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Abstract

The ever-growing breakthroughs in science and technology perpetually pressurize the manufac-

turing industry to increase accuracy and production rates in processes. Such increases come at a

price, the price of an enlarging carbon footprint with limited reliable energy sources. Computer

numerical control (CNC) machine tools are typically used in the industry due to their accu-

racy and repetitive task execution speed. Due to the afore-mentioned production and energy

pressures, the objectives of improving accuracy, cycle time, and energy consumption are major

research drivers. Since these objectives are contradictory, Pareto optimization methods are

necessary to obtain optimal operating conditions.

There are typically three possible actions for achieving the aforenamed objectives: hardware

upgrades, internal software modi�cations, and trajectory optimizations. Hardware upgrades

are usually avoided since they are relatively expensive. Most commercial CNC machine tools'

internal software is inaccessible; hence trajectory optimization presents a feasible and cost-

e�ective action. With this rationale, trajectory optimization is the study �eld explored in this

thesis.

This thesis discusses several propositions for trajectory optimization in industrial feed drive

systems: Pareto optimization of energy and tolerance in motion trajectory generation (Chap-

ter 3), a trade-o� between energy saving and cycle time reduction by Pareto-optimal corner

smoothing (Chapter 4), and Pareto optimization of cycle time and motion accuracy (Chapter

5). Feed drive dynamics, energy modeling, trajectory pro�ling, a multi-objective optimization

problem (MOOP) formulation, and a Pareto frontier generation algorithm are described in the

preliminaries chapter (Chapter 2). The thesis is completed with a conclusion and future works

chapter (Chapter 6).



A method of generating piecewise linear trajectories with smoothed corners optimizing two

objectives: energy consumption and cornering tolerance for feed drive systems is proposed in

Chapter 3. An energy model of an industrial biaxial feed drive system is used to formulate

a bi-objective optimization problem (BOOP). The linear and smooth corner segments are

respectively described using jerk-limited acceleration pro�les (JLAPs) and kinematic corner

smoothing with interrupted accelerations (KCSIAs). The optimization problem is formulated

with the normalized normal constraints method, where sequential quadratic programming is

used to solve it. A divide and conquer algorithm is utilized to generate Pareto optimal solutions

recursively. The best trade-o� solution is obtained as the one that minimizes both objectives.

Optimization results for an industrial biaxial machine are illustrated, where the best trade-o�

solution achieves ∼64% of the energy-saving potential with a moderate cornering tolerance of

∼30µm.

Chapter 4 proposes a method of generating Pareto optimal corner smoothing trajectories that

trade-o� the contradicting objectives of minimizing cycle time and energy consumption. Several

studies have proposed corner smoothing methods that improve cycle time for piecewise linear

paths by exploiting axial limits to achieve time-optimal trajectories. Energy-saving is not

considered an objective in these methods. The trajectories along linear paths and smoothed

corners are respectively described using JLAP and kinematic corner smoothing (KCS) methods

(i.e., KCSIA and kinematic corner smoothing with uninterrupted acceleration (KCSUA)). An

energy consumption model of an industrial two-axis feed drive system is identi�ed by least

squares estimation (LSE) and used in solving the bi-objective optimization problem (BOOP).

A contrast and comparison are made between KCSIA, KCSUA, and point-to-point (PTP)

motion pro�les. The optimization results show that the KCSIA Pareto frontier is closest to the

utopia point, where it is experimentally vindicated that the best trade-o� trajectory achieves

∼66% and ∼60% of the time and energy-saving potentials, respectively. In terms of contouring

performance of best trade-o� trajectories, while KCSUA reduces the average error by ∼7%,

KCSIA decreases the maximum error by ∼19% relative to PTP.

A method of Pareto optimizing the con�icting objectives of reducing cycle time and increasing

cornering accuracy for piecewise linear contours is proposed in Chapter 5. It has been shown

in the literature that non-zero cornering velocities deteriorate contouring performance while

reducing cycle time. To resolve the set of con�icting objectives, the normalized normal con-

straint (NNC) formulation of the BOOP is described with cornering tolerances at each corner



described as inequality constraints. This method's e�ectiveness is investigated with linear and

smoothed corner segments, respectively, de�ned by JLAP and KCSIA. The optimized KCSIA

is referred to as KCSIA*, where its Pareto frontier shows that the original KCSIA produces a

dominated solution. Hence, KCSIA* solutions are superior compared to KCSIA. Experimental

results further emphasize this point by showing that the KCSIA* had a lower contouring error

than KCSIA, where the best trade-o� solution reduces the maximum and average contouring

errors by ∼29% and ∼12% while increasing cycle time by ∼3% compared to KCSIA.

Concluding remarks and tentative future works of this thesis are illustrated in Chapter 6. The

proposed methods can be extended to �ve-axis CNC machines by including tool orientation

tolerances at corners. In the case of machining operations, cutting forces increase the amount

of energy consumption. Hence, a cutting force model can be incorporated into the previously

used energy consumption model. The proposed methods can be generalized by considering

asymmetrical corner smoothing together with cornering transitions other than line-to-line ones.
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Chapter 1

Introduction

1.1 Motivation

The manufacturing industry is a key player in the global economy since it supplies products to

an ever-growing consumer base. Product miniaturization demands over the last 50 years have

lead to the evolution of manufacturing technology from man-operated to computer numerical

control (CNC) machine tools (Fig. 1.1) [15]. Currently, CNC machine tools are widely used

due to their speed, �exibility, accuracy and precision in production processes.

Fig. 1.2 shows a general block diagram of a CNCmachine tool. Product geometrical information

is converted to a reference trajectory (i.e., motion commands) using computer-aided design

(CAD)/computer-aided manufacturing (CAM) software and then stored in a machine control

unit. Via an in-built controller, the reference trajectory is tracked by a feed drive system. A

feed drive system typically consists of a rotary/linear servomotor that produces torque/force

for actuating motions along an axis.

Currently, there is a global concern in reducing energy consumption in the industrial sector [68].

The manufacturing industry, spearheaded by machine tools, is a major consumer of electrical

energy [5, 78, 107]. This has provoked a challenge of improving the quality and quantity of

products in adherence to environmental sustainability. This challenge is manifested as a set

1
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(a) Milling machine. http://www.datancnc.com/ (b) Lathe machine. https://www.americanmachinetools.
com/

Fig. 1.1: CNC machine tools

CAD/CAM
software trajectory

Reference
ControllerMemory

Sensors

geometry
Product

FDS

CNC machine tool

Machine control unit

Fig. 1.2: A block diagram of a typical CNC machine tool.

of feed drive system performance objectives: saving energy, cycle time reduction and motion

accuracy improvement.

Controller design strategies are proposed in the literature for energy-saving [26, 61] and im-

proving accuracy [13, 14, 94]. Such strategies are limited by the accessibility of control units

in in-service CNC machinery. Reference trajectory generation methods have been extensively

studied due to their applicability in in-service feed drive system. Energy-saving [35, 40, 65, 66],

cycle time minimizing [10, 29, 44, 57, 71] and accuracy improving [38, 49, 75] trajectory gen-

erators have been studied. The existing methods are unable to simultaneously address the

2
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objectives due to the contradictory nature of the aforementioned objectives [24, 30, 72, 85].

Thus, this thesis aims to develop trajectory generation approaches that provide Pareto-optimal

solutions for the feed drive system performance objectives.

1.2 Thesis contributions and outline

1.2.1 Contributions

The contradictory objectives of energy-saving, cycle time reduction and motion accuracy im-

provement are the main research drivers in the manufacturing industry. In the literature,

various researchers have proposed trajectory generation methods that only tackle one of these

objectives. In order to address these objective contradictions, Pareto optimization methods of

trajectory generation for industrial feed drive systems are contributed as follows:

� The focus of corner smoothing methods in the literature has been reducing cycle time

by maximizing cornering velocities under user-speci�ed tolerances. There is a gap in the

literature regarding corner smoothing under �xed cycle time conditions. A corner smooth-

ing method that provides a trade-o� between energy consumption and cornering error at

prede�ned cycle times is proposed in Chapter 3. This method has practical advantages

in two-fold over existing corner smoothing approaches: it can generate corner smoothed

trajectories at di�erent cycle times (i.e., optimal or otherwise) which is useful in supply

chain economic scheduling and it o�ers Pareto-optimal solutions of energy consumption

and cornering error at a selected cycle time.

� Several studies have proposed corner smoothing methods that improve cycle time for

piecewise linear paths without energy consumption considerations. Chapter 4 presents

a method of generating Pareto-optimal local corner smoothing trajectories that compro-

mise the contradicting objectives of minimizing cycle time and energy consumption. In

order to model the energy consumption of an industrial feed drive system, a least square

error-based model identi�cation is proposed and veri�ed. Optimization and experimental

results show that corner smoothing not only improves cycle time but also reduces energy

3
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consumption. The proposed corner smoothing method has a practical advantage over ex-

isting approaches in the fact that it can provide Pareto-optimal solutions to energy-saving

and cycle time reduction objectives.

� Existing corner smoothing approaches reduce cycle time, at the expense of motion accu-

racy, by maximizing cornering velocity. A Pareto-optimal local corner smoothing method

that compromises cycle time with motion accuracy at corners is proposed in Chapter 5. A

kinematic corner smoothing approach, from the literature, is modi�ed in order to achieve

Pareto-optimality. Results show that the time-optimal solution of the proposed method

has a shorter cycle time and higher motion accuracy than that of the kinematic corner

smoothing approach. The proposed method has a practical advantage over other existing

approaches since it o�ers trade-o� solutions to cycle time and motion accuracy objectives.

1.2.2 Outline

The section describes brief descriptions of the following chapters in this thesis:

� Chapter 2 introduces models, fundamental algorithms and methods used throughout this

research. Dynamics and energy consumption models of biaxial feed drive systems are

presented followed by a description of an industrial feed drive system experimental setup.

Jerk-limited acceleration pro�les (JLAPs) and corner smoothing methods reviews are

subsequently represented. Afterward, a review of multi-objective optimization methods

is described. Finally, the divide and conquer algorithm and global Pareto-optimal �lter

algorithms are presented.

� Chapter 3 proposes a method of generating �xed cycle time piece-wise linear trajecto-

ries with locally smoothed corners that optimizes two objectives: energy consumption

and cornering tolerance for feed drive systems. An energy model of an industrial bi-

axial feed drive system is used to formulate a bi-objective optimization problem (BOOP).

The linear and smooth corner segments are generated using JLAPs and kinematic corner

smoothing with interrupted acceleration (KCSIA), respectively. The optimization prob-

lem is described with normalized normal constraint (NNC), where sequential quadratic

programming (SQP) is used to solve it. The divide and conquer algorithm is utilized
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to recursively generate Pareto optimal solutions. Optimization results for an industrial

bi-axial feed drive system are illustrated, where the contradiction between energy-saving

and corner smoothing is validated and the best trade-o� solution selected as the one that

minimizes both objectives.

� Chapter 4 presents Pareto-optimal local corner smoothing trajectory generator to trade-

o� the contradicting objectives of minimizing cycle time and energy consumption. Piece-

wise linear contours are considered, where motions along linear segments and smoothed

corners are respectively described using JLAPs and kinematic corner smoothing (KCS)

approaches. A least squares estimation (LSE)-based energy consumption model identi�ca-

tion approach is demonstrated and used to model an industrial bi-axial feed drive system.

The resulting model used in solving the BOOP. From the resulting Pareto frontier, the

best trade-o� trajectory is selected as the one that minimizes both objectives. The pre-

sented method's e�ectiveness is vindicated via simulations and experiments, where the

best trade-o� trajectory maximizes the time and energy-saving potentials.

� Chapter 5 proposes a Pareto-optimal local corner smoothing method to trade-o� be-

tween cycle time and motion accuracy in trajectory planning for industrial feed drive

systems (FDSs). The objective of motion accuracy improvement is represented by a cor-

ner smoothing minimization criterion in the BOOP. Linear and cornering motions along

a contour are respectively described by JLAPs and a modi�ed KCSIA approach. A Pareto

frontier is generated by the divide and conquer algorithm with the best trade-o� solution

selected as the one closest to the utopia point. The e�ectiveness of the proposed method

is validated through simulations and experiments.

� Chapter 6 summarizes the key research �ndings discussed in this thesis. It also identi-

�es uncharted study avenues for improving the presented methods and guiding potential

future works.

The chapters are organized as illustrated in Fig. 1.3.
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Chapter 1

(Introduction)

Chapter 2

(Preliminaries & Literature Review)

Chapter 4 Chapter 5Chapter 3

Chapter 6

(Conclusion & Future Works)

Fig. 1.3: Thesis outline.
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Chapter 2

Preliminaries and Literature Review

2.1 Biaxial feed drive systems

2.1.1 System dynamics

Biaxial feed drive systems are commonly utilized for tracking planar motions in the manu-

facturing industry, where they appear in machineries such as water-jet cutting, wire electrical

discharge and laser cutting machines (Fig. 2.1). The dynamics of a conventional biaxial feed

drive system can be represented by the a second order decoupled model [12�14, 61, 67]

M tẍ(t) +Dtẋ(t) + F csgn(ẋ(t)) = f(t), (2.1)

with

M t = diag {mt,k} , Dt = diag {dt,k} , F c = diag {fc,k} , k = {1, 2},

where mt,k is the k
th axis inertia. fc,k and dt,k are the Coulomb and translational viscous fric-

tions, respectively. sgn {ẋ} ∈ R2 is a vector whose components are the signs of the respective

components of ẋ. f ∈ R2 and x ∈ R2 are the driving force and axial position vectors, respec-

tively. Assuming each axis is actuated by a servomotor via a ball screw, the following motor
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(a) Wire electrical discharge ma-
chine. http://www.jsedm.com/

(b) Water-jet cutting machine. https://www.
headwaterjet.net/

(c) Laser cutting machine. https://www.xtlaser.com/

Fig. 2.1: Biaxial feed drive system applications

dynamics

Hθ̈(t) +Drθ̇(t) + τ (t) = Kri(t), (2.2)

with

H = diag {hk} , Dr = diag {dr,k} , Kr = diag {kr,k}

are considered, where hk, dr,k and kr,k are the respective motor inertia, rotary viscous frictions

and torque constant for the kth axis. τ ∈ R2 and i ∈ R2 are the torque and current vectors,

respectively. For ball screws, rotary and translational motions are correlated by

f(t) = 2πΓ−1τ (t), x(t) =
1

2π
Γθ(t), (2.3)
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2.1. Biaxial feed drive systems

with Γ = diag {γk}, where γk is the ball screw lead. Hence, the overall dynamics of a biaxial

feed drive system are obtained by combining (2.1)�(2.3) to obtain

Mẍ(t) +Dẋ(t) + F csgn(ẋ(t)) = KFi(t), (2.4)

with

M = diag {mk} , D = diag {dk} , KF = diag {kF,k}

mk = mt,k +
4π2

γ2k
hk, dk = dt,k +

4π2

γ2k
dr,k kF,k =

2π

γk
kr,k.

2.1.2 Motion accuracy

Accuracy is a vital criterion in assessing a machine tools' performance. It is evaluated based

on error measurements that are acquired as the machine tool follows a reference contour. A

machine tool's motion accuracy is subdivided into positional and contouring accuracies which

are respectively evaluated by tracking and contouring error measurements [16, 43].

Tracking error refers to the di�erence between reference and actual positions along each feed

drive system axis. Contouring error is de�ned as the minimum distance between a reference

contour and an actual position [12, 60, 99]. Tracking and contouring errors are illustrated in

Fig. 2.2.

In a manufacturing process, product features are converted into reference contours by a CAD/

CAM framework. Since contouring errors show the deviation of a machine toolpath from a

reference contour, it is vital to monitor them in order to ensure the machine tool's motion is

within speci�ed accuracy tolerances [13, 14, 30]. In machining, product accuracy is generally

a�ected by workpiece �xation errors, tool wear and contouring errors [46]. Since reference

trajectory generation algorithms can only improve product accuracy by mitigating contouring

errors, proposed algorithms' performances are compared via contouring error measurements

in the literature [30, 42, 43, 84, 85, 97]. Thus, accuracy improvement performances of the

presented algorithms, in this thesis, are assessed using contouring error measurements.

9
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Reference position 
r (t )

Tracking error
e (t )=[e1,e2]T

Actual position 
x (t )

Reference contour

Actual contour

Contouring 
error

x1

x2

e1

e2

 

Fig. 2.2: A demonstration of tracking and contouring errors at time instant t.

2.1.3 Experimental system setup

In this thesis, biaxial feed drive systems are represented by an industrial biaxial table shown in

Fig. 2.3. Motion along each axis is actuated by computer controlled alternating current (AC)

rotary servomotors, where linear motion is acquired via ball screws. 76.29 nm resolution rotary

encoders sample table position at a 5 kHz rate. Table velocity is computed as a sampled position

numerical di�erence, where 20Hz and 60Hz low-pass �lters suppress noise e�ects for the x1 and

x2 axes, respectively. Via a graphical user interface (Fig. 2.4), reference trajectories are fed into

a desktop computer, having Intel (R) Core i7-3770K central processing unit (CPU), 3.50GHz,

8GB random access memory (RAM) and Ubuntu 15.04 64 bit operating system in a Xenomai

3.0 real-time framework, which receives encoder data and sends control signals to the AC rotary

servomotors. The experimental system follows a reference trajectory signal stream at a 5 kHz

rate and terminates an experiment when the stream ends. The total motion duration of the

reference trajectory is stored as the experiment's cycle time. Electric power is measured, at a

50ms data update interval, by a HIOKI 3390 power analyzer using the two wattmeter method

[1].
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Computer

Digital/Analog
converter
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counter

x2 axis
motor driver

x1 axis
motor driver

x2

x1

Ball screw
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AC servomotor

Encoder

Ball screw

x2 axis
linear guide

x1 axis
linear guide

Encoder pulse signal

Control signal

3-phase current

Ball screw

AC servomotor

Coupling

Ball screw

AC servomotor

Coupling

Table

Tablex2

x1

Fig. 2.3: The schematic illustration of the industrial biaxial table used for experimental
veri�cation.

In a similar manner to [59], the tracking error dynamics

e(t) = r(t)− x(t),

ë(t) = r̈(t) +M−1
{
u(t)−Dẋ(t)− F csgn {ẋ(t)}

} (2.5)

are described, where r(t) ∈ R2 and u(t) ∈ R2 are the reference trajectory and control input

vectors, respectively. A proportional-derivative (PD) tracking controller with Coulomb and

viscous friction compensation

u(t) = M̂
{
r̈(t) +KPe(t) +KDė(t)

}
+ D̂ẋ(t) + F̂ csgn {ẋ(t)}

i(t) = K−1
F u(t)

(2.6)
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Fig. 2.4: Industrial biaxial feed drive systems graphical user interface.

