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Abstract
In recent years, much attention is given to autonomous vehicles and mobile robots. In industry
and households, mobile robots are deployed for a variety of tasks. A growing interest is in
mobile robots in households, where it is used for lawn mowing and vacuum cleaning. Mobile
robots are also commonly used for space exploration, specifically on Mars, Mars rovers like
curiosity are used to explore the environment, and for cleaning train stations and industrial
facilities. The above mentioned mobile robots are using path planning algorithms to fulfill their
tasks. In general, these path planning tasks are divided into coverage path planning (CPP) and
point-to-point (PTP) path planning. The former generates paths with an objective of moving
everywhere in a preassigned area and the latter generates paths from a starting position to a
goal position while avoiding obstacles. Challenges in these areas differ, CPP is in general used
in known bounded environments, while PTP is often used in unknown, uncertain, dynamic
environments.
Generally, mobile robots have a limit power supply due to the fact that they have to carry
their own batteries. Thus, CPP is a power demanding problem for mobile robots. Therefore,
one of the objectives of this dissertation is an algorithm that generates optimal CPP paths
in known bounded environments, where the objective of the cost function is either traveling
time, repetitive visits or energy consumption. The second objective of this dissertation is a
probabilistic robust PTP path planner that generates probabilistic safe paths in real-time under
state and environment uncertainties.

Part I of this dissertation presents new optimal offline approaches to solve the CPP problem.
A novel hybrid genetic algorithm (HGA), which uses the turn-away starting point (TASP) and
backtracking spiral algorithms (BSA) for performing local searches, is proposed for grid-based
environmental representations. Three different variations of the HGA are proposed based on
the underlying local search algorithm: HGA/BSA using the BSA for local search, HGA/TASP
using the TASP algorithm and HGA/Both which uses both algorithms for the local search pro-
cedure. The HGA algorithms are validated using the following three different fitness functions:
the number of cell visits, traveling time, and a new energy fitness function based one exper-
imentally acquired energy values of fundamental motions. Computational results show that
compared to conventional methods, HGA improves paths up to 38 %; moreover, HGAs have a
consistent fitness for different starting positions in an environment. Furthermore, experimental
results prove the validity of the fitness function. It was shown, that the HGA/BSA finds
good solutions for the number of visited cells, whereas the HGA/TASP provides better solu-
tions for the traveling time. Both variations showed good results using energy consumption as
fitness function. Furthermore, HGA/TASP has the fastest computation time among the HGAs.



Part II of the dissertation focuses on control approaches for parking and generating paths
to a specific goal pose, where the focus is in particular on probabilistic robust path planning.
A hybrid systems approach to garage parking of a differential drive mobile robot is proposed
in this dissertation. The proposed system consists of three system states, in which each system
state converges to its desired control value and then switches to the next state. Two system
states use input-output linearization for multiple input multiple output (MIMO) systems to
conduct exact linearization of the plant, which can then be controlled by a linear controller.
Simulation and experimental results show that the robot converges to its desired states and
safely parks at the final position in a reasonable time.
To guarantee safe motion planning, the underlying path planning algorithm must consider
motion uncertainties and uncertain state information related to static, and dynamic obstacles.
This dissertation proposes novel hybrid A* (HA*) algorithms that consider the uncertainty in
the motion of a mobile robot, position uncertainty of static obstacles, and position and velocity
uncertainty of dynamic obstacles. A variant of the HA* algorithm is proposed in this disserta-
tion that uses a soft constraint in the cost function instead of chance constraints for probability
guarantees, this algorithm offers a trade-off between the traveling distance and safety of the
path without pruning any additional nodes. Furthermore, this dissertation introduces a method
for considering the shape of a mobile robot for probabilistic safe path planning. The perfor-
mance of the algorithms was evaluated using the Monte Carlo simulation. The results showed
that safety can be improved without significantly increasing travel distance. The results also
showed that dynamic obstacles were safely avoided, which is in contrast to the conventional
HA* algorithm that has a high probability of collision. Furthermore, considering the shape of
the robot in the proposed probabilistic approach led to safer paths overall. Additionally, the
HA* algorithm that used the chance constraints was very conservative as such, exhibited a very
low probability of collision. However, with an increasing number of obstacles, the algorithm
may fail to find a solution due to pruning all the expanded nodes. In addition, a probabilistic
robust planner that avoids the use of the Gaussian error function or inverse Gaussian error
function is proposed. The resulting planner generates a confidence ellipse of the current state
and covers the resulting ellipse with two circles of equal radius. The radius of the circles is
used to inflate the obstacles and collision with obstacles can be detected with deterministic
approaches. The planner was able to find probabilistic robust paths with a smaller computa-
tion time than existing probabilistic robust path planners. Lastly, a planner is proposed that
receives measurement feedback from the environment and selects the linear velocity at each
node according to the current probability of collision. The resulting paths successfully avoid
static and dynamic obstacles and had a shorter travelling time than existing planners.
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Notation
Rn and Rn×m represent an n-dimensional Euclidean space and (n × m)-dimensional matrix,
respectively; A⊤ and In represent the transpose of the matrix A and n-dimensional identity
matrix, respectively. Bold uppercase, bold lowercase, and lowercase letters indicate matrices,
vectors, and scalars, respectively. Uppercase Σ indicates a covariance matrix; σ2

x indicates the
variance of variable x; σx,y indicates the covariance of variables x, y. The mean of a variable
x is given by µx. εx ∼ N (µx, Σx) denotes the random Gaussian process disturbance of state
vector x.





