

8 58-08-2 Caffeine FUJIFILM Wako Pure Chemical Corporation yes phosphate 100 900

9 327-97-9 Chlorogenic acid FUJIFILM Wako Pure Chemical Corporation yes ethanol 100 800

10 479-61-8 Chlorophyll a FUJIFILM Wako Pure Chemical Corporation yes ethanol 10 500

11 519-62-0 Chlorophyll b Sigma-Aldrich yes ethanol 10 600

12 67-97-0 Cholecalciferol FUJIFILM Wako Pure Chemical Corporation none

13 68-19-9 Cyanocobalamin Sigma-Aldrich none

14 486-66-8 Daidzein FUJIFILM Wako Pure Chemical Corporation yes phosphate 100 800

15 552-66-9 Daidzin FUJIFILM Wako Pure Chemical Corporation none

16 6893-26-1 D-Glutamic acid FUJIFILM Wako Pure Chemical Corporation none

17 6217-54-5 Doconexent Sigma-Aldrich yes ethanol 100 800

18 10417-94-4 Eicosapentaenoic acid Sigma-Aldrich yes ethanol 100 900

19 50-14-6 Ergocalciferol FUJIFILM Wako Pure Chemical Corporation none

20 1135-24-6 Ferulic acid FUJIFILM Wako Pure Chemical Corporation yes phosphate 100 800

21 59-30-3 Folic aid FUJIFILM Wako Pure Chemical Corporation yes phosphate 100 900

22 485-72-3 Formononetin Sigma-Aldrich yes ethanol 10 700

23 446-72-0 Genistein FUJIFILM Wako Pure Chemical Corporation none

24 529-59-9 Genistin Sigma-Aldrich none

25 617-65-2 Glutamic acid FUJIFILM Wako Pure Chemical Corporation none
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Table A.2: List of compounds used in the experiment (2/3).

No. CAS No. Name Company Fruorescence Solvent
Concentration

(ppm)

Photomultilier

(V)

26 85-32-5 Guanylic acid Combi-Blocks none

27 68-94-0 Hypoxanthine FUJIFILM Wako Pure Chemical Corporation none

28 131-99-7 IMP Junsei Chemical Co. Ltd. yes Mili-Q 100 900

29 120-72-9 Indole FUJIFILM Wako Pure Chemical Corporation yes phosphate 100 500

30 58-63-9 Inosine Junsei Chemical Co. Ltd. none

31 520-18-3 Kaempferol FUJIFILM Wako Pure Chemical Corporation none

32 50-81-7 L(+)-Ascorbic acid FUJIFILM Wako Pure Chemical Corporation none

33 61-90-5 Leucine FUJIFILM Wako Pure Chemical Corporation none

34 56-86-0 L-Glutamic acid FUJIFILM Wako Pure Chemical Corporation none

35 71-00-1 L-Histidine FUJIFILM Wako Pure Chemical Corporation none

36 73-32-5 L-Isoleucine FUJIFILM Wako Pure Chemical Corporation none

37 63-68-3 L-Methionine FUJIFILM Wako Pure Chemical Corporation none

38 147-85-3 L-Proline FUJIFILM Wako Pure Chemical Corporation none

39 73-22-3 L-Tryptophan FUJIFILM Wako Pure Chemical Corporation yes phosphate 10 600

40 491-70-3 Luteolin FUJIFILM Wako Pure Chemical Corporation none

41 502-65-8 Lycopene FUJIFILM Wako Pure Chemical Corporation yes acetonitrile 1 900

42 56-87-1 Lysine FUJIFILM Wako Pure Chemical Corporation none

43 580-72-3 Matairesinol Sigma-Aldrich yes ethanol 10 600

44 58-27-5 Menadione FUJIFILM Wako Pure Chemical Corporation yes ethanol 100 800

45 529-44-2 Myricetin FUJIFILM Wako Pure Chemical Corporation none

46 606-68-8 NADH Oriental Yeast Co., Ltd. yes phosphate 100 800

47 2646-71-1 NADPH Combi-Blocks yes phosphate 100 800

48 98-92-0 Niacinamide FUJIFILM Wako Pure Chemical Corporation none

49 59-67-6 Nicotinic acid FUJIFILM Wako Pure Chemical Corporation yes ethanol 100 900

50 63-91-2 Phenylalanine Peptide Institute, Inc. yes phosphate 100 800
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Table A.3: List of compounds used in the experiment (3/3).

No. CAS No. Name Company Fruorescence Solvent
Concentration

(ppm)

Photomultilier

(V)

51 84-80-0 Phytonadione FUJIFILM Wako Pure Chemical Corporation yes ethanol 100 900

52 487-36-5 Pinoresinol Sigma-Aldrich yes acetonitrile 10 500

53 99-50-3 Protocatechuic acid FUJIFILM Wako Pure Chemical Corporation yes ethanol 10 600

54 65-23-6 Pyridoxine Sigma-Aldrich
yes ethanol 10 600

yes phosphate 10 600

55 120-80-9 Pyrocatechol FUJIFILM Wako Pure Chemical Corporation yes phosphate 10 700

56 68-26-8 Retinol Sigma-Aldrich yes ethanol 10 800

57 127-47-9 Retinol acetate FUJIFILM Wako Pure Chemical Corporation yes ethanol 10 800

58 83-88-5 Riboflavine Sigma-Aldrich yes phosphate 100 600

59 530-59-6 Sinapinic acid Sigma-Aldrich yes phosphate 100 900

60 83-67-0 Theobromine FUJIFILM Wako Pure Chemical Corporation none

61 24539 Thiamine hydrochloride FUJIFILM Wako Pure Chemical Corporation none

62 72-19-5 Threonine FUJIFILM Wako Pure Chemical Corporation none

63 60-18-4 Tyrosine FUJIFILM Wako Pure Chemical Corporation yes phosphate 10 600

64 501-94-0 Tyrosol FUJIFILM Wako Pure Chemical Corporation yes phosphate 10 600

65 72-18-4 Valine FUJIFILM Wako Pure Chemical Corporation none

66 121-33-5 Vanillin FUJIFILM Wako Pure Chemical Corporation yes ethanol 100 900

67 137-08-6 Vitamin B5 FUJIFILM Wako Pure Chemical Corporation none

68 144-68-3 Zeaxanthin Sigma-Aldrich none

69 7488-99-5 α-Carotene FUJIFILM Wako Pure Chemical Corporation yes ethanol 10 900

70 472-70-8 β-Cryptoxanthin FUJIFILM Wako Pure Chemical Corporation yes acetonitrile 1 900

71 53-84-9 β-NAD+ Oriental Yeast Co., Ltd. yes Mili-Q 100 900

72 1184-16-3 β-NADP+ Oriental Yeast Co., Ltd. yes Mili-Q 100 900
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Fig. A.1: EEM of compounds emitted fluorescence (1/4).
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Fig. A.2: EEM of compounds emitted fluorescence (2/4).

A–5



Appendix A

Fig. A.3: EEM of compounds emitted fluorescence (3/4).
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Fig. A.4: EEM of compounds emitted fluorescence (4/4).
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