Table 2.1: Identi�ed plant parameters

kth axis m̂k Ns
2/m d̂k Ns/m f̂kN

1 86.72 558.62 47.50
2 99.65 795.50 58.00

is implemented. M̂ = diag {m̂k}, D̂ = diag
{
d̂k

}
and F̂ = diag

{
f̂k

}
correspond to the iden-

ti�ed nominal values of M , D and F c, respectively. KP = diag {kP,k} and KD = diag {kD,k}
are the proportional and derivative gain diagonal matrices. The controller in (2.6) is used as

the control law for conducting simulations and experiments with identi�ed plant parameters

(see Table 2.1), kP,k = 7225 s−2 and kD,k = 170 s−1 for ∀k.
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2.2. Energy consumption model

2.2 Energy consumption model

Similar to the method in [91, 92], energy consumed by a biaxial feed drive system can be

modeled. Without any loss in generality, it is assumed that the feed drive system is actuated

by AC servomotors. Hence, the electric power consumed by the biaxial feed drive system

P (t) =
√

3u(t)>Λi(t) (2.7)

is de�ned with Λ = diag{λk}, where λk is the motor power factor for each axis. u is the root

mean square (RMS) motor voltage vector calculated by

u(t) = Zi(t) +KEẋ(t), (2.8)

with

Z = diag {zk} , KE = diag {kE,k} ,

where Z and KE are the motor impedance and back electromotive force (EMF) constant

diagonal matrices, respectively. The combination of (2.4), (2.7) and (2.8) leads to an energy

consumption model

P (t) = ẍ(t)>C1ẍ(t) + ẋ(t)>C2ẋ(t) + ẋ(t)>C3sgn(ẋ(t)) + tr (C4) + ẍ(t)>C5sgn(ẋ(t))

+ ẍ(t)>C6ẋ(t),

E =

∫ tf

t0

P (t) dt,

(2.9)

with
Cj = diag {cj,k} , j = {1, 2, ..., 6},

c1,k =
√

3λkm
2
k

zk
k2F,k

, c2,k =
√

3λkdk

(
zkdk
k2F,k

+
kE,k
kF,k

)
,

c3,k =
√

3λkfk

(
2zkdk
k2F,k

+
kE,k
kF,k

)
, c4,k =

√
3λkf

2
k

zk
k2F,k

,

c5,k = 2
√

3λkfkmk
zk
k2F,k

, c6,k =
√

3λkmk

(
2zkdk
k2F,k

+
kE,k
kF,k

)
,

(2.10)
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where E is the energy consumed by the biaxial feed drive system during motion from time

instant t0 to tf . cj,k is the jth energy model coe�cient for the kth axis. tr (C4) denotes the

trace of matrix C4.

(2.9) can describe the energy consumption of the industrial biaxial table (Fig. 2.3) under a

no-load condition. The Coulomb friction acting along the feed drive system axes varies linearly

according to mass of a load on the table while viscous friction is independent of load mass

[58, 83]. In order to account for di�erent loading conditions, (2.4) can be generalized into

M ′ẍ(t) +D′ẋ(t) + F ′csgn(ẋ(t)) = KFi(t), (2.11)

with

M ′ = M +mloadIn(k), D′ = D, F ′c = F c

(
In(k) +mloadM

−1
t

)
,

M t = diag {mt,k} ,

where mload is the load mass on the table and In(k) is n(k)× n(k) identify matrix. n(k) is the

number of elements in set k. A load-dependent energy consumption model

P (t) = ẍ(t)>C ′1ẍ(t) + ẋ(t)>C ′2ẋ(t) + ẋ(t)>C ′3sgn(ẋ(t)) + tr (C ′4) + ẍ(t)>C ′5sgn(ẋ(t))

+ ẍ(t)>C ′6ẋ(t),

E =

∫ tf

t0

P (t) dt,

(2.12)

is derived by combining (2.11), (2.7) and (2.8), where

C ′1 = C1

(
In(k) +mloadM

−1)2 , C ′2 = C2,

C ′3 = C3

(
In(k) +mloadM

−1
t

)
, C ′4 = C4

(
In(k) +mloadM

−1
t

)2
,

C ′5 = C5

(
In(k) +mloadM

−1
t

) (
In(k) +mloadM

−1) , C ′6 = C6

(
In(k) +mloadM

−1) .
(2.13)
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Fig. 2.5: An exemplary description of JLAPs.

2.3 Jerk-limited acceleration pro�les

JLAPs are C2 continuous motion pro�les that connect two points by providing acceleration,

constant velocity and deceleration phases while obeying boundary conditions and restrictions

on jerk, acceleration and velocity [6, 27, 66, 84]. An illustration of JLAP is shown in Fig.

2.5. The pro�le consists three transitions: an acceleration transition from t0 to t3,a, a constant

velocity transition from t3,a to tcon and a deceleration transition from tcon to tl. A JLAP jerk
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pro�le

...
r k(t) =



jmax,k, t0,l ≤ t < t1,a,

0, t1,a ≤ t < t2,a,

−jmax,k, t2,a ≤ t < t3,a,

0, t3,a ≤ t < tcon

−jmax,k, tcon ≤ t < t1,d,

0, t1,d ≤ t < t2,d,

jmax,k, t2,d ≤ t < tl

(2.14)

is de�ned, where jmax,k is the kth axial jerk limit. By successive integration of (2.14), the

acceleration and velocity pro�les can be obtained. The time intervals

T1,a = t1,a − t0,

T2,a = t2,a − t1,a,

T3,a = t3,a − t2,a,

Tcon = tcon − t3,a,

T1,d = t1,d − tcon,

T2,d = t2,d − t1,d,

T3,d = tl − t2,d

(2.15)

determine respectively the acceleration, deceleration and velocity maxima

aacc,k = as,k + jmax,kT1,a,

adec,k = −jmax,kT1,d,

vcon,k = vs,k + as,k (T1,a + T2,a + T3,a) +
1

2
jmax,k

(
T 2
1,a − T 2

3,a

)
+ jmax,kT1,a (T2,a + T3,a) ,

(2.16)

and terminal acceleration and velocity

ae,k = adec,k + jmax,kT3,d,

ve,k = vcon,k −
1

2
jmax,k

(
T 2
1,d − T 2

3,d

)
− jmax,kT1,d (T2,d + T3,d) ,

(2.17)

where as,k and vs,k are k
th axis starting acceleration and velocity, respectively.
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Corner point
Original path
Global corner smoothing
Local corner smoothing

Fig. 2.6: A demonstration of the di�erence between global and local corner smoothing meth-
ods.

2.4 Corner smoothing methods

In the manufacturing industry, product geometry is described as a series of corner points inter-

connected by linear and arc segments (i.e., C0 continuous contours) using CAD/CAM systems.

Motions along such segments require feed drive system to stop at each corner point. In order

to reduce cycle time in manufacturing the product, corner smoothing methods have been pro-

posed in the literature. These methods replace the corner points with �tted curves and provide

smooth motion transitions from one segment to another. The shortest distance between each

curve and corner point (i.e., a smoothing error) is constrained by a user-speci�ed tolerance,

thus de�ning a geometric constraint. The motion transitions are made within jerk, acceleration

and velocity limits (i.e., kinematic constraints) of each feed drive system axis.

Based on the �tted curve's span, corner smoothing methods can be categorized into global

and local corner smoothing methods. Global corner smoothing approaches �t a curve spanning

across more than one corner point while local corner smoothing methods �t a curve con�ned

at one corner point [81, 85, 98, 101�103] (Fig. 2.6). Global corner smoothing is typically used

for short-segment contours; however, it more di�cult to control the smoothing error compared

to local corner smoothing [96]. Local corner smoothing approaches can be classi�ed based on

the simultaneity in considering the geometric and kinematic constraints [28, 72, 97]. Geometric

local corner smoothing methods separately consider these constraints by �rstly �tting a curve

followed by scheduling a smooth motion transition along it. In the literature, several geometric

local corner smoothing studies have been conducted: Yan et al. propose geometric local corner
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smoothing using double cubic non-uniform rational B-spline (NURBS) for 5-axis CNC machine

tool paths [105]. Yang and Yuen propose geometric local corner smoothing for improving

machining e�ciency by �tting 7th order polynomial splines [106]. A real-time G2 continuous

geometric local corner smoothing with parameter synchronized B-splines of tool tip position and

orientation paths is proposed for 5-axis CNC machine tools [41]. Pythagorean hodographs have

been proposed for geometric local corner smoothing curve �tting [77, 96]. Curvature optimal

quintic Bézier curves have been proposed for cycle time reduction [72]. Sun and Altintas

propose G3 continuous geometric local corner smoothing using double Bézier curve �tting for

5-axis CNC machine tools [82].

Kinematic local corner smoothing approaches simultaneously consider geometric and kine-

matic constraints in blending velocity transitions from one segment to the next. Several kine-

matic local corner smoothing methods have been proposed in the literature: �nite impulse

response (FIR)-based kinematic local corner smoothing have been presented for reducing time

and vibrations [73, 74, 86]. Xiao et al. propose G3 continuous 3D corner smoothing of line-line,

line-arc, and arc-arc transitions using clothoids for improving machining quality and e�ciency

[100]. Huang et al. proposed clothoid-based kinematic local corner smoothing for improving

contour accuracy [42]. Asymmetrical kinematic local corner smoothing with double constant-

jerk cornering pro�les have been illustrated in [98]. Tajima and Sencer propose KCS for near

cycle time optimality [84].

2.4.1 Kinematic corner smoothing

KCS is a JLAP-based 2D kinematic local corner smoothing approach that analytically computes

cornering velocity and acceleration by exploiting kinematic constraints to achieve near time

optimal motion pro�les while maintaining geometric constraints [84]. The resulting cornering

trajectory is then blended with the interconnecting segments at an order of C2 continuity. Fig.

2.7 shows a KCS curve starting at ps and ending at pe. The smoothing error ε is de�ned from

the Euclidean distance between the curve's mid-point pmid and the original corner point pc. In

[84], Tajima and Sencer describe two KCS methods: KCSIA and kinematic corner smoothing

with uninterrupted acceleration (KCSUA) which are described below.
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Fig. 2.7: Geometric description of a KCS curve.

2.4.1.1 Kinematic corner smoothing with interrupted acceleration

KCSIA sets zero tangential acceleration at the start and end of the cornering pro�le with the

same tangential velocity magnitude Vc. Fig. 2.8 illustrates a KCSIA cornering pro�le, where

the motion is subdivided into positive, zero and negative jerk sections as follows:

...
r k(t) =


jc,k, t0,c ≤ t < t1,c,

0, t1,c ≤ t < t2,c,

−jc,k, t2,c ≤ t < tc,

(2.18)

is de�ned with

jc,k =
ve,k − vs,k

T1,c (T1,c + T2,c)
,

vs,,k = Vchs,k,

ve,k = Vche,k,

ac,k = jc,kT1,c,

T1,c = t1,c − t0
= tc − t2,c,

T2,c = t2,c − t1,c.

(2.19)

jc,k is the cornering jerk. hs,k and he,k are the kth axis unit vector components of tangential

velocity at the start and end of the cornering pro�le, respectively. vs,k and ve,k are respectively

the kth axis velocity components at the cornering start and end. The start, middle and end
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Fig. 2.8: Exemplary jerk, acceleration and velocity pro�les generated by KCSIA.

points of the pro�le

ps,k = pc,k − Lchs,k,

pmid,k = ps,k + vs,c,k

[
T1,c +

1

2
T2,c

]
+ jc,k

[
1

2
T1,c

(
T2,c
2

2)]
+ jc,k

[
1

6
T 3
1,c +

1

2
T 2
1,c

(
T2,c
2

)]
pe,k = pc,k + Lche,k

(2.20)

are described with a cornering Euclidean length

Lc =
1

2
Vc (2T1,c + T2,c) . (2.21)
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From (2.18) and (2.20), the KCSIA motion transition can be de�ned using Vc, T1,c and T2,c,

where

ε =
Vc
{
T 2
1,c + 3 (T1,c + T2,c)

2}
24 (T1,c + T2,c)

‖he − hs‖2. (2.22)

is limited by a user-speci�ed tolerance. KCSIA proceeds to solve the optimization problem

max
µc

Vc

µc = [Vc, T1,c, T2,c]
(2.23)

subject to kinematic and geometric constraints. The resulting cornering pro�le is then inter-

connected with time-optimal JLAP generated linear motions.

2.4.1.2 Kinematic corner smoothing with uninterrupted acceleration

KCSUA di�ers from KCSIA by setting a non-zero tangential acceleration Ac at the start and

end of the cornering motion. As shown in Fig: 2.9, a KCSUA jerk pro�le

...
r k(t) = jc,k, t0 ≤ t < tc, (2.24)

is de�ned with

jc,k =
ae,k − as,k

T1,c
, as,k = −Achs,k,

T1,c = tc − t0, ae,k = Ache,k,

where as,k and ae,k are the k
th axis tangential acceleration components at the start and end of

the cornering pro�le, respectively. The start, middle and end points of the pro�le are derived

as

ps = pc − Lchs

pmid = ps + vs

(
T1,c
2

)
+

1

2
as

(
T1,c
2

)2

+
1

6
jc

(
T1,c
2

)3

pe = pc + Lche.

(2.25)
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Fig. 2.9: Exemplary jerk, acceleration and velocity pro�les generated by KCSUA.

with Lc = 1
6
AcT

2
1,c and Vc = 1

2
AcT1,c. From (2.24) and (2.25), the KCSUA pro�le can be de�ned

using Ac and T1,c, where

ε =
AcT

2
1,c

48
‖he − hs‖2. (2.26)

is limited by a user-speci�ed tolerance. KCSUA solves the optimization problem

max
µc

Vc

µc = [Vc, T1,c]
(2.27)
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subject to kinematic and geometric constraints followed by interconnecting the resulting cor-

nering pro�le with time-optimal JLAP generated linear motions.

2.5 Multi-objective optimization methods

Problems requiring the optimization of more than one objective are termed as multi-objective

optimization problems (MOOPs). A MOOP with mo objectives can represented as

min
µ∈Λ⊆Rnvar

J(µ) = [J1(µ), J2(µ), . . . , Jmo(µ)]> , mo ≥ 2, (2.28)

where

Λ = {µ : g(µ) = 0, q(µ) ≤ 0, µlb ≤ µ ≤ µub} , (2.29)

with J : Rnvar 7→ Rmo , g : Rnvar 7→ Rng and q : Rnvar 7→ Rnq , where g and q are respectively

the equality and inequality constraint vectors. µlb and µub are the lower and upper bounding

vectors of the optimization variable µ, respectively. nvar, ng and nq are accordingly the number

of variables, equality and inequality constraints. A candidate solution in a feasible region of

decision space Λ can be mapped to an objective space Ω as shown in Fig. 2.10, where a

set of non-dominated optimal solutions form a Pareto frontier Ψ. µa dominates µb if Ja,m ≤
Jb,m ∀m ∈ {1, 2, . . . ,mo} and ∃m ∈ {1, 2, . . . ,mo} : Ja,m < Jb,m. The utopia point O is an

unattainable point in the objective space where all m objectives are minimized. Convex hull of

individual minima (CHIM) is a hyperplane connecting solutions that optimize a single objective

(i.e., anchor points ψm). In 2D case, CHIM is a line segment as shown in Fig. 2.10.

A concave feasible region of objective space can have Pareto frontiers with global and local-

optimal regions. Messac et al. describe the concept of local and global Pareto optimality in

[55]. A candidate solution ψ̂ is globally Pareto-optimal if there does not exist another solution

ψ ∈ Ψ such that

∀m ∈ {1, 2, . . . ,mo} : ψm ≤ ψ̂m, and ∃m ∈ {1, 2, . . . ,mo} : ψm < ψ̂m. (2.30)
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µ1

µ2

Λ

J1

J2

Ω

Ψ
Ja

Jb

µa

µb

ψ2

ψ1

O

CHIM

Fig. 2.10: An illustration of mapping a candidate solution in a feasible region of decision
space to/from an objective space. The shaded area marks the feasible region. The Pareto
frontier is mark as a solid red curve. O marks the utopia point.

On the other hand, for local Pareto optimality, the condition holds only in the neighborhood

of ψ̂. Fig. 2.11 shows a demonstration of global and local Pareto frontiers of a concave feasible

region. Segments ψ1ψa and ψcψ2 represent a global Pareto frontier while segment ψbψc

represents a local Pareto frontier. Segment ψaψb is a non-Pareto region.

In the literature, there are two classes of multi-objective optimization methods for generating

approximate Pareto frontiers: vectorization and scalarization methods [36, 52]. Vectorization

methods are evolutionary algorithms that generate, in one simulation run, multiple optimal

solutions distributed across the Pareto frontier [22, 23, 80]. Although these methods produce

globally optimal solutions, multiple objective function evaluations for each candidate solution

at every iteration may result in high computation cost[52]. The di�culty in considering con-

straints other than bounding ones also limits the application of these methods [36]. Scalarization

methods generate optimal solutions by recursively converting a MOOP into a single-objective

optimization problem (SOOP) resulting in one locally optimal solution per recursion. In order

to convert an objective vector J into a scalar, these methods normalize each objective as follows

J̃m(µ) =
Jm(µ)− Jm,min

Jm,max − Jm,min
, m ∈ {1, 2, . . . ,mo} , (2.31)

24



2.5. Multi-objective optimization methods

J1

J2

ψ1

O

ψa ψc

ψb

ψ2
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Fig. 2.11: An illustration of global and local Pareto frontiers of a concave feasible region Ω.

with

Jm,min = Jm(µm), µm = argmin
µ
Jm(µ),

Jm,max = max {Jm(µ1), Jm(µ2), . . . , Jm(µmo)} .

The weighted sum approach is a commonly used scalarization method. (2.28) is reformulated

as

min
µ∈Λ⊆Rnvar

Jws =
mo∑
m=1

ζmJ̃m(µ),
mo∑
m=1

ζm = 1, ζm ≥ 0, (2.32)

where ζm is the weighting factor of objective Jm. The weighted sum method assumes convexity

of the feasible region in objective space. Thus, it cannot generate solutions in concave Pareto

regions [20]. To counter this limitation, the ε-constraint method [87] has been proposed. This

approach converts a MOOP into a SOOP by minimizing one objective while the remaining

objectives are used as bounding constraints in the objective space (Fig. 2.12). The ε-constraint
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J̃2

ε1 J̃1

ψ1

ψ2O

Ω

Fig. 2.12: A demonstration of the ε-constraint method.

method is represented as

min
µ∈Λ⊆Rnvar

J̃mε(µ), (2.33)

subject to

J̃m(µ)− εm ≤ 0, m ∈ {1, 2, . . . ,mo} , m 6= mε, (2.34)

where each solution corresponds to a set of εm. This approach su�ers a drawback in Pareto

point distribution since uniformly distributing εm does not correlate to a uniform distribution of

optimal solutions on the Pareto frontier. In order to mitigate this drawback, normal boundary

intersection (NBI) [21], NNC [55, 69] are proposed methods in the literature. The NBI method

constructs uniformly distributed quasi-normal lines to CHIM and maximizes the distances from

CHIM to the Pareto frontier along these lines to generate a uniform distribution Pareto-optimal

solutions (Fig. 2.13). The NBI approach reformulates (2.28) as follows:

max
µ∈Λ⊆Rnvar

‖J̃(µ)− ρ‖2, (2.35)
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ρ

O

J̃

Fig. 2.13: A demonstration of the NBI method.

subject to

[
ψm+1 −ψm

]> [
J̃(µ)− ρ

]
= 0, m ∈ {1, 2, . . . ,mo − 1} , (2.36)

with a CHIM point

ρ =
mo∑
m=1

ζmψm,
mo∑
m=1

ζm = 1, ζm ≥ 0. (2.37)

The NBI method has a drawback of producing non-Pareto optimal points in cases with concave

feasible regions in the objective space. The NNC method counters this limitation by minimizing

one objective and replacing (2.36) with inequality constraints incorporating the remaining ob-

jectives. Thus, the NNC method provides a reduced feasible region for �nding Pareto-optimal

solutions as shown in Fig. 2.14. The NNC method reformulates (2.28) as follows:

min
µ∈Λ⊆Rnvar

J̃mN
(µ), (2.38)
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Fig. 2.14: A demonstration of the NNC method.

subject to

[
ψmN

−ψm

]> [
J̃(µ)− ρ

]
≤ 0, m ∈ {1, 2, . . . ,mo} , m 6= mN. (2.39)

with (2.37). Depending on the choice of mN, the NNC approach may produce non-Pareto

optimal solutions. In order to detect these undesirable solutions irrespective of the objective

choice, Logist and Van Impe propose a removal criterion for such solutions [53]. Candidate

solutions in non-Pareto optimal regions deactivate (2.39), hence making the corresponding

Lagrange multipliers ν become zero. Such a candidate solution is not added into Ψ if not all

the �rst mo − 1 elements of

ν̂m =
1

mo − 1
E−1Pmo−mEνaug

m ∈ {mo,mo − 1, . . . , 1}
(2.40)
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are positive, where E = 1mo − Imo . P , 1mo and Imo are mo ×mo permutation, all-ones and

identity matrices, respectively.