1 Introduction

1.1 Motivation
In recent years much attention is given to autonomous vehicles and mobile robots, industrial
areas start to deploy robots for several tasks. Most of all due to the defense advanced research
projects agency (DARPA) Grand Challenge [115] and DARPA Urban Challenge [86, 116] many
novel developments emerged in the area of path planning, perception, mapping, localization
and control. Some recent mobile robots working in industrial fields are shown in Figure 1.1.
The robot in Figure 1.1a is an agricultural autonomous robot that is used for transporting
harvested products, spraying pesticides and fertilizers, weeding, and patrolling the fields, the
mobile robot in Figure 1.1b us used in train station for cleaning, pedestrian support and se-
curity duties. Figure 1.1c shows a vacuum cleaning robot used in households, after vacuum
cleaning the robot returns back to the charging station. The Mars rover Perseverance is shown
in Figure 1.1d, it is currently deployed on Mars surface for exploration. Many challenges arise
in the context of path planning in real-world environments for autonomous vehicles and mobile
robots. Especially, dynamic environments and energy efficiency are key scenarios.
The above described robots are subject to two different path planning tasks, CPP [25, 38, 18]
and PTP [63, 67, 66]. The former generates paths which objective is to move everywhere in
a preassigned area and the latter generates paths from a starting position to a goal position
while avoiding obstacles. Hereafter, the term path planning will be used interchangeably with
PTP. Challenges in these areas differ, CPP works in general in known bounded environments,
while PTP is often used in unknown, uncertain, dynamic environments.
Mobile robots have limit power supply, due to the fact that they have to carry their own battery.
Thus, CPP is a power demanding problem for mobile robots. Existing CPP methods focus on
complete coverage [71] and the number of repetitive visits of areas [37, 36]. Thus, one of the
objectives of this thesis is an algorithm that generates optimal CPP paths in known bounded
environments, where the objective of the cost function is either travelling time, repetitive visits
or energy consumption. Flexible objectives allow a problem dependent coverage path genera-
tion, whereas e.g. energy consumption is selected for large environments or energy expensive
mobile robots.
In general, PTP path planner do not consider real-world scenarios with uncertain motion pat-
terns of dynamic obstacles, sensing noise, uncertain placement of static obstacles and noise in
the robot motion. Therefore, the second objective of this research is the proposal of a PTP path
planner that generates probabilistic safe paths in real-time in real-world environments. The
focus is on paths in parking scenarios for autonomous cars and return paths in unstructured
environments to the charging station for mobile robots, where precise motion and safety are

1



1 Introduction

(a) Autonomous multifunctional agricultural
robot for transportation, fertilizing, weeding,
and patrolling.1

(b) Industrial cleaning robot for cleaning train
stations and performing security duties2.

(c) Vacuum cleaning robot from iRobot3. (d) Replica of the Mars rover Perseverance which
is on an exploration mission on Mars surface4.

Figure 1.1: Examples of different mobile robots deployed in industry, households, and space
exploration.

the main objectives of the generated path.

1.2 Fundamentals
This section briefly introduces some fundamental algorithms and methods used throughout this
research.

1https://www.maff.go.jp/e/policies/tech_res/smaagri/robot.html
2https://asia.nikkei.com/Business/Transportation/Robots-roam-Tokyo-s-newest-train-station-to-patrol-and-

sweep
3https://www.pngwing.com/en/free-png-ppwbt
4https://www.japantimes.co.jp/news/2020/07/30/world/science-health-world/nasa-rover-mars/
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1.2 Fundamentals

Genetic algorithm and memetic algorithm

The genetic algorithm (GA) [39, 83, 20] is an evolution-based algorithm that uses different
nature-inspired operators to change and improve current solutions of the optimization problem.
Generally, a GA has a set of candidate solutions called population where one solution is a
chromosome. A chromosome is encoded into a NGA-element array, where each element, called
gene, has a particular value. In discrete solution spaces chromosomes are in general binary.
An optimal solution is found by taking the current population called parent to generate a new
population (offspring) using the nature-inspired operators crossover, mutation and selection.
These operators take the parent generation and modifies each chromosome to form the offspring.
The crossover operator takes two parents and forms new offspring from both their genes, the
mutation operator changes one or more genes of one parent to a different value and the selection
operator selects the chromosomes, based on their cost (fitness), which will form the new offspring
generation. Termination condition is set which is typically either a set number of generations or
the algorithm terminates if no improvement is made in the last generation. The HGA [87, 88],
also called memetic algorithm (MA), is an extension of the GA. The main difference is, that
HGA perform a local search, after the modification with crossover and mutation, to improve
the fitness of individual chromosomes. Figure 1.2 shows the cycle of a GA/HGA, first the initial
population is set, then the chromosomes for the new generation are selected, which are modified
with crossover and mutation operators. Thereafter, the fitness is evaluated and the termination
condition will be checked. The dashed box applies the local search on the generated offspring
before the fitness is evaluated.