νaug =

[
ν1, . . . ,νmo−1,

mo−1∑
m=1

νm

]>
(2.41)

is an augmented vector of Lagrange multipliers of (2.39).

2.6 Divide and conquer algorithm

Multi-objective optimization methods generate approximations of a Pareto frontier with op-

timal solutions spread across signi�cant (i.e., knee) and insigni�cant (i.e., plateau) regions of

the frontier. Decision-makers are then required to use a �lter to retain Pareto regions with

signi�cant trade-o�s. Mattson et al. propose a smart �lter for trimming insigni�cant Pareto-

optimal solutions [54]. Filters that rank solutions based on e�ciency have been studied in

[4, 19]. Farina and Amato propose the reduction of insigni�cant Pareto-optimal solutions using

a fuzzy optimality-based dominance concept [32]. An evolutionary algorithm for reducing solu-

tions on plateau regions is proposed in [11]. The process of generating Pareto-optimal solutions

followed by insigni�cant solution �ltering is computationally expensive. Hashem et al. propose

the divide and conquer algorithm for generating Pareto frontier approximations with adaptive

resolution [36].

The divide and conquer algorithm recursively uses the NBI or NNC method to explore the

CHIM for regions with signi�cant trade-o�. The Pareto set Ψ is initialized with the insertion

of mo anchor points. A candidate solution ψ is obtained by taking a centroid ρ of CHIM points

corresponding to a cluster of mo neighboring Pareto-optimal points in Ψ and solving an SOOP.

ψ is added into Ψ if it is signi�cant compared to the cluster members. For a cluster having

points ψp1
,ψp2

, . . . ,ψpmo
, ψ is signi�cant if

min
(
δp1 , δp2 , . . . , δpmo

)
≥ δmin (2.42)
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Fig. 2.15: Illustration of the divide and conquer algorithm for a two-objective case.

with

δpm = min
(
|ψpm,1 − ψ1|, |ψpm,2 − ψ2|, . . . , |ψpm,mo − ψmo|

)
, m ∈ {1, 2, . . . ,mo} ,

ψ = [ψ1, ψ2, . . . , ψmo ]
> ,

ψpm =
[
ψpm,1, ψpm,2, . . . , ψpm,mo

]>
,

where δmin is a user-speci�ed minimum trade-o� level. Subsequently, a new cluster, having the

previous ψ and mo− 1 cluster members, is explored until an insigni�cant ψ obtained, where it

is not added into Ψ and the next unexplored cluster in Ψ is explored. Fig. 2.15 demonstrates

the working principle of the divide and conquer algorithm for mo = 2. The divide and conquer

algorithm pseudo code is shown in Algorithm 1.

2.7 Global Pareto-optimal �lter

The removal (2.40) and signi�cance (2.42) criteria cannot detect local Pareto regions of Ψ.

Hence a global Pareto-optimal �lter [55] is implemented in this thesis to retain only global
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Algorithm 1 The divide and conquer algorithm

Input: δmin

Output: Ψ . A set containing all Pareto points

1: procedure divide and conquer

2:

3: Calculate anchor points
4: Ψ← {} . Initialize the Pareto set
5: Ψ← {Ψ, anchor points} . Add anchor points to Pareto set
6: current cluster← anchor points
7:

8: while unexplored clusters exist do
9: Calculate centroid ρ at current cluster . a point on CHIM

10: ψ ← Solve SOOP at ρ
11:

12: bs ← sign�canceCriterion(current cluster,ψ, δmin) . See (2.42)
13:

14: if bs then
15: Ψ← {Ψ,ψ}
16: current cluster← ψ and mo − 1 current cluster members
17: else

18: current cluster← next unexplored cluster
19: end if

20:

21: end while

22:

23: Return Ψ
24: end procedure

Pareto points once the divide and conquer algorithm is terminated. Algorithm 2 illustrates the

�lter's pseudo code.
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Algorithm 2 The global Pareto-optimal �lter algorithm
Input: Ψ . A set containing global & local Pareto-optimal points
Output: Ψg . A set containing only global Pareto-optimal points

1: procedure globalParetoFilter

2:

3: Ψg ← {} . Initialize the Pareto set
4:

5: for i = 0; i < n(Ψ); i+ + do . loop through all elements of Ψ
6:

7: ψ ← Ψ(i)
8:

9: bg ← globalOptimalityCriterion(ψ,Ψ) . See (2.30)
10:

11: if bs then
12: Ψg ← {Ψg,ψ}
13: end if

14:

15: end for

16:

17: Return Ψg

18: end procedure
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Chapter 3

Pareto Optimization of Energy and

Tolerance in Motion Trajectory

Generation

3.1 Introduction

In the manufacturing industry, CNC machine tools are typically used to produce components,

where accuracy, high production rates and low energy costs are key requirements. They are

actuated by feed drive systems [3], and studies related to improving accuracy [12, 51], increas-

ing production rates [25, 72, 79] and minimizing energy consumption [37, 91, 92] have been

conducted.

Accuracy, cycle time and energy consumption compose a MOOP that has an in�nite set of

Pareto optimal solutions. Studies have been conducted in formulating methods for representing

Pareto fronts [20, 21, 36, 55]. In the literature, local corner smoothing algorithms have been

studied for the purpose of reducing cycle time, where cornering velocities are maximized and

cornering errors are bounded by user-speci�ed accuracy constraint [30, 41, 72, 84, 105, 106]. In

economic lot scheduling of supply chains, di�erent cycle times (i.e., optimal or otherwise) can

be selected to reduce overall production costs [56, 88]. These corner smoothing algorithms are

limited to generating cornering trajectories under time-optimal conditions.
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In the previous work [64], a trade-o� between time and energy consumption in generating corner

smoothed trajectories for piece-wise linear contours was studied. This method is extended in

this work, where energy consumption is optimized in a �xed cycle time situation. Thus, energy

consumption and cornering error are used as objectives for the optimization problem. Linear

segments are de�ned using a JLAP [6, 27, 44]. Smoothed corner trajectories are described

by KCSIA [84] . The NNC [55] and SQP [9, 33, 62] are utilized to formulate and solve the

optimization problem, respectively. Pareto optimal solutions are represented using the divide

and conquer algorithm [36], where the best trade-o� solution is selected.

In summary, the contributions of this work are as follows:

� A �xed cycle time corner smoothing method is proposed.

� The method o�ers Pareto-optimal solutions for energy consumption and cornering error.

The rest of this chapter is organized as follows: Trajectory representation is shown in Section

3.2, where JLAP and KCSIA trajectories are described in Sections 3.2.1 and 3.2.2, respectively.

Trajectory optimization is presented in Section 3.3, followed by simulation results shown in

Section 3.4. Conclusions of this work are presented in Section 3.5.

3.2 Trajectory representation

This section presents the description of trajectories for geometries with piecewise linear seg-

ments and smoothed corners. Linear segment trajectories are de�ned by JLAP while smoothed

cornering paths are described using KCSIA.
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3.2.1 Jerk-limited acceleration pro�les

JLAP is generally composed of three phases with jerk restrictions, namely, acceleration, constant

velocity and deceleration phases as follows:

...
xa,k(t) =


jmax,k, t0 ≤ t < t1,a,

0, t1,a ≤ t < t2,a,

−jmax,k, t2,a ≤ t < t3,a,

...
xcon,k(t) = 0, t3,a ≤ t < tcon, (3.1)

...
xd,k(t) =


−jmax,k, tcon ≤ t < t1,d,

0, t1,d ≤ t < t2,d,

jmax,k, t2,d ≤ t < tl,

where the jerk pro�les for the acceleration, constant velocity and deceleration phases are given

by
...
xa,k,

...
xcon,k, and

...
xd,k, respectively. jmax,k is the kth axial jerk limit. The acceleration,

velocity and displacement pro�les can be obtained by successively integrating (3.1).The time

intervals

T1,a = t1,a − t0,l,

T2,a = t2,a − t1,a,

T3,a = t3,a − t2,a,

Tcon = tcon − t3,a,

T1,d = t1,d − tcon,

T2,d = t2,d − t1,d,

T3,d = tl − t2,d

(3.2)

are determined such that trajectory satis�es the acceleration, velocity and spatial constraints.

Hence, the linear segment trajectory can be de�ned by a variable vector

µl = [T1,a, T2,a, T3,a, Tcon, T1,d, T2,d, T3,d]T , (3.3)

where the total duration is

Tl(µl) = T1,a + T2,a + T3,a + Tcon + T1,d + T2,d + T3,d. (3.4)
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Fig. 3.1: Geometric description of the KCSIA approach.

According to (Section 2.2), the energy consumed in traversing the trajectory is obtained as

El(µl) =

∫ tl

t0

P (t) dt. (3.5)

3.2.2 Kinematic corner smoothing with interrupted acceleration

KCSIA is a method that generates 2D smoothed corner trajectories by analytically evaluating

the cornering velocity and duration while setting a zero path acceleration, at the start and

end of the cornering motion [84] as shown in Fig. 3.1. A predetermined cornering tolerance

0 < ε ≤ εub and feed drive kinematic limits are utilized as constraints to plan a jerk limited

cornering trajectory. C2 motion continuity is guaranteed by equating the accelerations and

velocities at the nodes (i.e. points connecting the smoothed corner with the adjacent linear

segments). In Fig. 3.1, ps and pe are the nodes and the maximum cornering error ε is located

at the trajectory mid-point pm. The original corner is located at pc. The jerk pro�le of the

cornering motion is given by

...
xk(t) =


jc,k, t0 ≤ t < t1,c,

0, t1,c ≤ t < t2,c,

−jc,k, t2,c ≤ t < tc,

(3.6)
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with

jc,k =
ve,c,k − vs,c,k

T1,c (T1,c + T2,c)
,

T1,c = t1,c − t0 = tc − t2,c,

T2,c = t2,c − t1,c,

vs,c,k = Vchs,k,

ve,c,k = Vche,k,
(3.7)

where jc,k is the cornering jerk. Vc is the path velocity magnitude at the nodes. vs,c,k and hs,k

are the starting point path velocity and its unit vector component, respectively. Accordingly,

ve,c,k and he,k are the end point path velocity and its unit vector component.

The total displacement in each axis is

∆sc,k =

(
vs,c,k +

1

2
jc,kT1,c (T1,c + T2,c)

)
(2T1,c + T2,c) , (3.8)

which is derived by successive integration of (3.6), is used for expressing the Euclidean length

Lc =
∆sk

(hs,k + he,k)
. (3.9)

From (3.9), expressions for ps, pm and pe are obtained as follows:

ps = pc − Lchs,

pm = ps + vs,c

(
T1,c +

1

2
T2,c

)
+ jc

{
1

2
T1,c

(
T2,c
2

)2
}

+ jc

{
1

6
T 3
1,c +

1

2
T 2
1,c

(
T2,c
2

)}
,

pe = pc + Lche,

(3.10)

whereby a cornering constraint

‖pc − pm‖2 − ε = 0, (3.11)

is introduced. The smoothed corner trajectory can be de�ned by a variable vector

µc = [Vc, T1,c, T2,c]
T , (3.12)
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with the total cornering duration

Tc(µc) = 2T1,c + T2,c. (3.13)

In a similar manner to the previous section, the energy required for the cornering motion is

described as

Ec(µc) =

∫ tc

t0

P (t) dt. (3.14)

3.3 Trajectory optimization

3.3.1 Problem formulation

This section presents a BOOP using the energy consumption model, JLAP and KCSIA de-

scribed in sections 2.2, 3.2.1 and 3.2.2, respectively. The methods in [55] and [64] are extended

to formulate the following minimization problem:

min
µ
{ε, Etot(µ)} ,

µ =
[
ε,µl,1,µc,1,µl,2,µc,2, . . . ,µl,nl

,µc,nc

]T
,

(3.15)

subject to

gr(µ) = 0, r = {1, 2, . . . , ng} , (3.16)

qy(µ) ≤ 0, y = {1, 2, . . . , nq} , (3.17)

0 ≤ µ ≤ µb, (3.18)

with

Etot(µ) =

nl∑
m=1

El,m(µl,m) +
nc∑
m=1

Ec,m(µc,m), (3.19)

where Etot is the total energy consumption. µ and µb are the optimization variable vector

and its upper bound, respectively. Accordingly, nl and nc are the number of linear and corner
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segments. gr is the r
th equality constraint, qy is the y

th inequality constraint. ng and nq are the

number of equality and inequality constraints, respectively.

The extrema of the objective set in (3.15) can be derived by the independent minimization of

each element as follows:

ε(µε) = 0,

εmax = ε(µE),

Emax = Etot(µε),

Emin = Etot(µE),
(3.20)

with

µε = argmin
µ
ε(µ), µE = argmin

µ
Etot(µ)

The extrema in (3.20) are used to derive normalized objectives

ε̃(µ) =
ε(µ)

εmax
, Ẽtot(µ) =

Etot(µ)− Emin

∆E
, (3.21)

with

∆E = Emax − Emin,

being the energy saving potential. The Pareto optimal solutions of (3.15) can be trans-

formed from a plane of cornering tolerance versus energy consumption with extrema coordinates

(0, Emax) and (εmax, Emin) to a normalized plane with extrema points ρε(0,1) and ρE(1,0) by

using (3.21). Hence, (3.15) can be reformulated as:

min
µ
Ẽtot(µ), (3.22)

subject to (3.16)�(3.18) and:

nT [ψ − ρ] ≤ 0, (3.23)
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with

n = ρE − ρε = [1,−1]T ,

ψ =
[
ε̃(µ), Ẽtot(µ)

]T
,

ρ = (1− ζ)ρε + ζρE,

0 ≤ ζ ≤ 1,

(3.24)

where ζ is a weighting factor. Every point ρ corresponds to an optimal solution ψ.

A set of relevant Pareto optimal solutions Ψ can be obtained by using the divide and conquer

algorithm in [36], where a minimum signi�cance level between successive solutions is stipulated.

The optimal solution with the best trade-o� between the objectives

ψ∗ = argmin
ψ
‖Ψ‖2, (3.25)

corresponds to an assigned weighting factor ζ∗.

3.3.2 Trajectory constraints

A constraint set consisting of time equality, linear segment and smoothed corner segment con-

straints imposed on the optimization problem is described in this section. Without any loss of

generality, a closed trajectory (i.e., a trajectory that has the same starting and ending point)

with no corner smoothing at its start and end is considered. Hence, nc = nl − 1.

The time equality constraint

nl∑
m=1

Tl,m(µl,m) +
nc∑
m=1

Tc,m(µc,m)− Tcycle = 0, (3.26)
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3.3. Trajectory optimization

is applied to ensure that ψ satis�es the user-speci�ed cycle time Tcycle. The m
th linear segment

constraints are

a2acc,k,m − a2lim,k ≤ 0

a2dec,k,m − a2lim,k ≤ 0

v2con,k,m − v2lim,k ≤ 0

 ,∀m,

(3.27)

as,l,k,m = 0

ae,l,k,m − as,c,k,m = 0

vs,l,k,m = 0

ve,l,k,m − vs,c,k,m = 0

∆sl,k,m + [Lc,m − Lm]hs,k,m = 0


,m = 1, (3.28)

as,l,k,m − ae,c,k,m−1 = 0

ae,l,k,m − as,c,k,m = 0

vs,l,k,m − ve,c,k,m−1 = 0

ve,l,k,m − vs,c,k,m = 0

∆sl,k,m + [Lc,m−1 + Lc,m − Lm]hs,k,m = 0


,m 6= [1, nl] , (3.29)

as,l,k,m − ae,c,k,m−1 = 0

ae,l,k,m = 0

vs,l,k,m − ve,c,k,m−1 = 0

ve,l,k,m = 0

∆sl,k,m + [Lc,m−1 − Lm]hs,k,m = 0


,m = nl, (3.30)

jmax,k,m − jlim,k,m = 0,∀m, (3.31)
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Table 3.1: Identi�ed energy consumption model parameters

kth axis c1,kWs4/m2 c2,kWs2/m2 c3,kWs/m c4,kW c5,kWs2/m c6,kWs3/m2

1 2.264 793.589 82.567 1.636 3.849 97.122
2 1.859 1124.057 78.894 1.142 2.914 95.564

where jlim,k,m, alim,k, and vlim,k are the limits for jerk, acceleration and velocity, respectively.

The smoothed corner segment nodes are indexed by s for the start and e for its end. Linear

and corner segments are indexed by l, and c, respectively. The mth linear segment length before

corner smoothing is given by Lm. The m
th smoothed corner segment constraints are

j2c,k,m − j2lim,k,m ≤ 0

(jc,kT1,c)
2 − a2lim,k,m ≤ 0

v2s,c,k,m − v2lim,k,m ≤ 0

v2e,c,k,m − v2lim,k,m ≤ 0

‖pc,m − pmid,m‖2 − ε = 0


,∀m.

(3.32)

SQP [9, 33, 62] is utilized to solve the optimization problem.

3.4 Optimization results and discussions

The parameters of the energy consumption model are obtained by the identi�cation of an

actual industrial biaxial feed drive system (Section 2.1.3). Table 3.1 shows the identi�ed model

coe�cients.

The contour in Fig. 3.2 is used to generate Pareto optimal corner smoothed trajectories at a

cycle time Tcycle = 5.227 s and kinematic limits: jlim,k = 200, 000mm/s3, alim,k = 500mm/s2

and vlim,k = 80mm/s. Since the minimum energy is achieved at a maximum cornering tolerance

εmax = 1248.6µm, the upper bound cornering tolerance εub is set to 100µm to limit the solution

set to within practical margins. Solutions for the optimization problem in Section 3.3 are

obtained by using SQP in a MATLAB environment on a laptop computer with 2.50GHz CPU,
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Fig. 3.2: Contour used for optimal trajectory generation.

8GB RAM and Windows 10 operating system. A signi�cance level of 0.02 is used in the divide

and conquer algorithm to generate a Pareto front of the optimization results.

The zoomed portion in Fig. 3.2 shows smoothed corners generated as part of the Pareto optimal

solutions at di�erent weighting factors ζ. ζ = 0.00 and ζ = 1.00 correspond to the cornering

tolerances of ε = 0µm and ε = 100µm, respectively. The best trade solution is obtained at

ζ∗ = 0.469.

The Pareto front of the optimal solutions is shown in Fig. 3.3. A trade-o� between the energy

consumption and cornering tolerance is observed, where the trajectory consisting of point-to-

point (PTP) movements (i.e., ε = 0µm) consumes the maximum amount of energy. The

energy-saving potential is 1.3 J. The best trade-o� solution occurs at a cornering tolerance of

∼ 30µm, where it achieves ∼64% of energy-saving potential.

Fig. 3.4 shows the generated path velocity pro�les at di�erent weighting factors ζ. At each

corner, it is observed that cornering velocity increases with the increase in ζ. This is because

lax cornering tolerances allow fast cornering velocities and vice-versa.
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More energy can be saved by increasing εub although this is detrimental to the quality of the

corners. Fig. 3.5 shows the trend of variation of the best trade-o� cornering tolerances and

energy-saving potential with εub.
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Fig. 3.5: Variation of best trade-o� cornering tolerance and energy saving potential under
upper bound of cornering tolerance.

3.5 Summary

This chapter presents a method of generating piece-wise linear contours with smoothed corners

by a trade-o� between energy consumption and cornering error. Linear segments and cornering

paths are de�ned using JLAP and KCSIA, respectively. A BOOP is solved and the best trade-

o� cornering error is acquired under a speci�ed cycle time as a constraint. The best trade-o�

point on the Pareto frontier provides the best compromise between energy consumption and

cornering error.
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Chapter 4

A Trade-o� between Energy Saving and

Cycle Time Reduction by Pareto-optimal

Corner Smoothing

4.1 Introduction

CNC machine tools are extensively used in the manufacturing industry due to their accuracy,

precision and speed in performing repetitive tasks [95]. The objectives of improving accuracy

and precision, productivity and energy saving motivate many research types on feed drive

systems.

Several studies have been conducted to achieve precise motion, where the quality of a reference

trajectory in�uences the resulting motion's performance. Barre et al. show the in�uence of jerk

on the vibrational behavior of industrial machines [6]. Sencer and Tajima propose a generation

of frequency optimal acceleration pro�les for suppressing vibrations [75].

The productivity of typical repetitive tasks in the manufacturing industry, such as standard

component machining or a combination of parts in an assembly line, can be increased by cycle

time reduction. The productivity of repetitive motions can be improved by reducing cycle

time. An analytical solution for minimizing motion durations with JLAPs is proposed by
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Joeng et al. [44]. Altintas and Erkorkmaz propose a time-optimal feed rate scheduling method

for quintic spline tool path interpolation [2]. Mori et al. propose a time-optimal trajectory

planning method for traversing contour curves by considering second-order dynamics of feed

drive systems [57]. Dong et al. propose a time optimizing algorithm for scheduling jerk-limited

feed-rates for a given parametric curve [25]. Erkorkmaz and Heng propose the optimization of

S-curve feed pro�les for non-uniform rational B-spline tool paths by a heuristic search approach

to minimize cycle time [29]. For robotic manipulators, Uchiyama et al. propose a time-optimal

trajectory generation approach that considers actuator power limits and obstacles in a work

environment [93].

Concerns on carbon footprint and the need for reducing production costs have catalyzed the

research on energy saving. Although controller designs that consider energy saving have been

proposed in literature [26, 61], optimal trajectory planning is an advantageous alternative, es-

pecially for industrial systems with inaccessible controllers. Park proposes an approach for

generating energy-e�cient velocity pro�les for electromechanical systems with repetitive PTP

motions [66]. Halevi et al. propose energy minimal trajectory generation in redundantly ac-

tuated machine tools for a prede�ned end-e�ector path [35]. Analytical solutions for energy

saving using S-curve PTP trajectories with cycloid motions during acceleration periods for a

given motion time and distance have been proposed in [40]. This approach is extended for

S-curve PTP trajectories with trapezoidal acceleration periods in [91]. Oda et al. propose a

method of optimization rotation angles and feed rate pro�les along curvilinear paths to minimize

energy consumption [65]. Bi et al. propose an approach for determining the energy-optimal

tool holder poses for parallel kinematic machine tools [8].

The objectives of minimizing cycle time and energy consumption are contradictory. Diaz et

al. describe a parabolic relation between energy consumption and feed-rate since the power

demand consists of constant and feed-rate dependent terms [24]. Thus, these objectives require

MOOP. Yan and Li propose the optimization of cutting parameters in a milling process to

trade-o� among energy consumption, material removal rate and surface roughness based on a

weighted grey relational analysis [104]. He et al. propose a method of determining optimal

machining parameters from a cost function consisting of a weighted sum of normalized energy

consumption, cutting force and processing time objectives using Pareto frontiers generated by

evolutionary algorithms [37].
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Although minimizing a weighted sum of objectives is the standard method of generating Pareto

frontiers in MOOPs, it has a drawback of producing a non-uniform distribution of Pareto

points even from a uniform set of weights, as illustrated by Das and Dennis in [20]. In order

to counter the drawbacks of weighted sum, Das and Dennis propose NBI for solving MOOPs

by reducing them into a set of SOOPs [21]. The NBI method involves forming a CHIM on

a normalized objective space, constructing evenly distributed quasi-normal lines to the CHIM

and maximizing the CHIM distance towards the utopia point along each quasi-normal line.

Every solution corresponds to a Pareto optimal point. The NBI method has a drawback of

producing non-Pareto optimal points in some cases.

Messac et al. propose the NNC method for solving a MOOP [55]. Like the NBI method, the

NNC method constructs a CHIM with evenly distributed points in normalized objective space.

At every CHIM point, the MOOP is reduced to a SOOP, where a normalized objective is

minimized while the remaining objectives are incorporated as additional inequality constraints.

The NNC method is less prone to generating non-Pareto optimal points compared to the NBI

method. The NNC method produces evenly distributed Pareto optimal points for a bi-objective

case, but this is not guaranteed for more than two objectives.

Sanchis et al. propose the enhanced NNC method that produces evenly distributed Pareto op-

timal points for MOOPs [69]. Although the problem formulation is similar to the NNC method,

the enhanced NNC method normalizes the objectives by either an exact linear transformation

or mapping using pseudo-anchor points, where a pseudo-anchor point is a point in an objective

space that minimizes one objective but maximizes the rest.

Evenly distributing points across a Pareto front has a drawback of including points that are

not signi�cant to a decision-maker. Hence, Pareto point �ltering would be required according

to a prespeci�ed trade-o� level. To avoid the computational cost of generating insigni�cant

solutions, Hashem et al. propose the divide and conquer algorithm for obtaining a Pareto

front with adaptive resolution [36]. Using the NBI or NNC problem formulation, the divide

and conquer algorithm recursively explorers the CHIM for signi�cant solutions. Insigni�cant

regions of the Pareto front are left unexplored according to a prespeci�ed trade-o� level.

Local corner smoothing algorithms have been proposed to improve machining quality ([41, 106])

and reduce cycle time for motion along piecewise linear contours. Sencer et al. propose blend-

ing discontinuous axis velocity commands using curvature optimal quintic Bézier curves to
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reduce cycle time [72]. Local corner smoothing algorithms that use parametric curves such as

B-splines [41, 106] and Bézier curves [72] solve a local corner smoothing problem in two steps:

curve �tting proceeded by feed pro�le planning. This approach is ine�cient since parametric

curves su�er computational drawbacks in real-time interpolation [28, 72, 89]. Since KCS meth-

ods do not require parametric curve �tting, they are proposed in the literature to overcome

these drawbacks. Sencer et al. propose a KCS method that smoothly blends axis velocities

using FIR �lters to reduce cycle time and suppress vibration [73]. Tajima and Sencer propose

KCSIA and KCSUA for analytically computing C2 continuous feed motions while exploiting

axis limits to achieve time optimality [84, 85]. In [84], KCSIA and KCSUA produce better

contouring performances and shorter cycle times than Bézier curves [72]. The Bézier curve's

inferior contouring performance is attributed to the lack of jerk limitation at corners, resulting

in the excitation of a feed drive system's vibratory dynamics. Despite the good performance in

reducing cycle time, the potential of KCS in energy saving is not explored in [84] nor [85]. For

a known energy consumption model, Nshama et al. illustrated a bi-objective optimization of

energy consumption and cycle time for corners smoothed by KCSIA [64]. However, the authors'

methods of model identi�cation and experimental veri�cation of the optimization results on an

industrial feed drive system are not provided.

This work proposes the generation and experimental veri�cation of Pareto optimal trajectories

that trade-o� cycle time with energy consumption in light of the preceding. Piecewise linear

contours are considered in this study since such paths are typically used in the manufacturing

industry. Before formulating and solving the bi-objective optimization problem, an energy

consumption model of an industrial feed drive system is identi�ed by the LSE method. In this

work, energy consumption is considered an electrical utility, where the system is represented

as an electrical load. Thus, energy consumption is de�ned as the electrical energy drawn by

the system during trajectory tracking. This energy is assumed to be partly stored as kinetic

energy while the rest of it is dissipated as electrical and mechanical losses. In this work, it is

assumed that the system is non-regenerative. In the optimization problem, a trajectory along

a linear segment is described as a JLAP [27] while motion transition at a corner is smoothed

using two cases: KCSIA and KCSUA. The optimization problem is formulated using the NNC

method, where a solution consists of optimal parameters for each line and smoothed corner.

Pareto frontiers for KCSIA and KCSUA are generated using the divide and conquer algorithm,

where each solution is computed using SQP [9, 33, 62]. The best trade-o� solution on a Pareto
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frontier is selected as the one that is nearest to the utopia point. Optimization results show

that KCSIA o�ers the best trade-o�. These results are validated experimentally.

In summary, the contributions of this work are as follows:

� An energy consumption model of an industrial feed drive system is identi�ed by LSE and

validated experimentally.

� Pareto-optimal local corner smoothing with KCSIA and KCSUA is proposed.

� Optimization and repetitive experimental results show that KCSIA produces the best

trade-o� solution.

The next section describes the identi�cation method of an energy consumption model. Trajec-

tory descriptions are illustrated in Section 4.3, followed by the optimization problem formulation

in Section 4.4. Pareto optimal solutions and their experimental veri�cation are presented in

Section 4.5, followed by concluding remarks in Section 4.6.

4.2 Identi�cation of the energy consumption model

A method of identifying the energy model parameters is described in this section. After that,

a setup for the identi�cation experiment and its results are presented.

4.2.1 Model identi�cation

The energy coe�cients in Section 2.2 are required to generate optimal trajectories. Since the

energy consumption model (2.12) at di�erent loading conditions can be derived from the no-

load energy consumption model (2.9) provided the load mass is known as shown in (2.10)

and (2.13), model identi�cation at no-load conditions is considered in this study without any

loss in generality. It is assumed that the power consumption can be measured, where these

measurements can only be a�ected by white noise with zero mean. LSE is used for energy
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model identi�cation, whereby the estimated power and estimation error at the jth data update

instant for each axis are respectively given by

P̂k,j = c1,kẍ
2
k,j + c2,kẋ

2
k,j + c3,kẋk,jsgn(ẋk,j) + c4,k + c5,kẍk,jsgn(ẋk,j) + c6,kẍk,jẋk,j,

ek,j = P̂k,j − Pk,j,
(4.1)

where Pk,j is the measured power for the kth axis at data point j. The LSE minimization

problem is de�ned as

min
ck

Np−1∑
j=1

(
e2k,j+1 + e2k,j

)
, (4.2)

subject to

c26,k − 4c1,kc2,k ≥ 0,

c25,k − 4c1,kc4,k = 0,

c4,kc6,k − c1,kc2,k = 0,

(4.3)

ck > 0, (4.4)

with

ck = [c1,k, c2,k, . . . , c6,k]
>, (4.5)

where Np is the number of data points. The objective function in (4.2) represents a numerical

integration of estimation error squares described by trapezoidal rule. (4.3) is obtained from

rearranging energy coe�cients in (2.10). (4.4) represents the bound constraints of the coef-

�cients. SQP, in a MATLAB® environment, is used to solve (4.2) on a Windows 10 laptop

computer with the speci�cations: core i7 intel processor, 2.50GHz CPU and 8GB RAM.

4.2.2 Identi�cation results

The identi�cation experiment is conducted on both axes of the industrial biaxial table (Section

2.1.3) whereby a reference trajectory consisting of several constant acceleration (i.e., 20, 40,
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Fig. 4.1: Reference acceleration and velocity pro�les used for the identi�cation experiment.

Table 4.1: Identi�ed energy coe�cients

kth axis ẋk c1,kWs4/m2 c2,kWs2/m2 c3,kWs/m c4,kW c5,kWs2/m c6,kWs3/m2

1
ẋ1 ≥ 0 2.684 546.357 45.135 0.663 2.667 90.838
ẋ1 < 0 2.684 476.807 -52.333 0.891 -3.093 90.838

2
ẋ2 ≥ 0 2.101 534.437 50.851 0.856 2.682 79.682
ẋ2 < 0 2.101 494.006 -48.999 0.795 -2.584 79.682

60, 80, 300, 400 and 500mm/s2) and velocity (i.e., 40, 43, 47, 50, 53, 57, 60, 63, 67, 70, 73,

77 and 80mm/s) pro�les, shown in Fig. 4.1, is used. The experiment is conducted for 15

iterations, whereby power measurements and velocity data are used to solve (4.2). Since a

numerically computed acceleration is noisy, the reference acceleration pro�le is used instead in

solving (4.2). Fig. 4.2 shows the matching between measured and estimated powers in each

axis. Fig. 4.3 shows a comparison between energy values computed from power measurements

and those estimated by the model using the velocity data. The corresponding identi�ed energy

coe�cients are given in Table 4.1.
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Fig. 4.2: Measured and estimated power consumption during the identi�cation experiment.
The measured power is labeled as `Measured' while the power estimated by the model is labeled
as `Estimated'.
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Fig. 4.3: Measured and estimated energy consumption during identi�cation experiment. The
energy computed from power measurements and model estimates are labeled as `Measured'
and `Estimated', respectively.

54



4.2. Identi�cation of the energy consumption . . .

0

5

10

x
1
ax

is
p
ow

er
[W

]

Measured Estimated

0 2 4 6 8 10 12

Time [s]

0

5

10

x
2
ax

is
p
ow

er
[W

]

Fig. 4.4: Measured and estimated power consumption during the veri�cation experiment.
The measured power is labeled as `Measured' while the power computed by the model is
labeled as `Estimated'.

4.2.3 Model veri�cation

A trifolium trajectory

x(t) = r∗(t)

[
cos

(
2πt

T

)
, sin

(
2πt

T

)]>
,

r∗(t) = rcos

(
2πt

T

){
4sin2

(
2πt

T

)
− 1

}
,

0 ≤ t ≤ T,

(4.6)

is used to test validity of the model, where r and T are the radius (=50mm) and period (=12 sec)

of the motion. A veri�cation experiment is conducted for 10 iterations. Fig. 4.4 shows the

measured and estimated power consumption for the 9th iteration. The estimation is done by

inserting the trajectory velocity and acceleration, derived from (4.6), into (2.9). The consumed

energy measurement results are shown in Fig.4.5, where the average percentage energy errors

relative to the model estimates are ∼-7 % and ∼-10 % for x1 and x2 axes, respectively. Since

the model estimates of power and energy consumption are similar to the experimental ones, the

model can be used for generating energy optimal trajectories.
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Fig. 4.5: Measured and estimated energy consumption during veri�cation experiment. The
energy computed from power measurements and model estimates are labeled as `Measured'
and `Estimated', respectively.

4.3 Trajectory representation

This section describes trajectory generation methods for geometries consisting of piecewise

linear segments and smoothed corners. Linear segment trajectories are de�ned by JLAP, while

smoothed cornering paths are described using KCS.

4.3.1 Jerk-limited acceleration pro�le

JLAP is a trajectory pro�le that imposes a smooth velocity transition between points by re-

stricting the jerk, acceleration and velocity within prede�ned limits [27, 84]. The trajectory

consists of an acceleration phase from t0 to t3,a, a constant velocity phase from t3,a to tcon and
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a deceleration phase from tcon to tl. The trajectory jerk is given as follows:

...
x l,k(t) =



jmax,k, t0,l ≤ t < t1,a,

0, t1,a ≤ t < t2,a,

−jmax,k, t2,a ≤ t < t3,a,

0, t3,a ≤ t < tcon

−jmax,k, tcon ≤ t < t1,d,

0, t1,d ≤ t < t2,d,

jmax,k, t2,d ≤ t < tl,

(4.7)

where jmax,k is the k
th axial jerk limit. The time intervals

T1,a = t1,a − t0,l,

T2,a = t2,a − t1,a,

T3,a = t3,a − t2,a,

Tcon = tcon − t3,a,

T1,d = t1,d − tcon,

T2,d = t2,d − t1,d,

T3,d = tl − t2,d

(4.8)

are determined such that the trajectory satis�es kinematic limits (i.e., jerk, acceleration and

velocity limits) and the geometric constraints. The time intervals in (4.8) de�ne a parameter

vector

µl = [T1,a, T2,a, T3,a, Tcon, T1,d, T2,d, T3,d] , (4.9)

which can be used to optimize the trajectory, where the total duration is given by

Tl(µl) = T1,a + T2,a + T3,a + Tcon + T1,d + T2,d + T3,d, (4.10)
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Fig. 4.6: Geometric description of a cornering path using the KCS method.

and the energy consumed in traversing the trajectory is obtained by inserting acceleration and

velocity expressions, which are acquired from successive integrations of (4.7), into (2.9) to get

El(µl) =

∫ tl(µl)

t0,l

ẍl(t)
>C1ẍl(t) + ẋl(t)

>C2ẋl(t)

+ ẋl(t)
>C3sgn(ẋl(t)) + tr (C4)

+ ẍl(t)
>C5sgn(ẋl(t)) + ẍl(t)

>C6ẋl(t) dt.