Kalman filter

The Kalman filter (KF) [45] is a famous filtering method, which is used in robotics for lo-
calization [114] and sensor fusion [32]. The system model is assumed linear in the following
form

xt = Atxt−1 + Btut−1 + εx, (1.1)

where xt−1 ∈ Rn×1 is the state vector and ut−1 ∈ Rm×1 is the input vector at time instant t−1.
At ∈ Rn×n is the state matrix and Bt ∈ Rn×m is the input matrix. The Gaussian random vari-
able εx ∼ N (0, ΣR) has zero mean and covariance matrix ΣR ∈ Rn×n. The Gaussian random
variable models the uncertainties of the system. Furthermore, the measurement equations are
also assumed to be linear with additive Gaussian noise

yt = Ctxt−1 + εy, (1.2)

where yt ∈ Rk×1 is the output vector, Ct ∈ Rk×n is the output matrix and εy ∼ N (0, ΣQ) is
a Gaussian random variable describing the measurement noise with zero mean and covariance
matrix ΣQ ∈ Rk×k. The belief of the state xt can be represented by the KF algorithm, provided
the system ensures the above mentioned assumptions. Thus, the KF algorithm is denoted as

3
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Initial population

Selection Crossover/Mutation

Termination? Evaluate fitness

End

No

Yes

Local search

Figure 1.2: Cycle of GA and HGA

follows:

µ̄t = Atµt−1 + Btut−1 (1.3)
Σ̄t = AtΣtA

⊤
t + ΣR (1.4)

Kt = Σ̄tC
⊤
t

(
CtΣ̄tCt + ΣQ

)−1
(1.5)

µt = µ̄t + Kt (yt −Ctµ̄t) (1.6)
Σt = (In −KtCt) Σ̄t. (1.7)

(1.3) to (1.4) represent the prediction step of the KF algorithm, where µ̄t ∈ Rn×1, Σ̄t ∈ Rn×n

denote the predicted mean state and predicted covariance matrix of the system at time instant
t, respectively. Σt−1 ∈ Rn×n represents the covariance matrix. (1.5) to (1.7) represent the
correction step with the Kalman gain Kt ∈ Rn×k and the mean state µt ∈ Rn×1 of the system.
Dynamic systems are in general not linear, thus the KF will be extended for nonlinear systems

4



1.2 Fundamentals

of the form

xt = f(xt−1, ut) + εx (1.8)
yt = g(xt) + εy (1.9)

to the extended Kalman filter (EKF). The EKF is similar to the KF with the difference that
the nonlinear system will be linearized [34] around the mean state at each time instant

At = ∂f

∂xt−1

∣∣∣∣∣
(µt−1,ut)

(1.10)

Bt = ∂f

∂u

∣∣∣∣∣
(µt−1,ut)

. (1.11)

Hence, only equations 1.3 and 1.6 change in the KF algorithm to

µ̄t = f(µt−1, ut) (1.12)
µt = µ̄t + Kt (yt − g(µ̄t)) (1.13)

the other equations will be the same for the EKF.

Heuristics

In path planning heuristics [105] are used to make an “optimistic guess” of the cost-to-go from
the current state xt to the goal state xG. A heuristic needs to be admissible to be used in path
planning, which means that it should never overestimates the cost to reach the goal. In path
planning one admissible heuristic is the euclidean distance between the current state and the
goal state

h(xt) =
√

(xt − xG)2 + (yt − yG)2, (1.14)

where (xt, yt), (xG, yG) are the positions of the current and goal state, respectively and h(xt) is
the heuristic function. In general, heuristics reduce the number of expanded nodes and speed
up the search process.

A* path planner

The A* [111] path planner is an extension of the Dijkstra algorithm [111]. It is a graph-based
planner that uses heuristic costs to find the goal node in the search space. The cost function
of each node of the planner

f(n) = g(n) + h(n) (1.15)

5



1 Introduction

takes the cost g(n) to reach the current node and the heuristic cost h(n) to calculate the cost
of the node. Generally, A* uses an occupancy grid in mobile robot path planning, where the
current node expands to one of the neighboring cells in the grid. A pseudo code is shown in
Algorithm 1. The openList is a priority queue, the closedList is a set of nodes that are already
expanded and the collision function checks if the successor node is colliding with any obstacle.

Algorithm 1 A* algorithm
1: procedure A* search(start, goal)
2: openList.push(start)
3: while not(openList.isEmpty()) do
4: node ← openList.pop()
5: if node == goal then
6: return true
7: end if
8: closedList.push(node)
9: for all successor do

10: if closedList.contains(successor) or collision(successor) then
11: continue
12: end if
13: g_cost = node.g + cost(node, successor)
14: if openList.contains(successor) or g_cost ≥ successor.g then
15: continue
16: end if
17: successor.predecessor ← node
18: successor.g ← g_cost
19: successor.f ← g_cost + h(successor)
20: openList.push(successor)
21: end for
22: end while
23: return false
24: end procedure

Dubins and Reeds & Shepp curves
Dubins curves [31, 63] return optimal curves from a start position qS to a goal position qG
under the assumption that the car moves with a constant linear velocity uv and maximum
steering angle δmax, which results in a minimum turning angle Rmin. With uv = 1 and uω ∈
{− tan δmax, 0, tan δmax} the optimal path of

ẋ = cos θ

ẏ = sin θ

θ̇ = uω,

(1.16)

6



1.2 Fundamentals

qS

qG

(a) Dubins curves.

qS

qG

(b) Reeds and Shepp curve.