(4.11)

4.3.2 Kinematic corner smoothing

KCS is a 2D method that blends axial velocities at corners of piecewise linear tool paths by

analytically computing the cornering velocity, acceleration and duration, based on JLAP, while

taking into account a user-speci�ed tolerance 0 < ε ≤ εub and axial limits [84]. This produces

a cornering trajectory that has a smooth motion transition from the end of one linear segment

to the start of the next. Fig. 4.6 shows an illustration of a cornering path from position vector

ps to pe where the maximum cornering error ε is located at the mid-point pmid. pc is the

position of the original corner. The magnitude of tangential velocities at the start and end of

the trajectory are set to be the same (i.e.,‖vs,c‖2 = ‖ve,c‖2 = Vc). Two KCS methods have been

proposed in [84]: KCSIA and KCSUA described below.
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4.3.2.1 Kinematic corner smoothing with interrupted acceleration

KCSIA generates cornering trajectories while setting the tangential acceleration at the start

and end of the motion to zero. The trajectory is described as follows:

...
x c,k(t) =


jc,k, t0,c ≤ t < t1,c

0, t1,c ≤ t < t2,c

−jc,k, t2,c ≤ t < tc,

(4.12)

with

jc,k =
ve,c,k − vs,c,k

T1,c (T1,c + T2,c)
,

vs,c,k = Vchs,k, ve,c,k = Vche,k,

T1,c = t1,c − t0,c = tc − t2,c, T2,c = t2,c − t1,c,

a1,c,k = jc,kT1,c,

(4.13)

where jc,k is the cornering jerk. hs,k and he,k are the direction vector elements along the kth

axis at the trajectory starting and terminal points, respectively.The total displacement in each

axis ∆xc,k can be obtained by integration of (4.12):

∆xc,k =

[
vs,c,k +

1

2
jc,kT1,c (T1,c + T2,c)

]
(2T1,c + T2,c) . (4.14)

By considering one axis, the Euclidean length Lc used for corner smoothing can be expressed

as

Lc =
∆xc,k

(hs,k + he,k)
. (4.15)
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The components of position vectors ps, pmid and pe can be obtained by using (4.15) as follows:

ps,k = pc,k − Lchs,k,

pmid,k = ps,k + vs,c,k

[
T1,c +

1

2
T2,c

]
+ jc,k

[
1

2
T1,c

(
T2,c
2

2)]
+ jc,k

[
1

6
T 3
1,c +

1

2
T 2
1,c

(
T2,c
2

)]
,

pe,k = pc,k + Lche,k,

(4.16)

whereby, a cornering constraint

‖pc − pmid‖2 − εb ≤ 0, (4.17)

is de�ned. C2 continuity of motion transition from the end of the mth linear segment to the

start of the (m+ 1)th linear segment is established by setting

al,m,k = ẍc,k(t0,c) = 0, ẍc,k(tc) = a0,m+1,k = 0,

vl,m,k = vs,c,k, ve,c,k = v0,m+1,k, (4.18)

pl,m,k = ps,k, pe,k = p0,m+1,k,

where al,m,k, vl,m,k and pl,m,k are the kth axis acceleration, velocity and position at the end of

the mth linear segment. a0,m+1,k, v0,m+1,k and p0,m+1,k are the k
th axis acceleration, velocity and

position at the start of the (m+ 1)th linear segment.

The cornering trajectory can be described by a parameter vector

µc = [Vc, T1,c, T2,c] , (4.19)

provided that the geometry, axial limits and cornering tolerance are speci�ed, as shown in (4.12)-

(4.18). In a similar manner to Section 4.3.1, the trajectory duration and energy consumption
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4.3. Trajectory representation

are respectively given by

Tc = 2T1,c + T2,c, (4.20)

Ec(µc) =

∫ tc(µc)

t0,c

ẍc(t)
>C1ẍc(t) + ẋc(t)

>C2ẋc(t) + ẋc(t)
>C3sgn(ẋc(t)) + tr (C4)

+ ẍc(t)
>C5sgn(ẋc(t)) + ẍc(t)

>C6ẋc(t) dt. (4.21)

4.3.2.2 Kinematic corner smoothing with uninterrupted acceleration

KCSUA produces jerk limited cornering trajectories by introducing non-zero tangential acceler-

ations of equal magnitude Ac at the starting and terminal points of the motion. The trajectory

is expressed as

...
x c,k(t) = jc,k, t0,c ≤ t < t1,c, (4.22)

with

jc,k =
ae,c,k − as,c,k

T1,c
, T1,c = t1,c − t0,c,

as,c,k = −Achs,k, ae,c,k = Ache,k, (4.23)

vs,c,k = Vchs,k, ve,c,k = Vche,k,

where as,c,k and ae,c,k are the accelerations at the start and end of the corner trajectory, respec-

tively.

From (4.22), the relationship between Vc and Ac is obtained as

Vc =
AcT1,c

2
. (4.24)

The total displacement in the kth axis

∆xc,k = vs,c,kT1,c +
1

2
as,c,kT

2
1,c +

1

6
jc,kT

3
1,c, (4.25)
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is obtained by integrating (4.22). From (4.15) and (4.25), the position vector components

ps,k = pc,k − Lchs,k,

pmid,k = ps,k + vs,c,k

(
T1,c
2

)
+

1

2
as,c,k

(
T1,c
2

)2

+
1

6
jc,k

(
T1,c
2

)3

,

pe,k = pc,k + Lche,k,

(4.26)

can be derived. The cornering constraint for KCSUA is also expressed by (4.17). C2 continuity

of motion transition at the start and end of the cornering trajectory is established by the

following conditions with regard to the mth and (m+ 1)th linear segments

al,m,k = as,c,k, ae,c,k = a0,m+1,k,

vl,m,k = vs,c,k, ve,c,k = v0,m+1,k, (4.27)

pl,m,k = ps,k, pe,k = p0,m+1,k.

(4.22)-(4.27) shows that a KCSUA trajectory can be de�ned by a parameter vector

µc = [Ac, T1,c] , (4.28)

for given a geometry, kinematic limits and cornering tolerance. The duration of trajectory is

obtained as:

Tc = T1,c. (4.29)

The energy consumed in the cornering motion is also expressed using (4.21).

4.4 Trajectory optimization

This section illustrates a method of determining optimal trajectories that trade-o� between en-

ergy consumption and cycle time for paths consisting of piecewise linear segments and smoothed

corners. A bi-objective optimization problem and its constraints are described below.
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4.4. Trajectory optimization

4.4.1 Problem formulation

The mathematical representation of the optimization problem is described as follows:

min
µ
{Ttot(µ), Etot(µ)} ,

µ =
[
µl,1,µc,1,µl,2,µc,2, . . . ,µl,nl

,µc,nc

]>
,

(4.30)

subject to

gr(µ) = 0, r ∈ {1, 2, . . . , ng} ,

qy(µ) ≤ 0, y ∈ {1, 2, . . . , nq} , (4.31)

−µ ≤ 0,

with

Ttot(µ) =

nl∑
m=1

Tl,m(µl,m) +
nc∑
m=1

Tc,m(µc,m),

Etot(µ) =

nl∑
m=1

El,m(µl,m) +
nc∑
m=1

Ec,m(µc,m),

(4.32)

where Ttot and Etot are the cycle time and total energy consumption, respectively. µ is the

optimization parameter vector that consists of variables that describe each segment in the

trajectory. nl and nc are the number of linear and corner segments, respectively. grs are equality

constraints consisting of C2 continuity conditions (i.e., (4.18) for the case of KCSIA or (4.27)

for the case of KCSUA) and geometric bounds that ensure the resulting trajectory coincides

with the prede�ned geometry. qys are inequality constraints that restrict the trajectory jerk,

acceleration and velocity within kinematic limits. (4.30) is formulated for cases of KCSIA and

KCSUA. For the KCSIA case, Tc,m and Ec,m are obtained from (4.20) and (4.21), respectively.

(4.18) are the equality constraints. Conversely, Tc,m and Ec,m are obtained from (4.29) and

(4.21), respectively, with (4.27) as the equality constraints for the KCSUA case. For a PTP

case, (4.32) is reduced to

Ttot(µ) =

nl∑
m=1

Tl,m(µl,m), Etot(µ) =

nl∑
m=1

El,m(µl,m), (4.33)
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where µ =
[
µl,1,µl,2, . . . ,µl,nl

]>
with vl,m,k = 0 and al,m,k = 0 as equality constraints.

The maximum and minimum of each objective can be derived by separately optimizing the

components of (4.30) as follows:

Tmin = Ttot(µT )

Emax = Etot(µT )

 , µT = argmin
µ
Ttot(µ),

Tmax = Ttot(µE)

Emin = Etot(µE)

 , µE = argmin
µ
Etot(µ),

(4.34)

where the time and energy saving potentials are respectively de�ned as:

∆T = Tmax − Tmin, ∆E = Emax − Emin. (4.35)

The normalized form of each objective

T̃tot(µ) =
Ttot(µ)− Tmin

∆T
, Ẽtot(µ) =

Etot(µ)− Emin

∆E
, (4.36)

is used to map a Pareto frontier, in an objective space, into a normalized objective space such

that the anchor points, (Tmin, Emax) and (Tmax, Emin), are converted into rT(0,1) and rE(1,0),

respectively. In a similar manner to [55], the optimization problem in (4.30) is formulated:

min
µ
Ẽtot(µ), (4.37)

subject to (4.31) and:

N> [ψ − r] ≤ 0, (4.38)
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with

N = rE − rT = [1,−1]> ,

ψ =
[
T̃tot(µ), Ẽtot(µ)

]>
,

r = (1− ζ) rT + ζrE,

0 ≤ ζ ≤ 1,

(4.39)

where ψ is an optimal point that corresponds to a weighting factor ζ. The time and energy

optimal cases (i.e., respectively rT and rE) are represented by ζ = 0 and ζ = 1, respectively.

4.4.2 Optimization constraints

Without loss of generality, it is assumed that a closed path (i.e., a path that has the same

starting and ending point) without a smoothed corner at its starting/ending vertex is required.

Hence, nc = nl − 1. It is also assumed that the limits in jerk, acceleration and velocity are

symmetrical for each axis. The jerk, acceleration and velocity of a trajectory along the mth

linear segment are bounded by their respective kinematic limits jlim,k, alim,k, and vlim,k as follows:

j2max,m,k − j2lim,k = 0

a21,a,m,k − a2lim,k ≤ 0

a21,d,m,k − a2lim,k ≤ 0

v2con,m,k − v2lim,k ≤ 0


, m ∈ {1, 2, . . . , nl} , (4.40)

where a1,a,m,k and a1,d,m,k are respectively the maximum kth acceleration and deceleration along

themth linear segment. A quadratic form is used in (4.40) to ensure di�erentiability for ∀µ ≥ 0.

Similarly, the KCSIA cornering trajectory of the mth smoothed corner is restricted by

j2c,m,k − j2lim,k ≤ 0

a21,c,m,k − a2lim,k ≤ 0

v2s,c,m,k − v2lim,k ≤ 0

v2e,c,m,k − v2lim,k ≤ 0


, m ∈ {1, 2, . . . , nc} , (4.41)
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while the KCSUA cornering trajectory is constricted by

j2c,m,k − j2lim,m,k ≤ 0

a2s,c,m,k − a2lim,k ≤ 0

a2e,c,m,k − a2lim,k ≤ 0

v2s,c,m,k − a2lim,k ≤ 0

v2e,c,m,k − a2lim,k ≤ 0


, m ∈ {1, 2, . . . , nc} . (4.42)

Geometric constraints are imposed to ensure that the resulting trajectory coincides with all

edges of the prede�ned geometry. These constraints are described as

pl,m,k − p0,m,k + [Lc,m − Lm]hs,m,k = 0, m = 1, (4.43)

pl,m,k − p0,m,k + [Lc,m−1 + Lc,m − Lm]hs,m,k = 0, m ∈ {1, 2, . . . , nl − 1} , (4.44)

pl,m,k − p0,m,k + [Lc,m−1 − Lm]hs,m,k = 0, m = nl, (4.45)

‖pc,m − pmid,m‖2 − εm ≤ 0, m ∈ {1, 2, . . . , nl − 1} , (4.46)

where Lm is the length of the mth linear segment before corner smoothing. Fig. (4.7(a))�

(4.7(c)) shows pictorial representations of geometric constraints (4.43)�(4.45). The illustration

of (4.46) is shown in Fig. 4.6. For the case of PTP, a geometric constraint

pl,m,k − p0,m,k − Lmhs,m,k = 0,m ∈ {1, 2, . . . , nl} , (4.47)

is imposed instead of (4.43)�(4.46).

4.4.3 Pareto generation

The divide and conquer algorithm [36] generates a set of signi�cant Pareto optimal points Ψ

(i.e., a Pareto frontier) by recursively taking a weighting factor median ζ of two successive

optimal points (i.e., to divide) and then solving (4.37) using the SQP method [9, 33, 62] to

produce a new optimal point that is added into Ψ. Weighing factor division is stopped once

an insigni�cant point is obtained, where this point is ignored (i.e., to conquer) and the next
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εm

p0,m pl,m
pc,m

pmid,m

Lm
Lc,mhs,m

Start
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constraints at the �rst linear segmentm =
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(b) Pictorial representation of geometric
constraints at an intermediate linear seg-
ment m ∈ {1, 2, . . . , nl − 1}.

εm
p0,m pl,mpc,m
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Lc,m−1 hs,m
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(c) Pictorial representation of geometric
constraints at the last linear segment m =
nl.

Fig. 4.7: An illustration of geometric constraints (4.43)�(4.45) imposed on the optimization
problem (4.37).

unexplored pair of successive optimal points is divided. A signi�cance criterion is set by pre-

de�ning a minimum trade-o� level δmin between consecutive points. The algorithm is initialized

by adding rT and rE into an empty set Ψ. An optimal point is obtained at a median weighting

factor ζ = 0.5 and then added into Ψ if it passes the signi�cance criterion. Afterward, the

next pair of points in Ψ is explored. The divide and conquer algorithm tends to concentrate Ψ

around knee regions of the Pareto frontier since they have higher trade-o�s than �at regions.

Among these knee region Pareto optimal points, the best trade-o� point

ψ∗ = argmin
ψ
‖Ψ‖2, (4.48)

is de�ned as the Pareto-optimal point that is nearest to the utopia point (i.e., the origin on

the normalized objective space), which corresponds to an optimal solution µ∗ in the decision

space. The pseudo-code of the optimization process is illustrated in algorithm 3.

4.4.4 Space complexity analysis

The complexity of solving optimization problems is a fundamental property to consider. Space

complexity refers to the amount of memory resource required to perform a computation [34].

Schittkowski describes the space complexity of solving optimization problems by the SQP
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Algorithm 3 Trajectory optimization algorithm

1: function trajectoryOptimizer(pcs, ε, jlim,k, alim,k, vlim,k, δmin)
2: Calculate anchor points . From (4.34)
3: Ψ← {rT, rE} . Initialize the Pareto set
4: {ζl, ζu} ← {0, 1} . Initialize a pair of weighting factors corresponding to the anchor

points
5: Z ← {ζl, ζu} . Initialize a weighting factor set
6: while true do . Divide and conquer algorithm starts here
7: ζm ← 0.5 (ζl + ζu) . Calculate weighting factor at segment mid-point
8: ψm ← Solve (4.37) at ζm
9: ψl ← point in Ψ preceding ψm

10: ψu ← point in Ψ proceeding ψm

11: bl ← Check {ψl,ψm} satisfy signifance criterion
12: bu ← Check {ψu,ψm} satisfy signifance criterion . bl and bu are boolean variables
13: if bl ∧ bu then . ψm is signi�cant
14: Ψ← {Ψ,ψm}
15: Z ← {Z, ζm}
16: Ψ← Sort(Ψ) . Sort in ascending order of ζ
17: Z ← Sort (Z)
18: ζu ← ζm
19: else . ψm is insigni�cant
20: ζl ← ζu
21: if ζl < 1 then
22: ζu ← the �rst ζ > ζu in Z
23: else

24: break . Terminates the search for ψm

25: end if

26: end if

27: end while . Divide and conquer algorithms ends here
28: ψ∗ ← Compute(4.48)
29: µ∗ ← map ψ∗ in the decision space
30: return (Ψ,ψ∗,µ∗)
31: end function

method, where an optimization problem with nvar variables and ncon constraints requires a

real working array of length O(n2
var + nvarncon) [70].
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The space complexity of the major step in Algorithm 3 (i.e., solving (4.37)) is considered. The

number of variables is given by

nvar = nldim(µl) + ncdim(µc), (4.49)

where dim(.) is the notation for the dimension of a vector. For the KCSIA case, nvar = 10nl−3

with reference to (4.9) and (4.19). From (4.38), (4.40), (4.41) and (4.43)�(4.46), ncon = 19nl−8.

Therefore, KCSIA has a space complexity of O(290n2
l − 197nl + 33) ≈ O(n2

l ). From (4.9) and

(4.28), the KCSUA case has nvar = 9nl − 2. From (4.38), (4.40) and (4.42)�(4.46), ncon =

21nl− 10. Hence, the space complexity for KCSUA is O(270n2
l − 168nl + 24) ≈ O(n2

l ). For the

PTP case, nvar = 7nl in accordance with (4.9). From (4.38), (4.40) and (4.47), ncon = 10nl + 1.

Therefore, PTP has a space complexity of O(119n2
l + 7nl) ≈ O(n2

l ). Thus, (4.37) is solved with

a space complexity of O(n2
l ) for all cases.

4.5 Results and discussions

The identi�ed energy consumption model in Section 4.2 is used to generate optimal trajectories.

The kinematic limits are speci�ed as jlim,k = 50, 000mm/s3, alim,k = 1000mm/s2 and vlim,k =

80mm/s. A geometry with piecewise linear contours (Fig. 4.8) is used to generate optimal

corner smoothed trajectories at a tolerance of 0 < ε ≤ 200µm at each corner. This geometry

is used for verifying the practical e�ectiveness of the proposed approach due to the fact that

it includes acute and obtuse corner angles in both positive and negative motion directions

of each axis whose dynamic properties are typically di�erent due to friction and mechanical

inaccuracies. The optimization problem in (4.37) is solved by SQP in a MATLAB® environment

on a laptop computer with core i7 intel processor, 2.50GHz CPU, 8GB RAM and Windows

10 operating system, where the normalized objective function, constraints and their respective

gradients are analytically derived and fed to the solver. In order to generate Pareto frontiers

of the optimization results, a minimum trade-o� level δmin = 0.01 is used in the divide and

conquer algorithm.
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Fig. 4.8: The piecewise linear contours (black dotted lines) used for optimal trajectory gen-
eration. An illustration of corner smoothed reference trajectories generated using KCSUA
(green dash-dotted lines) and KCSIA (blue dashed lines) are shown.

4.5.1 Optimization results

Fig. 4.9 shows the Pareto frontier of the trajectory optimization results for the cases of KCSIA,

KCSUA and PTP. Since the energy consumptions of the KCSIA and KCSUA are lower than

those for the PTP for the same cycle time and vice versa, then the Pareto frontiers of KCSIA

and KCSUA are better than that for PTP. KCSIA o�ers the best trade-o� solution, where it

consumes 2.2 J/cycle less than the overall time-optimal result and it is 1.384 s/cycle faster than

the overall energy optimal result. Hence, the best trade-o� solution achieves time and energy-

saving potentials of ∼66% and ∼72%, which are computed relative to the overall extrema

among the three cases. A summary of the best trade-o� optimization results is shown in

Table 4.2, where KCSIA reduces the cycle time and energy consumption by ∼8% and ∼3%,

respectively relative to PTP.

Fig. 4.10 and 4.11 respectively illustrate the jerk, acceleration and velocity pro�les of the time,

best trade-o� and energy optimality scenarios for the x1 and x2 axes, where all pro�les comply

with speci�ed kinematic limits. In all three scenarios, KCSIA has the shortest cycle time while

PTP has the longest one. KCSIA and KCSUA have shorter cycle times than PTP since they
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Fig. 4.9: Optimization results represented as a Pareto frontier.

Table 4.2: Summary of optimization results for the best trade-o� trajectories

Trajectory
Saving Potential % Reduction relative to PTP %

Cycle Time Energy Consumption Cycle Time Energy Consumption

PTP ∼49 ∼37 - -
KCSUA ∼62 ∼65 ∼6 ∼3
KCSIA ∼66 ∼72 ∼8 ∼3

have non-zero cornering velocities. Since KCSIA achieves higher velocities than KCSUA at

corners with obtuse angles, it has a shorter cycle time than KCSUA (see Fig. 4.12). This

phenomenon has been described in [84]. Both KCS methods generate cornering motions with

relatively low curvature at obtuse corners while the curvature is signi�cantly higher at acute

corners, where KCSUA has the highest curvature, as shown in Fig. 4.13. There is no signi�cant

curvature change as optimal solutions shift towards energy optimality.

4.5.2 Simulation results

The contouring performance of PTP, KCSUA and KCSIA is simulated using the controller

described in Section 2.1.3. The contouring error estimation method in [13] is used in this

work. The simulation results are shown in Fig. 4.14. The contouring errors tend to spike at

cornering segments since the generated trajectories have non-zero curvatures at corners (Fig.
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4.13). KCSIA has a higher contouring error at obtuse corners than KCSUA since it has a

higher cornering velocity. As optimal solutions shift toward energy optimality, contouring errors

decrease in correlation with decreasing cornering velocity. Contouring errors at sharp corners are

higher than those at obtuse corners since curvature is relatively high at these corners. Although

KCSUA has a higher curvature than KCSIA, its contouring error decreases signi�cantly as the

energy-optimal scenario is approached since it has a lower cornering velocity. Thus, KCSIA has

a better trade-o� in energy consumption and cycle time, although its contouring performance

is worse than KCSUA.
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Fig. 4.10: The generated jerk, acceleration and velocity pro�les for the x1 axis.
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Fig. 4.11: The generated jerk, acceleration and velocity pro�les for the x2 axis.

4.5.3 Experimental results

An experiment is conducted in order to validate the optimization results. Five points corre-

sponding to weighting factors

ζ = {0, 0.25, ζ∗, 0.75, 1} , (4.50)

along the Pareto frontier of each case are used to generate trajectories that are implemented on

the industrial two-axis machine (Section 2.1.3). Each trajectory is executed through 80 cycles,

where �ve iterations are conducted. The average measured energy consumption per cycle across
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Fig. 4.12: The generated tangential velocities for time, best trade-o� and energy optimality
scenarios.

Fig. 4.13: Curvature of the generated trajectories for time, best trade-o� and energy opti-
mality scenarios.

all iterations are shown in Fig. 4.15. The experimental results are similar to the optimization

ones (see Fig. 4.9), where KCSIA and KCSUA have better energy consumption and cycle time

trade-o�s than PTP with KCSIA having the best trade-o� result. Apart from the time-optimal

case (i.e., ζ = 0), KCSIA consumes the least energy for all other weighting factors. The time-

optimal trajectory for KCSIA consumes more energy than that for KCSUA due to the fact that

it has higher cornering velocity than that for KCSUA (see Fig. 4.12). This results in KCSIA

requiring more control e�ort at the corners. KCSIA provides the overall best trade-o� trajectory,
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Fig. 4.14: Simulation results of contouring performance.

where its measured energy consumption is 1.7 J/cycle less than the overall time-optimal result.

This is equivalent to achieving ∼60% of the energy-saving potential computed relative to the

overall extrema among the three cases. Experimental results of energy consumption for the

best trade-o� optimal trajectories are summarized in Table 4.3, where KCSIA reduces energy

consumption by ∼2% relative to PTP.

The contouring performance of the trajectories for time, best trade-o� and energy optimality

scenarios is illustrated in Fig. 4.16. Contouring errors are computed by the method described in

Section 4.5.2, where instantaneous axial positions are measured using rotary encoders (Section

2.1.3). Time optimal trajectories have the highest contouring error since they have signi�cantly

higher velocities. KCSIA has the highest error peaks, located at corners, because it has the

highest cornering velocities (see Fig. 4.12). Energy optimal trajectories have the least contour-

ing errors. This is due to fact that they have comparatively lower acceleration and velocity,

hence making them easier to be tracked by controllers.

The variation of contouring performance with weighting factor is investigated by generating

optimal trajectories for the selected weighting factors in (4.50) and executing each trajectory

on the industrial two-axis machine (Section 2.1.3) in a loop for 10 cycles while measuring the

contouring error, where the maximum and average errors are recorded. In order to compute

the standard deviation of the maximum and mean error values, this procedure is done for a

total of �ve iterations.
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Fig. 4.15: Experimental results represented as a Pareto frontier. The time-optimal, best
trade-o� and energy-optimal experimental results correspond to the grey-dashed ellipses re-
spectively labeled as 1*, 2* and 3*.

Fig. 4.17 shows the contouring performance results at di�erent weighting factors. The maxi-

mum contouring errors are signi�cantly higher than the average ones due to the fact that the

instantaneous errors spike at corners as a result of non-zero trajectory curvature as shown in

Figs. 4.13, 4.14 and 4.16. The maximum error tends to decrease with an increase in weighting

factor, as shown in Fig. 4.17. This is a result of lowering cornering velocity as the energy op-

timal scenario is approached. The average error also tends to decrease as the weighting factor

reaches one. On average, KCSUA tends to have the least contouring error for all weighting

factors. It has a lower contouring error than KCSIA as discussed in Section 4.5.1. Although

PTP has zero velocity at corners, it has a higher contouring error than KCSUA. This is due

to the dominance of non-linear frictional properties such as the Stribeck e�ect and stick-slip

phenomenon in the near-zero velocity region and pre-sliding regime, respectively [45]. Table

4.4 shows a summary of experimental results of contouring performance for the best trade-o�

optimal trajectories.
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Fig. 4.16: Experimental results of contouring performance.

Table 4.3: Experimental results summary of energy consumption for the best trade-o� tra-
jectories

Trajectory
Energy consumption

Average J Saving Potential% Reduction relative to PTP%

PTP 32.1 ∼38 -
KCSUA 31.6 ∼55 ∼2
KCSIA 31.5 ∼60 ∼2

Table 4.4: Summary of experimental results of contouring performance for the best trade-o�
trajectories

Trajectory
Contouring error

Average µm Max.µm
Reduction relative to PTP
Average% Max.%

PTP 8.9 40.5 - -
KCSUA 8.3 37.4 ∼7 ∼8
KCSIA 8.9 33.0 - ∼19

4.6 Summary

A Pareto-optimal trajectory generation method for piecewise linear contours with smoothed

corners is proposed to compromise contradicting objectives of minimizing energy consumption
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Fig. 4.17: Experimental contouring performance at di�erent weighting factors.

and cycle time in industrial feed drive systems. The linear contours are described by JLAP.

KCSIA and KCSUA are used to smoothly blend the motion transition at corners while main-

taining a user-speci�ed cornering tolerance. An energy consumption model of an industrial

feed drive system is identi�ed by the LSE method and then used in solving the BOOP. Pareto

frontiers of three cases: KCSIA, KCSUA and PTP, are generated by the divide and conquer

algorithm, where the best trade-o� optimal trajectories are obtained.

Experimental results show that the best trade-o� trajectory for KCSIA outperforms that for

PTP by reducing cycle time and energy consumption by ∼8% and ∼2%, respectively. The

KCSIA best trade-o� trajectory achieves ∼66% and ∼60% of the time and energy-saving

potentials, respectively computed relative to the overall extrema among the three cases. In

terms of contouring performance of best trade-o� trajectories, while KCSUA has a ∼7% average

error reduction, KCSIA has an ∼19% maximum error reduction by relative to PTP.
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Chapter 5

Pareto Optimization of Cycle Time and

Motion Accuracy in Trajectory Planning

for Industrial Feed Drive Systems

5.1 Introduction

Manufacturing industries typically use CNC machine tools due to their accuracy, repeatability

and speed in performing tasks [95]. Feed drive systems actuate CNC machine tools' motion axes

[3]. Ongoing demands for higher production quantity and quality drive researches in motion

accuracy improvement and cycle time reduction. Several studies have proposed feedback control

structures to reduce tracking [90] and contouring [14, 60] errors in feed drive systems. Chen

and Sun propose a nonlinear controller for underactuated systems [17]. A Feedback control

strategy is proposed in [18] for regulating ship yaw and roll perturbations in 5-DOF o�shore

cranes. Such proposals are limited by the accessibility of in-service feed drive system feedback

controllers.

Trajectory generation methods have been proposed in the literature to address the objectives of

reducing errors and cycle time. Feedforward compensation strategies such as iterative learning

control [38, 49] and neural networks and reinforcement learning [50] are proposed for error

reduction. A time-optimal trajectory generation approach with consideration to obstacles and
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dynamic limits is proposed by Uchiyama et al. for robotic manipulators [93]. Sencer et al.

propose time-optimal feed scheduling along B-spline tool paths for 5-axis CNC machine tools

[71]. Frequency-optimal acceleration pro�les are proposed by Sencer and Tajima for vibration

suppression [75]. Kucuk proposes minimum time trajectory generation using cubic spline and

7th order polynomial interpolations [48]. 15-phase sinusoidal jerk pro�les are proposed by Fang

et al. for cycle time reduction and high-frequency harmonic suppression [31]. Wang et al.

propose time-optimal S-curve velocity pro�le generation for robotic arms [99]. In economic lot

scheduling of supply chains, a sub-optimal cycle time of a process lot can be selected to reduce

overall production costs [56, 88]. To this end, Jeong et al. present time-optimal and time-�xed

jerk-limited velocity pro�le generation algorithms [44]. Besset and Béarée propose online �nite

impulse response-based trajectory generation for time-optimal, �xed time and jerk-time �xed

cases [7].

Before a contour is fed to FDSs, CAD/CAM systems normally discretize it into a set of linear

and circular arc segments using G01 and G02/ G03 commands, respectively. In order to improve

machining quality and speed, corner smoothing methods have been proposed in the literature.

Corner smoothing methods can be classi�ed as global and local corner smoothing methods

based on the span of a �tted curve. Global corner smoothing methods �t a single curve spanning

across all segments while local corner smoothing approaches �t a curve between each pair of

adjacent segments [98]. Global corner smoothing is normally used for motion planning along

short-segment paths [81, 85, 101]. However, it is more di�cult to evaluate and constrain the

smoothing error for global corner smoothing compared to the local one [96].

Regarding kinematic local corner smoothing, kinematic corner smoothing with interrupted ac-

celeration (KCSIA) has been proposed for cycle time optimality [84]. An energy-time trade-o�

using KCSIA is studied in [63]. Finite impulse response-based kinematic local corner smoothing

have been proposed for reducing time and vibrations [73, 74]. Kinematic local corner smooth-

ing approaches using clothoids [42, 76, 100] and asymmetrical double constant-jerk cornering

pro�les [98] have been proposed for improving cycle time. Regarding CNC machining, there are

several di�erent cases of requirements for surface quality and cycle time: high-accuracy case,

high-speed case with a certain accuracy level and a time-�xed case. With the aim of reducing

cycle time while satisfying accuracy requirements for piecewise toolpaths, existing local corner

smoothing algorithms typically maximize cornering velocities, where cornering errors are driven
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to the upper bounds of the accuracy constraints [30, 72]. Under sub-optimal cycle time scenar-

ios, it is no longer necessary to drive these errors to their upper limits. Thus, various trade-o�

solutions for cycle time and cornering error can be selected by a decision-maker.

Local corner smoothing can be categorized as geometric and kinematic Local corner smooth-

ing, where geometric local corner smoothing separately considers geometric and kinematic con-

straints in two steps while kinematic local corner smoothing directly plans smooth velocity

transitions by considering both constraints in one step [28, 72, 97]. In literature, geometric lo-

cal corner smoothing using B-spline [41, 105, 106], Pythagorean Hodograph [77] and Bézier [72]

curves are proposed. Regarding kinematic local corner smoothing, KCSIA has been proposed

for cycle time optimality [84]. An energy-time trade-o� using KCSIA is studied in [63]. FIR-

based kinematic local corner smoothing have been proposed for reducing time and vibrations

[73, 74]. Kinematic local corner smoothing approaches using clothoids [42, 76, 100] and asym-

metrical double constant-jerk cornering pro�les [98] have been proposed for improving cycle

time. Regarding CNC machining, there are several di�erent cases of requirements for surface

quality and cycle time: high-accuracy case, high-speed case with a certain accuracy level and a

time-�xed case. With the aim of reducing cycle time while satisfying accuracy requirements for

piecewise toolpaths, existing local corner smoothing algorithms typically maximize cornering

velocities, where cornering errors are driven to the upper bounds of the accuracy constraints

[30, 72]. Under sub-optimal cycle time scenarios, it is no longer necessary to drive these errors

to their upper limits. Thus, various trade-o� solutions for cycle time and cornering error can

be selected by a decision-maker.

A Pareto set of a MOOP can be generated by vectorization or scalarization methods [36, 52].

Vectorization methods are stochastic approaches that directly solve the MOOP to produce

global-optimal solutions. Their computation cost and stochastic nature limit their application.

Scalarization methods solve a MOOP by parameterizing it into a series of SOOPs, resulting

in a set of locally optimal solutions. Taking a weighted sum of objectives is a commonly used

approach, although it has drawbacks in obtaining solution in non-convex Pareto regions [20].

Approaches such as NBI [21], NNC [55, 69] methods have been proposed. The NBI approach

and, to a lesser degree, the NNC are prone to generating non-Pareto optimal solutions. Logist

and Van Impe propose a criterion for detecting such solutions [53]. The scalarization methods

typically distribute the SOOPs evenly, resulting in computation e�ort being wasted on in-

signi�cant Pareto points. Kim and Weck propose a recursive approach for generating a Pareto
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frontier based on an adaptive selection of objective weights in a bi-objective problem [47]. This

approach requires four user-de�ned parameters to control the Pareto frontier approximation.

Hashem et al. propose the divide and conquer algorithm for the recursive exploration of sig-

ni�cant trade-o� regions on the Pareto frontier, where one user-de�ned parameter, named the

minimum trade-o� level, is required to control the Pareto frontier resolution [36].

In order to account for the di�erent cases of surface quality and cycle time requirements, a

Pareto-optimal local corner smoothing method that o�ers a trade-o� between cycle time and

motion accuracy is proposed. A decision maker can systematically select Pareto-optimal solu-

tions to address the requirements under consideration. Piecewise linear contours are considered

in this study due to their regular occurrence in CAD/CAM systems. The BOOP is formulated

by the NNC method since it is known beforehand whether the Pareto frontier does not have

non-convex regions. The motion accuracy improvement objective is indirectly represented by

the minimization of corner smoothing extent along an entire contour. As part of the optimiza-

tion problem formulation, it is considered that a smoothed trajectory's linear and cornering

segments are respectively described by JLAP [27] and a modi�ed KCSIA. The optimization

problem is constrained by kinematic limits, user-de�ned cornering tolerances and geometric

restriction for avoiding path overlaps. The divide and conquer algorithm [36] is used for gener-

ating an approximated Pareto frontier since it only requires one user-de�ned parameter, named

a minimum trade-o� level, and it is compatible with the NNC method. Each Pareto-optimal

solution is computed using SQP [9, 33, 62]. In this study, the Pareto-optimal solution that

is nearest to the utopia point is selected as the best trade-o� solution. In a time-�xed case,

a solution can be obtained without the need to generate the Pareto front, where the motion

accuracy improvement objective is minimized subject to a user-speci�ed cycle time and the

above-mentioned constraints. Experimental results of the generated Pareto-optimal trajecto-

ries demonstrate the e�ectiveness the proposed approach.

The contributions of this work are summarized as follows:

� A cycle time and motion accuracy trade-o� by Pareto-optimal local corner smoothing is

proposed.

� The time-optimal solution has a higher motion accuracy and shorter cycle time than

KCSIA.
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The chapter is organized as follows: Section 5.2 illustrates the design of Pareto-optimal tra-

jectories, Section 5.3 presents the optimization and experimental results. A discussion on the

�ndings and concluding remarks are set forth in Sections ?? and 5.4, respectively.

5.2 Pareto-optimal trajectory design

A method of generating Pareto optimal trajectories that provide a compromise between motion

accuracy and cycle time for piecewise linear contours is illustrated in this section. The bi-

objective optimization problem and constraint formulations are depicted below.

5.2.1 Problem formulation

Local corner smoothing approaches reduce cycle time by shortening the tool path length and

providing non-zero cornering velocities, which consequently deteriorates contouring performance

as shown in [30, 72, 85]. Hence, motion accuracy improvement and cycle time reduction are

con�icting objectives in trajectory generation for piecewise linear contours.

Local corner smoothing methods generate cornering trajectories for given machine tool kine-

matic limits (ie., jerk, acceleration and velocity limits) and a user-speci�ed cornering tolerance

0 < ε ≤ εub as shown in Fig. 5.1, where pc is the original corner point and the cornering

error ε is restricted by upper bound εub. The cornering path from position vector ps to pe is

symmetrical about line pcpmid, where the distance between the start/end of the path and the

original corner pc is the cornering Euclidean distance Lc. hs and he are the direction vectors

at the start and end of the path, respectively. The minimization of ε and reduction of Lc are

non-con�icting objectives. Hence, a SOOP

min
µc,m

Lc,m(µc,m) (5.1)
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hehs
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εub

L
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ε

Fig. 5.1: An illustration of a cornering path generated by a corner smoothing method. A
corner point pc is smoothed by a red dash-dot curve with a cornering error ε bounded by
0 < ε ≤ εub.

subject to

g(µc,m) = 0,

q(µc,m) ≤ 0,

−µc,m ≤ 0

(5.2)

is used to describe the smoothing minimization objective for the mth corner, where µc,m is

parameter vector that consists of variables that describe a cornering trajectory. These variables

depend on the corner smoothing method used. g is an equality constraint vector that imposes

motion continuity conditions when stitching the corner path with preceding and succeeding

linear segments. q is an inequality constraint vector that ensures the cornering motion obeys

kinematic limits and the user speci�ed cornering tolerance.

The trajectory cycle time

Tcycle =

nl∑
m=1

Tl,m(µl,m) +
nc∑
m=1

Tc,m(µc,m) (5.3)

is the second objective to be minimized. It is obtained as a sum of the linear and corner segment

trajectory durations Tl,ms and Tc,ms, respectively. µl,m is a parameter vector that describes the

mth linear segment trajectory. nl is the number of linear segments. In this study, it is assumed

that the end of a piecewise linear contour is not smoothed, hence nl = nc + 1.
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The trade-o� between corner smoothing minimization and cycle time reduction is represented

as the bi-objective optimization problem

min
µ
{Lc,tot(µ), Tcycle(µ)}

µ =
[
µl,1,µc,1,µl,2,µc,2, . . . ,µl,nl

,µc,nc

]> (5.4)

subject to

g(µ) = 0,

q(µ) ≤ 0,

−µ ≤ 0

(5.5)

with

Lc,tot(µ) =
nc∑
m=1

Lc,m(µc,m), (5.6)

where Lc,tot is the total cornering Euclidean length for corner smoothing. Thus, Lc,tot represents

the smoothing objective function for all nc corners. µ is the optimization parameter vector

consisting of linear and corner segment variables. The g elements describe geometric and Cn

continuity conditions along a resulting optimal trajectory and q restricts the trajectory within

kinematic limits and user-speci�ed cornering tolerances.