Figure 1.3: Dubins and Reeds and Shepp curves from qS to qG

where (x, y, θ) are the pose of the robot, can be expressed as a combination of three different
motion primitives. The motion primitives are turn right (R), move straight (S) and turn left
(L). Hence, the optimal path is generated with one of the six possible combinations

{LRL, RLR, LSL, RSR, LSR, RSL}, (1.17)

where each primitive is applied over an interval of time.
Reeds and Shepp curves [100, 63] are similar to Dubins curves, however they allow a reverse
motion as well for the linear velocities. Thus uv ∈ −1, 1 and the robot model is as follows:

ẋ = uv cos θ

ẏ = uv sin θ

θ̇ = uvuω.

(1.18)

Hence, the shortest path using Reeds and Shepp curves with one of 48 possible combinations.
Figure 1.3 shows a resulting path from qS to qG using Dubins curves (Figure 1.3a) and Reeds
and Shepp curves (Figure 1.3b).

Canonical nonholonomic mobile robot kinematic model

The canonical nonholonomic mobile robot model generalizes the kinematic model of the unicycle
model, the differential drive mobile robot, and the car-like mobile robot using Ackerman steering

7
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θ

ω

x

y

XG

YG

Figure 1.4: Canonical nonholonomic mobile robot kinematic model.

[79]. The model description is as follows:ẋ
ẏ

θ̇

 =

cos θ 0
sin θ 0

0 1

 [v
ω

]
, (1.19)

where v and ω are the linear and angular velocities of the robot. Figure 1.4 depicts the canonical
model in the global reference frame {XG, YG}. Designing planners, controllers, etc. using the
canonical model may lead to feasible solutions for the respective robot models as well, assuming
that the respective constraints are considered.

Experimental systems

Two different industrial cleaning robots are used throughout this book. The robot shown in
Figure 1.5 is a prototype version of the robot in Figure 1.6. It is a differential drive mobile
robot with a mounted inertial measurement unit (IMU) and encoders for each driving wheel.
The motors for the driving wheels can measure both current and voltage, hence the robot can
be used to calculate the energy of the driven path. The industrial cleaning robot shown in
Figure 1.6 does have an IMU mounted on the rear axis center, encoders for the drive wheels
and a 2D Lidar sensor to read obstacles in the distance and generate a map of the environment.
Around the robot are 14 ultrasonic sensors mounted used for detecting smaller obstacles such
as curbs.
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Cleaning brush

Battery

IMU

Drive wheels

Figure 1.5: Prototype industrial cleaning robot.

1.3 Literature review

Coverage path planner
Due to the fact that CPP [38, 54] is a non-deterministic polynomial time hard (NP-hard)
problem [6], finding optimal solutions or a solution at all is difficult. In recent years, many
contributions have been made in this domain. Choset et al. proposed the boustrophedon
cellular decomposition [26], which divides the known area into smaller cells. Thereupon, the
robot moves from one cell to another, thereby covering each cell separately in zigzag motions.
This approach was generalized using the critical points of Morse functions, called Morse-based
cellular decomposition [3]. Furthermore, an online version of it uses a generalized Voronoi
diagram with the boustrophedon cellular decomposition for the CPP [2]. in other approaches,
the environment is decomposed into uniform grid cells, and the robot visits each unvisited
cell. In [121], the wavefront algorithm was used to find a path that traverses each cell of the
environment. Another approach generated a spiral path in the grid, on the basis of the spiral
spanning tree coverage (Spiral-STC) algorithm, which can be used both online and offline [37,
36]. An extension of the Spiral-STC algorithm is the BSA, which uses a wall-following procedure
to cover the area online [40, 41]. Yang and Luo proposed a neural network approach to online
CPP, in which the neurons of the network are associated with each grid cell and every neuron is
connected to its eight nearest neighbors [120, 78]. The aforementioned approach can be easily
extended for multi-robot CPP. Kapanoglu et al. used a pattern-based GA for sensor-based CPP,
where the area is divided into disks with a radius equal to the range of the sensing devices [47,
46]. The GA finds optimal paths by changing the segments of the existing candidate paths using
operators such as selection and crossover. Miao et al. [82] proposed a scalable CPP algorithm
that divides the map into rectangular sub-maps to reduce the execution time of the CPP process.
An online algorithm called ε∗ was proposed in [113]; it uses an exploratory turing machine as a
supervisor for the mobile robot to guide it using adaptive navigation commands. Mitschke et
al. [84] proposed the TASP algorithm as an online CPP approach that moves straight as long
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Battery

Drive wheels

IMU

Ultrasonic sensor

Lidar

Figure 1.6: Industrial cleaning robot.

as possible to reduce both the number of turns and consumed energy of the path. Sasaki et al.
[108] separated the cleaning area by considering the dust distribution, where areas with large
quantities of dust had a priority while ignoring other areas. The optimality of the generated
coverage paths in terms of path lengths or traveling time is addressed in several approaches.
Jimenez et al. proposed an approach that used GA to achieve the optimal coverage [43]. The
free space was divided into smaller subregions, and GA was used to find the optimal path to
cover all the regions. Another approach used boustrophedon cellular decomposition to achieve
complete coverage while minimizing the path of the mobile robot [80]. Lee et al. proposed an
online approach that finds time- and energy-efficient complete coverage solutions by smoothing
the coverage path to reduce accelerations and increase the average velocity [71]. Bochkarev et
al. aimed to minimize the number of turns using convex decomposition; subsequently parallel
path segments were placed on each region, and a minimum-cost tour through all regions was
computed [15]. In recent studies, GA has been used in many different approaches to achieve
complete coverage, and its effectiveness has been verified. Ryerson et al. proposed a GA-based
CPP approach that finds the optimal path for farming operations [106]. Another approach
used GA to find optimal mini-paths in terms of the traveled distance for complete coverage
[119]. Sadek et al. used GA together with dynamic programming for online CPP with multiple
objectives using only on-board sensors [107]. Dynamic programming was used to divide the
complete problem into sub-problems and find coverage sub-paths, and GA was used to find the
best multi-objective sub-paths. Energy-optimal paths were obtained using the GA approach
by Schäfle et al. [109], where an energy-based fitness function was used.

Parking controller
Fuzzy systems receive much attention in the field of automotive parking control. Li et al. use a
fuzzy sliding-mode controller for tracking control to the fifth-order polynomial trajectories for
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garage parking and parallel parking [72]. An image-based fuzzy controller is used in [7], with
inputs of the desired image features. Khoukhi uses a genetic neuro-fuzzy system for online multi
objective motion planning, which is trained by simulation data from previous offline planning
[55]. Demirli et al. also propose fifth-order polynomial references for a neuro-fuzzy sensor based
controller for parallel parking with unknown parking space size [28]. Lee et al. separates the
parking problem in two steps and uses a nonlinear controller based on the Lyapunov stability
theory [70]. Ornik et al. proposed a hybrid control method called reach control, which uses a
desired sequence of polytopes, that the trajectory needs to pass through, for parallel parking
[94]. A navigation function to avoid obstacles or other parking cars, while parallel parking, is
implemented in [97]. A geometric approach is proposed in [117], which can park parallel from
any initial position and orientation of the robot. Zips et al. proposed an optimization based
path planning algorithm for garage and parallel parking in narrow areas [123].

Point to point path planner
A* family of path planner

Many variations of the A* algorithm were introduced in the last decades. Were most researches
focused on replanning [58, 56] and anytime planners [73]. Probably the most famous replanning
algorithm is the D*-Lite from Koenig et al. [57]. The conventional A* algorithm suffers from
the limitation, that it can only execute with a fixed set of directions, thus researchers developed
algorithms which are able to move in any angle [92, 27, 91]. Recently the A* algorithm was
adapted to consider the kinematics of the robot. The robot does not move anymore in discrete
motions in the proposed HA* algorithm [30, 29]. The HA* algorithm was adapted to move
from waypoint to waypoint in [96].

Sampling based path planner

Sampling-based path planners are generally seperated into to categories, the probabilistic
roadmap (PRM) planner [52] and the rapidly-exploring random tree (RRT) [64, 65, 68]. Kara-
man et al. improved both base algorithms to guarantee asymptotic optimality [49, 50, 48].
The optimal versions are named PRM* and RRT*. Kuffner et al. introduced the RRT-connect
which expands two RRTs (one rooted at the start state and one rooted at the goal state) to
find feasible solutions faster [60]. Anytime and replanning versions of the RRT algorithms were
proposed in [51] and [33]. A real time version of RRT* for dynamic environments was proposed
by Naderi et al. [90].

Local planner

Local planners are in general reactive planner which react based on the current state and
measurement information of the robot. One famous method is the Bug algorithm [111] which
moves along an obstacle until it can move again in a straight path to the goal state. Extensions
of the algorithm improved the motion behaviour while moving along an obstacle [93, 24].
Potential field methods are using the concept of magnetism, where the robot is attracted to

11



1 Introduction

goal state and repulsed by obstacles [111]. A variant of the potential fields method is the
vector field histogram algorithm [17]. Fox et al. introduced the dynamic window approach
which uses the motion dynamics of the robot to consider constraints in the states and actions
of the robot [35]. A recent work proposes the timed elastic bands (TEB) method which locally
optimizes the robots trajectory with respect to the execution time of the trajectory, separation
of obstacles and kinodynamic constraints [103, 101, 102]. A model predictive control (MPC)
approach considering non-rotational euclidean groups was proposed in [104].