Each objective extremum is obtained by independently minimizing the components in (5.4) as:

Lc,min = Lc,tot(µlc)

Tmax = Tcycle(µlc)

 , µlc = argmin
µ
Lc,tot(µ),

Lc,max = Lc,tot(µT )

Tmin = Tcycle(µT )

 , µT = argmin
µ
Tcycle(µ).

(5.7)

85



5. Pareto Optimization of Cycle Time and . . . 5.2. Pareto-optimal trajectory design

In a normalized objective space,

L̃c,tot(µ) =
Lc,tot(µ)− Lc,min

∆Lc,tot
,

T̃cycle(µ) =
Tcycle(µ)− Tmin

∆Tcycle

(5.8)

describe the respective individual objectives in (5.4), where ∆Lc,tot = Lc,max − Lc,min and

∆Tcycle = Tmax−Tmin are the saving potentials in corner smoothing and cycle time, respectively.

In accordance with the normalized normal constraint method [55], (5.4) is reformulated as:

min
µ
T̃cycle(µ) (5.9)

subject to (5.5) and an additional normalized normal constraint inequality constraint

[ψT − ψlc]
> [ψ − ρ] ≤ 0 (5.10)

that limits the feasible region in the normalized objective space (Fig. 5.2) with

ψ =
[
L̃c,tot(µ), T̃cycle(µ)

]>
,

ψlc =
[
L̃c,tot(µlc), T̃cycle(µlc)

]>
,

ψT =
[
L̃c,tot(µT), T̃cycle(µT)

]>
,

ρ = (1− ζ)ψlc + ζψT,

0 ≤ ζ ≤ 1,

(5.11)

where a point ψ on a Pareto frontier Ψ corresponds to the point ρ on the CHIM obtained at

a weighting factor ζ.

Under a time-�xed case, the corresponding Pareto-optimal solution ψ can be directly obtained

without the need for generating Ψ by solving the single objective problem

min
µ
Lc,tot(µ) (5.12)
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L̃c,tot

T̃cycle

ψlc
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ρ
ψ

Feasible
region

Infeasible

region

O

Fig. 5.2: An illustration of the reformulated optimization problem (5.9) with the feasible
region reduced by the normalized normal constraint inequality constraint (5.10). The utopia
point is marked by the origin O.

subject to (5.5) and a cycle time constraint

Tcycle(µ)− T�xed(µ) = 0 (5.13)

where T�xed is the �xed cycle time de�ned by a user.

5.2.2 Optimization constraints

In order to ensure that a Pareto optimal solution is implementable in a real feed drive system,

kinematic limitations for the kth axis must be incorporated as optimization constraints. Hence,

kinematic constraints

(
...
r k(t))

2 − j2lim,k ≤ 0

(r̈k(t))
2 − a2lim,k ≤ 0

(ṙk(t))
2 − v2lim,k ≤ 0

 , ∀t (5.14)

are de�ned, where rk is a trajectory position and jlim,k, alim,k, and vlim,k are the respective jerk,

acceleration and velocity limits. (5.14) is described in a quadratic form so as to guarantee

di�erentiability ∀µ ≥ 0. At each corner, the mth cornering error is bounded by the constraints

εm − εub,m ≤0. (5.15)
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Geometric constraints

‖pc,m − pc,m−1‖2 − [Lc,m−1 + sm + Lc,m] = 0 (5.16)

are de�ned in order to avoid overlapping the (m − 1)th and mth cornering paths, where sm is

the path length of the linear segment between the smoothed corners. In order to ensure Cn

smoothness when motion switches from lines to cornering paths and vice versa at time instants

tms, continuity constraints

r
(n)
l (tms)− r(n)c (tms) = 0,

r
(n−1)
l (tms)− r(n−1)c (tms) = 0,

...

ṙl(tms)− ṙc(tms) = 0,

rl(tms)− rc(tms) = 0

(5.17)

are established, where the motion pro�les for linear and cornering paths are respectively rl and

rc.

5.2.3 Pareto generation

Ψ is generated using the divide and conquer algorithm recursive structure [36], where (5.9) is

solved by SQP [9, 33, 62] for di�erent ζ. In this work, the Pareto optimal point that is nearest

to the utopia point is considered to be the best trade-o� solution

ψ∗ = argmin
ψ
‖Ψ‖2, (5.18)

obtained at the weighting factor ζ∗ which corresponds to the parameter vector µ∗ in the decision

space. Algorithm 4 shows a pseudo code of the optimization process. A candidate solution ψm

is added into a Pareto set Ψ only if it passes removal [53] and signi�cance criteria.
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For an MOOP with mo objectives, the removal criterion detects non-Pareto regions by checking

whether any of the �rst mo − 1 elements of a permuted Lagrange multiplier vector

ν̂i =
1

mo − 1
E−1Pmo−iE

[
ν1, . . . , νmo−1,

mo−1∑
i=1

νi

]>
i ∈ {mo,mo − 1, . . . , 1}

(5.19)

are not positive, where E = 1mo − Imo and νi is the i
th NNC inequality constraint Lagrange

multiplier. P , 1mo and Imo are mo ×mo permutation, all-ones and identity matrices, respec-

tively.

ψm, with neighboring points ψl = [ψl,1, ψl,2]
> and ψu = [ψu,1, ψu,2]

>, is considered to be a

signi�cant Pareto optimal point if

min

(
|ψl,1 − ψm,1|, |ψl,2 − ψm,2|, |ψu,1 − ψm,1|, |ψu,2 − ψm,2|

)
≥ δmin, (5.20)

where δmin is a user-speci�ed minimum trade-o� level. Since the removal and signi�cance criteria

cannot distinguish between local and global Pareto regions, a Pareto �lter [55] is implemented

to retain only global Pareto points once the divide and conquer loop is terminated.

5.2.4 Trajectory representation

This section illustrates the motion pro�les used for Pareto-optimal trajectory design. With

no loss in generality, C2 motion continuity is selected in this study, where JLAP and KCSIA

respectively de�ne linear and cornering motions.

5.2.4.1 Jerk-limited acceleration pro�le

JLAPs are C2 continuous motion pro�les that connect two points by providing acceleration,

constant velocity and deceleration phases while obeying boundary conditions and restrictions
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on jerk, acceleration and velocity [27, 84]. A JLAP jerk pro�le

...
r l,k(t) =



jmax,k, t0,l ≤ t < t1,a,

0, t1,a ≤ t < t2,a,

−jmax,k, t2,a ≤ t < t3,a,

0, t3,a ≤ t < tcon

−jmax,k, tcon ≤ t < t1,d,

0, t1,d ≤ t < t2,d,

jmax,k, t2,d ≤ t < tl

(5.21)

is de�ned, where jmax,k is the kth axis maximum jerk magnitude in the motion. The time

intervals t0,l ≤ t < t3,a, t3,a ≤ t < tcon and tcon ≤ t < tl are respectively the acceleration,

constant velocity and deceleration phases. The total motion duration

Tl = T1,a + T2,a + T3,a + Tcon + T1,d + T2,d + T3,d (5.22)

is obtained as a sum of time intervals

T1,a = t1,a − t0,l,

T2,a = t2,a − t1,a,

T3,a = t3,a − t2,a,

Tcon = tcon − t3,a,

T1,d = t1,d − tcon,

T2,d = t2,d − t1,d,

T3,d = tl − t2,d

(5.23)

that are computed according to kinematic constraints (5.14) and boundary conditions (5.17).

By successive integration of (5.21), the kth axis total displacement

∆rl,k = vs,l,kTl +
1

2
as,l,kT

2
l + jmax,k

[
1

6
(T1,a − T3,a)3 −

1

6
(T1,d − T3,d)3

+
1

2
T1,a (T1,a + T2,a) (T2,a + 2T3,a)−

1

2
T1,d (T1,d + T2,d) (T2,d + 2T3,d)

+ (Tcon + Td)
{
T1,a (T2,a + T3,a) +

1

2
(T1,a − T3,a) (T1,a + T3,a + Tcon + Td)

}]
(5.24)
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5.2. Pareto-optimal trajectory design

is derived with Td = T1,d +T2,d +T3,d, where the path length s = ‖∆rl‖2. vs,l,k and as,l,k are the
respective kth axis velocity and acceleration components at the linear segment start. Thus, a

JLAP can be optimized by describing a parameter vector

µl = [T1,a, T2,a, T3,a, Tcon, T1,d, T2,d, T3,d] . (5.25)

For JLAPs, kinematic constraints (5.14) are implemented as:

j2max,m,k − j2lim,k = 0

(as,l,k + jmax,m,kT1,a,m)2 − a2lim,k ≤ 0

(jmax,m,kT1,d,m)2 − a2lim,k ≤ 0

v2con,m,k − v2lim,k ≤ 0


,

m ∈ {1, 2, . . . , nl} ,

(5.26)

with a maximum kth axis velocity

vcon,m,k = vs,l,m,k + as,l,m,k (T1,a,m + T2,a,m + T3,a,m) +
1

2
jmax,m,k

(
T 2
1,a,m − T 2

3,a,m

)
+ jmax,m,kT1,a,m (T2,a,m + T3,a,m) (5.27)

along the mth linear segment.

5.2.4.2 Kinematic corner smoothing with interrupted acceleration

KCSIA is a 2D method of generating near time-optimal C2 continuous cornering motions by

analytically calculating the cornering velocities, accelerations and durations while enforcing

zero acceleration and the same tangential velocities Vc at motion boundaries and obeying user-

speci�ed cornering tolerances and kinematic constraints [84]. Based on JLAPs, its jerk pro�le

...
r c,k(t) =


jc,k, t0,c ≤ t < t1,c,

0, t1,c ≤ t < t2,c,

−jc,k, t2,c ≤ t < tc,

(5.28)

91



5. Pareto Optimization of Cycle Time and . . . 5.2. Pareto-optimal trajectory design

is de�ned with

jc,k =
ve,c,k − vs,c,k

T1,c (T1,c + T2,c)
,

vs,c,k = Vchs,k,

ve,c,k = Vche,k,

ac,k = jc,kT1,c,

T1,c = t1,c − t0,c
= tc − t2,c,

T2,c = t2,c − t1,c.

(5.29)

jc,k is the cornering jerk. By successive integration of (5.28), a cornering path

rc,k(t) =



ps,k + vs,c,k (t− t0,c) + 1
6
jc,k (t− t0,c)3 ,

t0,c ≤ t < t1,c,

p1,k + vs,c,k (t− t1,c)

+1
2
jc,kT1,c (t− t1,c) (T1,c + t− t1,c) ,

t1,c ≤ t < t2,c,

p2,k + vs,c,k (t− t2,c)

+1
2
jc,kT1,c (t− t2,c) (T1,c + 2T2,c + t− t2,c)

−1
6
jc,k (t− t2,c)3

t2,c ≤ t < tc

(5.30)

is de�ned with

p1,k = ps,k + vs,c,kT1,c +
1

6
jc,kT

3
1,c,

p2,k = p1,k + vs,c,kT2,c +
1

2
jc,kT1,cT2,c (T1,c + T2,c) ,

(5.31)

where ps,k is the kth axis coordinate of the cornering path starting point. The kth axis total

displacement while traversing the cornering path

∆rc,k =

{
vs,c,k +

1

2
jc,kT1,c (T1,c + T2,c)

}
Tc (5.32)
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is obtained from (5.30), where Tc = 2T1,c + T2,c is the total motion duration. The cornering

Euclidean length

Lc =
∆rc,k

(hs,k + he,k)
=

1

2
VcTc (5.33)

is derived. The position vector elements at the start, middle and end of the cornering path are

ps,k = pc,k − Lchs,k,

pmid,k = ps,k + vs,c,k

[
T1,c +

T2,c
2

]
+

1

2
jc,kT1,c

(
T2,c
2

2)
+ jc,k

[
1

6
T 3
1,c +

1

2
T 2
1,c

(
T2,c
2

)]
and

pe,k = pc,k + Lche,k,

(5.34)

respectively, where the cornering error ε = ‖pc − pmid‖2 is derived as

ε =
Vc
{
T 2
1,c + 3 (T1,c + T2,c)

2}
24 (T1,c + T2,c)

‖he − hs‖2. (5.35)

For the mth corner, KCSIA solves the optimization problem

max
µc

Vc,m

µc,m = [Vc,m, T1,c,m, T2,c,m]
(5.36)

subject to (5.14)�(5.16) and −uc,m ≤ 0. This is followed by the generation of the mth cornering

path, where the start/end points are obtained from (5.33) - (5.34) and the path is plotted

using (5.30). Afterwards, motions along the line segments that connect the cornering paths are

stitched using time optimal JLAP.
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In order to solve (5.9) or (5.12), (5.35) is incorporated in the cornering constraints (5.15). The

kinematic constraints (5.14) are realized in the form of

j2c,m,k − j2lim,k ≤ 0

a2c,m,k − a2lim,k ≤ 0

v2s,c,m,k − v2lim,k ≤ 0

v2e,c,m,k − v2lim,k ≤ 0


, m ∈ {1, 2, . . . , nc} . (5.37)

The geometric constraints (5.16) are implemented in a decoupled form

pc,m,k − pc,m−1,k − [Lc,m−1 + Lc,m]hs,m,k

−∆rl,m,k = 0,

m ∈ {1, 2, . . . , nl} .

(5.38)

C2 continuity constraints are established by setting

ae,l,m = r̈c,m(t0,c) = 0

as,l,m+1 = r̈c,m(tc) = 0

ve,l,m − vs,c,m = 0

vs,l,m+1 − ve,c,m = 0

pe,l,m − ps,m = 0

ps,l,m+1 − pe,m = 0


,m ∈ {1, 2, . . . , nc} (5.39)

where ae,l,m and ve,l,m are the acceleration and velocity vectors at the end of the mth linear

motion. ps,l,m and pe,l,m are the start and end position vectors of the mth linear motion. All

solutions of (5.9) or (5.12) are hereafter referred to as KCSIA* solutions. From each solution, a

Pareto-optimal trajectory is generated by plotting linear segment and cornering trajectories in

succession according to (5.21) and (5.30), where the linear segment and cornering path variables

are retrieved from µ.
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5.2.4.3 Space complexity analysis

Space complexity is described as the memory resource required to execute a computation [34].

For an optimization problem with nvar variables and ncon constraints, a typical SQP solver

requires a O(n2
var + nvarncon) long double precision working array [70]. KCSIA* consists of

nvar = nldim(µl) + ncdim(µc), (5.40)

variables, where dim(.) denotes vector dimension. According to (5.25) and (5.36), nvar =

10nl−3. With reference to (5.15), (5.26) and (5.37)�(5.39), ncon = 32nl−21. Hence, the KCSIA*

memory demand is double precision working array of length O (420n2
l − 366nl + 72) ≈ O(n2

l ).

In contrast, KCSIA has a O(1) memory demand since it separately optimizes each corner and

linear segment.

5.3 Results and discussions

The validity of the proposed method is tested in this section. The validation process constitutes

the generation of Pareto-optimal trajectories for a given piecewise linear contour. Subsequently,

contouring error performance experiments are conducted for selected optimal trajectories. Ex-

perimental results are compared with KCSIA.

5.3.1 Optimization conditions

The experimental system setup in Section. 2.1.3 with kinematic limits: j lim = [50000, 50000]

mm/s3, alim = [1000, 1000]mm/s2 and vlim = [80, 80]mm/s is used for verifying the proposed

method. The cornering tolerance at each corner is speci�ed as 0 < ε ≤ 200µm. An SQP

implementation in MATLAB® environment is used to solve (5.9) on a laptop computer having

the speci�cations: core i7 intel processor, 2.50GHz CPU, 8GB RAM andWindows 10 operating

system. The minimum trade-o� level δmin = 0.02 is used in the divide and conquer algorithm.

In order to verify the e�ectiveness of the proposed method, an experiment is conducted on

the industrial biaxial table. KCSIA and ζ = {0, 0.25, ζ∗, 0.75, 1} KCSIA* motion pro�les are
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Fig. 5.3: The star-shaped tool path used for Pareto-optimal trajectory generation. The
motion direction is shown by the arrow. Details 1 and 2 show the cornering motions at
di�erent weighting factors ζ for the acute and obtuse corners, respectively.

fed into the experimental setup as reference trajectories, where 10 trials are conducted to

check for the repeatability of results for each trajectory. In this work, the contouring error

estimation method in [30] is used, where contouring errors are computed with respect to the

original piecewise linear tool paths. In this study, star-shaped (Section 5.3.2) and complex

(Section 5.3.3) tool paths are considered for optimal trajectory generation and experimental

veri�cation.

5.3.2 Case I: Star-shaped tool path

The star-shaped tool path in Fig. 5.3 is considered for generating Pareto optimal trajectories.

This path consists of acute and obtuse corners to check the validity of the proposed method in

generating trajectories that trade o� cycle time with corner smoothing.
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Fig. 5.4: Optimization results of the star-shaped tool path represented as a Pareto frontier.

Table 5.1: Results summary of Pareto-optimal solutions for the star-shaped tool path

Solution
Weighting factor Total cornering Euclidean length Cycle Time Reduction relative to KCSIA

ζ Lc,totmm Tcycle s Lc,tot % Tcycle %

KCSIA - 7.202 3.513 - -
KCSIA* : Tcycle optimal 1 5.422 3.496 ∼25 ∼0.5
KCSIA* : Lc,tot optimal 0 4.614×10-6 3.739 ∼100 ∼-6
KCSIA* : Best trade-o� ζ∗ = 0.53125 2.713 3.602 ∼62 ∼-3

5.3.2.1 Optimization results

The KCSIA* Pareto frontier is shown in Fig. 5.4, where KCSIA is a dominated solution. The

time-optimal KCSIA* solution is a 0.017 s (i.e., ∼0.5%) faster cycle time and 1.780mm (i.e.,

∼25%) less corner smoothing than KCSIA. KCSIA has an inferior solution since it maximizes

cornering velocities, consequently maximizing the cornering Euclidean lengths as shown in

(5.33) and (5.36). This results in KCSIA having a reduced cycle time at the cost of a high total

cornering Euclidean length (i.e., high cornering errors), while KCSIA* considers both objectives

and provides a better performance.

The best trade-o� KCSIA* solution is located at ζ∗ = 0.53125. It o�ers 2.709mm less corner

smoothing than the KCSIA* time-optimal result while being 0.137 s faster than the minimum

corner smoothing result. This corresponds to achieving ∼53% and ∼53% of the available cycle

time and corner smoothing saving potentials. The optimization results are summarized in Table

5.1.
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Fig. 5.5: An illustration of Pareto optimal jerk, acceleration and velocity pro�les of the star-
shaped tool path corresponding to di�erent weighting factors ζ, where kinematic constraints
(5.14) are obeyed ∀ζ.