Planning under uncertainty

Bry et al. introduces the rapidly-exploring random belief tree (RRBT) [19] which uses local
linear quadratic Gaussian (LQG) control solutions to predict distributions over trajectories.
A particle based rapidly exploring random trees path planner was developed by Melchior et
al. [81], where each extension of the search tree is simulated multiple times under different
conditions. Nodes are created by clustering simulation results. Model predictive control was
combined with the particle approach to achieve optimal robust solutions [12, 13]. Particle based
approaches are introduced to guarantee probabilistic safe paths, which considered non-Gaussian
uncertainty [75]. Van den Berg et al. proposed a variant of LQG to consider motion uncertainty
and imperfect state information [9]. Blackmore et al. presented a probabilistic approach which
uses a maximum probability that a robot collides with an obstacle [11, 14]. The probability of
collision is expressed as a disjunction of deterministic linear constraints. Luders et al. combined
Blackmore et al.’s chance constrained method with rapidly exploring random trees and extended
it by including uncertainty for obstacles [74]. The proposed chance constraint RRT (CCRRT)
planner was then combined with a method to predict the future obstacle behavior in the planner
[4]. Furthermore, it was extended for the RRT* [50, 48], which they called chance constraint
RRT* (CCRRT*) [77]. Chen et al extended their space exploration guided heuristic path
planner [21, 23] to consider perception and control uncertainties for self driving vehicles [22].
A Monte Carlo method named Monte Carlo Motion Planning was proposed, which fulfills
probabilistic collision avoidance constraints [42]. Bopardikar et al. proposed a planner that
searches for near optimal solutions of a multiobjective optimization problem which trade-off
path length and safety in form of state estimation error covariance [16]. Miura et al. proposed a
method to predict and model the motion behaviour of dynamic obstacles under path ambiguity,
velocity uncertainty and observation uncertainty [85]. Thereafter, the best robot motion was
selected. The heuristic arrival time field-biased random tree (HeAT-RT) using the arrival field
method was proposed by Ardiyanto et al. to generate time optimal paths, where the robot
moves slower near obstacles [5]. Kahn et al. introduced a reinforcement learning approach for
collision avoidance [44]. The robot collided with obstacles at training time in order to learn to
avoid obstacles. A convolutional neural network was introduced in [59], which predicted the
trajectory of humans and estimated their risk of collision based on the awareness of the human.
An analytical method for probability estimates for safe motion planning under Gaussian motion
and sensing uncertainty was proposed in [95]. A framework and classification of motion planning
uncertainties into categories can be found in [69].
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1.4 Outline and summary of contributions

1.4.1 Outline
The thesis is separated into two parts, namely “Coverage Path Planning” and “Parking Control
and Probabilistic Path Planning”. The first part is devoted to CPP algorithms, where optimal
offline CPP algorithm is proposed. A brief summary of the chapter is denoted in the following

• Chapter 2 introduces an offline CPP algorithm. The algorithm uses the GA together with
online CPP algorithms to search the solution space for optimal solutions under different
objectives. A novel energy cost function is proposed, where the costs for the discrete
motions per cell in the grid are experimentally acquired. The experimentally obtained
costs for the discrete motion primitives are confirmed in an experimental setup in which
the robot moved in a preassigned in trajectory.

The second part of the thesis is devoted to parking control and probabilistic path planning.
Chapter 3 proposes a parking control algorithm, which uses input/output-linearization (I/O-
linearization) for successful parking. Chapter 4 introduces a novel family of probabilistic safe
path planners based on the HA* algorithm. A brief summary of the chapters is given below

• Chapter 3 introduces a novel parking controller which uses I/O-linearization for a suc-
cessful parking strategy. Inspired by human driving behaviour is the control strategy
seperated into three phases. The robot first orientates itself horizontal to the parking
area, then it moves into a pose, where the mobile only has to drive in reverse for success-
ful backwards parking.

• Chapter 4 introduces novel probabilistic safe path planners. Two of the planners are
using chance constraints to guarantee a safe path to the goal pose. The two planners
differ in their way of calculating the chance constraint and the result is a tradeoff between
conservatism and computation between the two planners. The third planner uses a soft
constraint instead of chance constraints, which results in an algorithm that trade-off the
travelled distance and the safety of the path based on a tuning parameter.

Figure 1.7 shows the structure of the thesis.

1.4.2 Contribution
This thesis presents several contributions to solve problems relevant to path planning and
coverage path planning of nonholonomic mobile robots. The contributions are as follows:

• The focus of optimal coverage path planning strategies was in literature the reduction
of repetitive visits of the environment. This research proposes an algorithm which finds
optimal solutions in terms of repetitive visits, travelling time or energy consumption.
This was accomplished by designing a cost function which takes the sum of costs of
all cells, where each possible motion primitive for a cell has a specific cost. Costs for
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Figure 1.7: Outline of the thesis.

the energy consumption were expermintally obtained and experiments have shown that
the costs predicted by the cost function match the energy consumption of the robot.
The algorithm improves costs of existing coverage path planning methods. Furthermore,
results show that optimizing repetetive visits is neither time optimal nor energy optimal.

• The parking controller uses a hybrid systems approach to garage parking of a differential
drive mobile robot. The proposed system consists of three system states, in which each
system state converges to its desired control value and then switches to the next state.
Two system states use I/O-linearization for MIMO systems to conduct exact linearization
of the plant, which can then be controlled by a linear controller. Simulation and experi-
mental results show that the robot converges to its desired states and safely parks at the
final position in a reasonable time.

• Most work in the literature on probabilistic path planning is dedicated to sampling based
path planners. This thesis proposes novel HA* algorithms which consider uncertainty in
the motion of the mobile robot, position uncertainty of static obstacles and position and
velocity uncertainty of dynamic obstacles. A variant of the HA* algorithm is proposed
which uses a soft constraint in the cost function instead of using chance constraints for
the probability guarantees, which offers a trade-off between travelling distance and safety
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of the path without pruning any additional nodes. Furthermore, this paper introduces
a method to consider the shape of the mobile robot for probabilistic safe path planning.
Performance is evaluated using the Monte Carlo simulation (MCS). Results show that
safety can be improved without much increase of the travelling distance. Dynamic ob-
stacles are safely avoided, while the conventional HA* algorithm has a high probability
of collision. Furthermore, considering the shape of the robot for the probabilistic ap-
proach leads to safer paths overall. In addition, a probabilistic robust planner that uses
a deterministic collision detection method for probabilistic robust planning is proposed.
The resulting planner generates a confidence ellipse of the current state and covers the
resulting ellipse with two circles of equal radius. The radius of the circles is used to inflate
the obstacles and collision with obstacles can be detected with deterministic approaches.
Results have shown that the planner is able to find probabilistic robust paths with a
smaller computation time than existing planners. Lastly, a planner is proposed that re-
ceives measurement feedback from the environment and selects the linear velocity at each
node according to the current probability of collision. The planner generates realistic
probabilistic robust paths with adaptive velocities and the paths successfully avoid static
and dynamic obstacles. The resulting paths have a shorter travelling time than existing
planners.
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2 Optimal Offline Coverage Path Planning

2.1 Problem formulation and environmental model

2.1.1 Problem formulation
Let CCPP be the grid environment for the CPP problem, where CCPP ∈ R2. Furthermore, CCPP

is discretized into occupied and unoccupied cells, denoted by CCPP
obs and CCPP

free , respectively. It is
assumed that each cell in CCPP

free is connected to at least another cell in CCPP
free . The cell of the robot

is denoted by c, where c ∈ CCPP. The set CCPP
free is further divided into unvisited cells in the set

CCPP
unvisited and visited cells in the set CCPP

visited. A cell is in Cvisited if the robot visited the correspond-
ing cell; otherwise, the cell is in CCPP

unvisited. The coverage of the environment is completed, when
CCPP

unvisited = ∅, where ∅ denotes an empty set, and the robot returns to the starting cell cstart.
The permutation of the visited cells ci is denoted by C = (c1 = cstart, c2, ..., ci, ..., cnQ

= cstart),
where nQ denotes the number of visited cells. The motion in each ci is defined as mi, and its
permutation M = (m1, m2, ..., mi, ..., mnQ

). The optimal path is obtained by minimizing the
fitness objective J of the resulting motions M . Therefore, the optimization problem is described
as follows

minimize J (M)
subject to ci in C ∈ CCPP

free ,

CCPP
unvisited = ∅.

2.1.2 Environmental model
Each cell of the grid can take three states: obstacles (in CCPP

obs ), previously visited (in CCPP
visited),

or unvisited (in CCPP
unvisited). The size of a cell is equal to the length of the working tool of the

mobile robot. Figure 2.1 shows a simple environment that is decomposed as a grid environment.
The dark grey cells represent the occupied cells, the cell marked with an “S” represents the
starting cell qstart, and cells with a line represent the visited cells. The dashed path sections
denote repeated visits, solid lines indicate only one-time visits, and the dotted line represent the
path from the last cell to the starting position after finishing the CPP. Therefore, the starting
position is the same as the final position.
Each motion in M is recorded using numbers [47] from 0 to 3, where 0 represents the upwards
motion in the grid, 1 is the left-ward motion, 2 denotes the downward motion, and 3 is the
rightward motion, thereby enabling a simple representation of turn and U-turn motions. A
change from the current motion number to an increasing/decreasing motion number implies a
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S

Figure 2.1: Path representation of the mobile robot (solid: one time visit; dashed: repeated
visit; dotted: return path to the starting position).

turn motion. Moreover, an increment or decrement of two motion numbers represents a U-turn.

2.2 Local search and initialization algorithms

2.2.1 Turn-away starting point algorithm
TASP is a new approach to the online CPP proposed in [84]. It assumes that the robot
can measure only the region in its vicinity using laser range finders, and records backtracking
points (BPs) that are free and unvisited cells in the vicinity of the robot while moving in
the environment. Its moving pattern was based on an experimental validation of the energy
consumption, where it was shown that straight motions consume significantly less energy than
turn motions. Therefore, this algorithm attempts to move straight as long as possible while
covering the area. The straight motion is intuitively achieved by moving straight and away
from the starting point continuously. When the robot reaches an obstacle, it has the following
three choices depending on the number of free cells next to it:

(I) If there are no free cells next to the robot, it moves to the closest BP, which is calculated
by the number of cells along the X and Y directions between the current position and
BP, with a PTP motion. Here, A* [111] is used for PTP planning.

(II) If there is only one free cell, the robot turns to that free cell and continues moving
straight.

(III) If two cells are free, the robot turns to the cell that points away from the starting position.
However, if both the cells point away, it selects the one that provides a longer straight
motion.