Fig. 5.5 shows the KCSIA* jerk, acceleration and velocity pro�les for x1 and x2 axes at

di�erent ζ values. All pro�les are within the pre-de�ned kinematic constraints (5.14). As

ζ → 1, Tcycle → Tmin, where at the time-optimal KCSIA* has a shorter Tcycle than KCSIA. The

KCSIA and KCSIA* tangential velocities are depicted in Fig. 5.6(a). At both acute and obtuse

corners, KCSIA has higher cornering velocities than KCSIA* for ζ 6= 1. This is a consequence

of (5.36), where the upper bound cornering constraints are activated to maximize velocity as

shown in Fig. 5.6(b). For KCSIA*, the cornering velocities and εm depend on ζ, where both

parameters increase as ζ → 1 and vice-versa. The correspondence between εm (Fig. 5.6(b))

and the generated cornering paths is shown in details 1 and 2 of Fig. 5.3.

The computation time for generating the Pareto frontier (Fig. 5.4) at δmin = 0.02 is 188.865 s,

where it takes 0.861 s to compute the anchor points (5.7) and 188.865 s to perform the divide

and conquer recursions. The average computation time per Pareto-optimal solution is 6.092 s.

The choice of δmin a�ects computation time and the approximation of the best trade-o� solution

since it is a measure of Pareto frontier resolution. Table 5.2 shows in�uence of δmin on the best

trade-o� solution and computation time.

98



5.3. Results and discussions

0 0.5 1 1.5 2 2.5 3 3.5

Time [s]

0

20

40

60

80

100

T
an

g
en

ti
al

 v
el

o
ci

ty
 [

m
m

/s
]

ζ = 0

ζ = 0.25

ζ = ζ∗

ζ = 0.75

ζ = 1

KCSIA

(a)

1 2 3 4 5 6 7

Corner position

0

50

100

150

200

C
or
n
er
in
g
er
ro
r

ε
[µ
m
]

ζ = 0
ζ = 0.25

ζ = ζ∗

ζ = 0.75
ζ = 1
KCSIA

(b)

Fig. 5.6: Tangential velocities and cornering errors of Pareto optimal trajectories for the star-
shaped tool path at di�erent weighting factors ζ, where ε is within the cornering constraints
(5.15).

Table 5.2: In�uence the minimum trade-o� level on the optimization process

Min. trade-o� level
Best trade-o� solution ψ∗

Computation time
Weighting factor Total cornering Euclidean length Cycle Time

δmin ζ∗ Lc,totmm Tcycle s s

0.01 0.51560 2.630 3.606 306.775
0.02 0.53125 2.713 3.602 188.865
0.04 0.5 2.600 3.610 81.030
0.08 0.5 2.600 3.610 31.015

5.3.2.2 Experimental results

KCSIA* has lower error peaks at acute cornering instances than KCSIA and KCSIA* error

tends to decrease as ζ → 0 at obtuse corners (see Fig. 5.7). The KCSIA* contouring errors are

within the pre-de�ned cornering tolerance (i.e., 0 < ε ≤ 200µm). The maximum and average

contouring errors of each trajectory for all the trials are illustrated in Fig. 5.8, where it is

shown that KCSIA* has a better performance than KCSIA. Since instantaneous contouring

errors spike at corners as a result of non-zero trajectory curvature, the maximum errors are
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Table 5.3: Experimental results summary of contouring performance for the star-shaped tool
path

Contouring error

Trajectory Weighting factor Maximum Average Reduction relative to KCSIA

ζ µm µm Maximum % Average %

KCSIA - 198.48 14.99 - -
KCSIA*: Tcycle optimal 1 197.27 13.86 ∼1 ∼8
KCSIA*: Lc,tot optimal 0 55.26 9.89 ∼72 ∼34
KCSIA*: Best trade-o� ζ∗ = 0.53125 104.15 11.18 ∼48 ∼25

signi�cantly higher than the average ones (Fig. 5.7). Contouring error tends to increase as

cycle time is reduced (i.e., ζ → 1). This is attributed to increased cornering velocities (see Fig.

5.6(a)).

The maximum contouring errors for ζ = 0 are non-zero minima ∀ζ even though the cornering

errors εm of the reference trajectory are approximately zero (Fig. 5.6(b)). This is the result of

vibrations caused by non-linear frictional characteristics such stick-slip and Stribeck e�ects in

pre-sliding regimes and near zero velocity instances, respectively [45].

A 1σ standard deviation is used to validate the contour error results, where Fig. 5.9 shows

the consistency of KCSIA* in performing better than KCSIA and the ζ∗ KCSIA* trajectory

having the best trade-o� between cycle time and contouring error. Table 5.3 summarizes the

experimental results of contouring performance.

The experimental results indicate that the objectives of reducing cycle time and improving

accuracy are contradictory, as illustrated in Fig. 5.9, where the best trade-o� solution is selected

as the one that is nearest to the unattainable utopia solution. This study also depicts a

correlation between corner smoothing and contouring error (Figs. 5.4 and 5.9 in Section 5.3.2,

where this result is in agreement with the �ndings of [30, 63].

Contrary to kinematic local corner smoothing approaches proposed in [42, 73, 74, 84, 86, 98,

100], that achieve near time optimality, where motions at each smooth corner and linear segment

are computed separately, the proposed approach generates Pareto-optimal motions for the entire

smoothed path. This contrast allows the proposed method to have better results in accuracy

and cycle time while KCSIA produces a dominated solution as shown in Figs. 5.4 and 5.9.
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Fig. 5.7: The 7th trial contouring error performance for the star-shaped tool path. The error
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Fig. 5.8: Contouring performance experimental results for the star-shaped tool path.

5.3.3 Case II: Complex tool path

A relatively complicated tool path in the shape of a butter�y (Fig. 5.10) is used to study the

e�ectiveness and limitations of the proposed approach. The path consists of 50 corner points

that are interconnected with linear segments having lengths ranging between 0.3 and 6.1mm.

5.3.3.1 Optimization results

Pareto-optimal solutions of KCSIA* are represented in Fig. 5.11. The KCSIA solution is

infeasible since it consists of overlapping cornering paths as shown in detail 2 of Fig. 5.10.
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Table 5.4: Results summary of the Pareto optimal solutions for the complex tool path

Solution
Weighting factor Total cornering Euclidean length Cycle Time Reduction relative to KCSIA* : Tcycle optimal

ζ Lc,totmm Tcycle s Lc,tot % Tcycle %

KCSIA* : Tcycle optimal 1 25.383 4.580 - -
KCSIA* : Lc,tot optimal 0 1.421×10-4 6.306 ∼100 ∼-38
KCSIA* : Best trade-o� ζ∗ = 0.5 10.117 5.268 ∼40 ∼-15

This is because KCSIA produces cornering motions in isolation from preceding and succeeding

corner points. On other hand, as depicted in detail 1 of Fig. 5.10, KCSIA* avoids cornering

path overlap by considering the geometric constraints (5.16). The best trade-o� solution is

located at ζ∗ = 0.5, where it reduces corner smoothing by ∼40% while it increases cycle time

by ∼15% relative to the time-optimal KCSIA* solution. A summary of the optimization results

is shown in Table 5.4. At δmin = 0.02, the computation time required to generate the Pareto

frontier (Fig. 5.11) is 80,011.571 s, where the anchor points are computed in 633.501 s and

the divide and conquer recursions are done in 79,378.070 s. The average computation time per

Pareto-optimal solution is 2963.392 s.

The generated jerk, acceleration and velocity pro�les for di�erent ζ values are within the speci-

�ed kinematic constraints as shown in Fig. 5.12. The axial velocity constraints are not activated

due to the proximity of corner points. Fig. 5.13 shows the extent of corner smoothing at dif-

ferent ζ values. As ζ → 1, cornering errors tend to approach the upper bound of the tolerance

in order to reduce cycle time.
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Fig. 5.10: The butter�y-shaped path tool path used to represent complex paths in trajectory
generation. The motion direction is shown by the dashed arrow.

5.3.3.2 Experimental results

Contouring error pro�les for di�erent ζ values are depicted in Fig. 5.14, where the maximum

errors tend to be within the pre-de�ned cornering tolerance (i.e., 0 < ε ≤ 200µm). Fig. 5.15

shows the maximum and average contouring errors of each trial. Similar to Section 5.3.2.2, the

maximum contouring errors tend to decrease as ζ → 0, where non-zero minima are obtained at

ζ = 0. The impact of vibrations at corner points with εm ≈ 0, by which the motion must stop

once and cause a larger tracking error, is shown in Fig. 5.15(b), where the average contouring

errors increase as ζ decreases beyond ζ∗. Pareto-optimal trajectories which are generated at
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Fig. 5.11: Optimization results for the complex tool path represented as a Pareto frontier.
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(a) x1 axis Pareto optimal trajectories
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(b) x2 axis Pareto optimal trajectories

Fig. 5.12: An illustration of Pareto-optimal jerk, acceleration and velocity pro�les of the
complex tool path corresponding to di�erent weighting factors ζ, where kinematic constraints
(5.14) are obeyed ∀ζ.

ζ < ζ∗ have a higher number of corner points with εm ≈ 0 than those generated at ζ ≥ ζ∗ (Fig.

5.13).

The repeatability in the maximum and average contouring error results is shown by the 1σ stan-

dard deviations in Fig. 5.16. The best trade-o� KCSIA* trajectory shows the best compromise

between cycle time and maximum/average contouring error. A summary of the experimental

results is depicted in Table 5.5.
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Fig. 5.13: Cornering errors of Pareto-optimal trajectories of the complex tool path at di�erent
weighting factors ζ, where ε is within the cornering constraints (5.15).
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Fig. 5.14: The 3rd trial contouring error performance for the complex tool path. The error
tends to be within the set cornering tolerance 0 < ε ≤ 200µm

The experiments results indicate that the two objectives are contradictory even for complex tool

paths, as illustrated in Fig. 5.16. The correlation between corner smoothing and contouring

error is also maintained (Fig. 5.11 and 5.16). The proposed method can also avoid cornering

path overlaps while maintaining Pareto-optimality (detail 1 in Fig. 5.10). The computation

time of the optimization process is also dependent on the number of linear segments, where it

rapidly grows as the number of linear segments increases.

Although signi�cant computation time is required for the complex toolpath in Section 5.3.3,

there still exist many mechanical parts consisting of simple and moderate number of linear

segments. Hence, the proposed method is e�ective for such parts.
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Fig. 5.15: Contouring performance experimental results for the complex tool path.

Table 5.5: Experimental results summary of contouring performance for the complex tool
path

Contouring error

Trajectory Weighting factor Maximum Average Reduction relative to KCSIA*: Tcycle optimal

ζ µm µm Maximum % Average %

KCSIA*: Tcycle optimal 1 209.07 17.62 - -
KCSIA*: Lc,tot optimal 0 90.53 16.76 ∼57 ∼5
KCSIA*: Best trade-o� ζ∗ = 0.53125 89.49 15.33 ∼57 ∼13

5.4 Summary

This chapter proposes a method of Pareto-optimal corner smoothing to trade-o� between cycle

time and motion accuracy for industrial feed drive systems with piecewise linear contours. The

total cornering Euclidean length is used as a motion accuracy representative in the BOOP

formulated by the NNC approach, where kinematic limits, continuity conditions and a user-

speci�ed cornering tolerance are described as constraints. JLAPs describe linear motions, while

a modi�ed KCSIA de�nes smooth corner pro�les. A Pareto frontier is generated by the divide

and conquer algorithm, where the solution nearest to the utopia point is selected as the best

trade-o� solution. The proposed method's e�ectiveness is veri�ed via experiments. Relative

to KCSIA, the best trade-o� solution reduces the maximum and average contouring errors by

∼48% and ∼25% while it increases cycle time by ∼3%.
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Fig. 5.16: Experimental contouring performance for the complex tool path.
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Algorithm 4 Trajectory optimization algorithm

1: function trajectoryOptimizer(pcs, εub, jlim,k, alim,k, vlim,k, δmin)
2: compute anchor points . See (5.7)
3: Ψ← {ψlc,ψT} . Pareto frontier Initialization
4: ψl ← ψlc . Initial lower parent point
5: ψu ← ψT . Initial upper parent point
6: {ζl, ζu} ← {0, 1} . Parent point weighting factor initialization
7: Z ← {ζl, ζu} . Weighting factor set initialization

. Divide and conquer loop
8: while true do

9: ζm ← 0.5 (ζl + ζu) . Compute weighting factor median
10: ψm ← solve (5.9) at ζ = ζm
11: br ← removalCriterion(ψm) . See (5.19)
12: bs ← sign�canceCriterion(ψm,ψl,ψu, δmin) . See (5.20)
13: if bs then . ψm is signi�cant
14: if !br then . ψm should not be removed
15: Ψ← {Ψ,ψm}
16: Z ← {Z, ζm}
17: Ψ← sort(Ψ) . Sort in ascending order of ζ
18: Z ← sort(Z)
19: end if

20: ψu ← ψm . Update upper parent point
21: ζu ← ζm
22: else . ψm is insigni�cant
23: ψl ← ψu . Update lower parent point
24: ζl ← ζu
25: if ζl < 1 then
26: ψu ← the point proceding ψl in Ψ
27: ζu ← the �rst ζ > ζu in Z
28: else

29: break . Terminate the divide and conquer loop
30: end if

31: end if

32: end while

33: Ψ← paretoFilter(Ψ) . From [55]
34: ψ∗ ← compute (5.18)
35: µ∗ ← map ψ∗ in the decision space
36: return (Ψ,ψ∗,µ∗)
37: end function
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

CNC machine tool technology is faced with the challenge of striving towards con�icting goals of

saving energy, cycle time reduction and accuracy improvement. The proposed solutions in the

literature fail to address this challenge by either having applicability restrictions or an inability

to consider multiple objectives. Thus, the motive of this thesis is to propose solutions to the

multi-objective challenge that apply to in-service and future CNC machinery. To this end,

Pareto-optimal trajectory generation methods have been proposed. In the order in which they

are presented in the thesis, the following conclusions are drawn:

� A trajectory generation method that provides a trade-o� between energy consumption

and cornering error under user-speci�ed cycle time restrictions is presented in Chapter 3.

The proposed method solves the BOOP to produce a Pareto frontier, where each solution

corresponds to a trajectory adhering to kinematic limits, cornering, cycle time and C2

continuity constraints. A Pareto-optimal trajectory consisting of linear and cornering

segments is represented by JLAPs and KCSIA, respectively. The solution that is nearest

to the objective utopia is selected as the best compromising trajectory.
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� Chapter 4 presents Pareto-optimal corner smoothing of piecewise linear contours to com-

promise cycle time reduction with saving energy under kinematic, cornering and C2 con-

tinuity constraints. Motions along linear segments are described by JLAPs. KCSIA and

KCSUA are considered for pro�ling cornering motions. An LSE-based identi�cation ap-

proach is presented for modeling the energy consumed by an industrial feed drive system

experimental setup. The identi�ed energy consumption model is used in the NNC for-

mulation of the BOOP. Pareto frontiers for KCSIA and KCSUA are generated by the

divide and conquer algorithm and compared with a PTP motion case. Simulation and

experimental results show that KCSIA and KCSUA Pareto frontiers have a better perfor-

mance compared to PTP. KCSIA o�ers the best trade-o� solution, where it respectively

achieves ∼66% and ∼60% of the time and energy-saving potentials computed relative to

the overall extrema among the three cases.

� A method that o�ers a trade-o� between cycle time and motion accuracy by Pareto-

optimization is proposed in Chapter 5. The method uses the total cornering Euclidean

length to represent the extent of corner smoothing along an entire piecewise linear contour,

where kinematic limits, continuity conditions and a user-speci�ed cornering tolerance are

described as constraints. The BOOP formulated by the NNC approach, where a Pareto

frontier is generated by the divide and conquer algorithm. Linear and cornering motions

are described by JLAPs and KCSIA*. Experimental results validate the Pareto optimality

of the generated solutions, where the best trade-o� solution reduces the maximum and

average contouring errors by ∼48% and ∼25% while it increases cycle time by ∼3%.

6.2 Future works

The proposed methods can be further improved or extended by considering the following av-

enues:

� The method in Chapter 3 o�ers a trade-o� between energy consumption and cornering

error but assumes identical cornering errors at all corners. Better Pareto-optimal results

may be obtained by removing this constraint. In order to achieve this without expanding
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the objective space dimensions, the corner smoothing minimization objective used in

Chapter 5 can be used.

� In the case of machining operations, cutting forces increase the amount of energy consump-

tion signi�cantly. Cutting force and energy consumption models for machining operations

can be acquired using a method similar to [39] and incorporated in formulating a MOOP

as an extension to the method in Chapter 4.

� Although the trajectory generation method for trading o� between cycle time and energy

consumption (Chapter 4) can be applied to nonlinear mechanical systems under the con-

dition that the nonlinearities are identi�able, the LSE-based energy model identi�cation

method presented in Section 4.2.1 is limited by the system dynamics (2.1) selected in

this thesis. This is due to the fact that the constraints (4.3) used in the identi�cation

process are derived from the system dynamics. Thus, considerations for energy consump-

tion model identi�cation of nonlinear mechanical systems and a generalized identi�cation

approach are left as future works.

� The trajectory generation method for compromising between cycle time and energy con-

sumption (Chapter 4) can be extended for smooth contours. The trajectory parameter

vector µ in (4.37) can modi�ed to describe such contours. The formulations of the ob-

jective function (4.37) and constraints ((4.31) and (4.38)) remain unchanged regardless

of the contour (smooth or piecewise linear). This extension shall be explored as future

works.

� The proposed methods are limited to symmetrical line-to-line corner transitions. Asym-

metry in corner smoothing increases the degree of freedom in the optimization process,

and thus, possibly provides better Pareto-optimal solutions. Consideration for transitions

other than line-to-line ones can generalize the proposed approaches.

� As local corner smoothing approaches, the proposed methods may fail to �nd solutions

if the lower bound of cornering tolerance is relatively high compared to the corner point

proximity. Pareto optimal global corner smoothing considerations are left as future work.

� The method in Chapter 5 requires signi�cant computational resources for complex tool-

paths with many corner points. Computational cost reduction is left as future works.
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� Since the method in Chapter 5 does not include actual contouring error measurements

in the optimization process, the highest achievable cornering accuracy is limited by the

feed drive system controller. Feed forward compensation strategies [38, 49, 50] can be

incorporated in the optimization process to overcome controller limitations and improve

the proposed method's performance. This research avenue will be considered as future

works.

� In this thesis, a �xed controller was used as a representation of inaccessible controllers that

commonly occur in industrial CNC machine tools. Under the assumption that a controller

is accessible, controller parameters can be optimized together with the trajectory. In

future works, controller and trajectory optimization considerations shall be explored.

� The methods in Chapter 3�5 can be extended to 5-axis CNC machine tool applications

by incorporating tool position and orientation tolerances at corners in the BOOPs.

� The results of Chapters 3�5 con�rm that the pairs of objectives are contradictory. Thus,

it is possible to the proposed approaches by considering all the objectives in one MOOP

formulation, and thus, generating a Pareto surface of solutions.
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