The distance for the selection is calculated by counting the cells from the position of the robot
to the nearest obstacle. This distance includes previously visited cells if the number of those
consecutive visited cells in the straight motion is less than or equal to a predefined threshold,
which indicates the number of previously visited cells that can be crossed by the robot in
straight motion. Algorithm 2 shows the pseudo code of TASP, and an example of the motion
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Algorithm 2 Turn-away starting point algorithm
1: procedure TASP
2: while backtracking points exist (CCPP

unvisited ̸= ∅), do
3: get free neighboring cells from CCPP

unvisited
4: if two free cells, then
5: if one shows away from starting point, then
6: turn and move to the cell
7: else
8: estimate distance
9: turn and move to the cell with longer distance

10: end if
11: else if one free cell then
12: turn and move to the cell
13: else
14: point-to-point motion
15: end if
16: move forward until reaching obstacle
17: end while
18: end procedure

behavior of the robot is shown in Figure 2.2.

2.2.2 Backtracking spiral algorithm

This section explains the online CPP algorithm called BSA [41]. The BSA uses a grid-based
model to cover the environment. It has the following two main concepts: it covers simple regions
using a spiral-like path and uses a backtracking mechanism to link the regions. A model of the
environment is generated while the robot moves. Initially, all the cells in the environment are
marked as unknown. A covered cell is denoted as visited, and cells that contain an obstacle,
even if they are partially covered, are marked as obstacle.
One side of the robot must be next to an obstacle to start the BSA. The aforementioned side is
named the reference lateral side (RLS), which indicates the relative direction where obstacles
are to be referenced during the spiral procedure. The opposite side of the RLS is called the
opposite lateral side (OLS). The BPs are updated whenever the robot moves to a new cell. The
unvisited neighboring cells are added to the list, and the currently visited cell is deleted from
the list. When the robot reaches a central ending point of a spiral path, it moves to the closest
unvisited cell in a PTP motion and then continues with a new spiral procedure. The BPs are
the potential next cells for the PTP motion. Every BP is recorded along with the distance by
counting the number of cells along the x and y directions from the current position of the robot.
Algorithm 3 shows a pseudo code of the BSA, and an example path of the motion behavior of
the robot is shown in Figure 2.3.
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S

(a) First turn is to the right owing to the longer
distance.

S

(b) Robot turns left because it moves away from
the starting point.

Figure 2.2: Motion behavior of the robot and recorded backtracking points (circles) of the TASP
algorithm [84]

2.3 Extension to hybrid genetic algorithm

The GA [39, 83, 1] is an evolution-based algorithm that uses different nature-inspired operators
to change and improve the current solutions. In this study, the typical crossover, mutation,
and selection operators are used. They will be explained in the following subsections.
The following notations are used throughout this paper: A single solution of GA is called a
chromosome, one bit of this solution is known as a gene, and the position of the gene in the
chromosome is called locus. An iteration of the algorithm is called generation and the set of
solutions is the population. The previous solutions that provide new solutions are called parents,
and new solutions are called the children or offspring.
HGA, which is also called MA (here both terms are used interchangeably) [87, 88], is an
evolutionary algorithm that uses, along with evolution-based approaches, an individual learning
procedure or local improvement for the search. This approach uses BSA and TASP as local
search algorithms for individual solutions.

2.3.1 Chromosome design

The crossover operator requires the length of all the chromosomes to be equal; therefore, this
model saves the path in the following two different manners. The first saves all the motions in
M of the entire path generated by the algorithm; the second saves only the motions that lead to
a new unvisited cell, and therefore, it is used as the chromosome for the operators. Reasonably,
the chromosome size is equal to the size of CCPP

free . Table 2.1 shows the full path and chromosome
for the motions depicted in Figure 2.1. All the motions are included inside the chromosome,
except the motions from the dashed and dotted lines.
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Algorithm 3 Backtracking spiral algorithm
1: procedure BSA
2: while backtracking points exist (CCPP

unvisited ̸= ∅), do
3: if no free cell around robot, then
4: search new starting point
5: point-to-point motion
6: else if no obstacle in RLS, then
7: turn to RLS
8: else if obstacle in front, then
9: turn to OLS

10: else
11: move forward
12: end if
13: end while
14: end procedure

Table 2.1: Representation of the chromosome for the motion depicted in Figure 2.1.
Parent Genes
Path 3 3 2 1 0 0 1 2 2
Chromosome 3 3 2 1 0 1 2

2.3.2 Initialization
The initial paths correspond to the first parents of the HGA. Hence, it is essential to have a wide
variety of initial paths. Additionally, the initial paths should already have good fitness values.
Therefore, this approach uses five different procedures to generate the initial chromosomes.
First, the online algorithms, i.e. BSA and TASP, are implemented as initial solutions, where
both the algorithms have complete knowledge of the environment. Furthermore, two different
approaches of TASP are used: one with a threshold value of 1, which allows the algorithm to
cross only one previously visited cell, and the other with a threshold value of 2 which allows it
to cross two previously visited cells. In addition, two methods with simple but effective motion
behaviors, i.e. an exact spiral path and a zigzag path, are implemented. The example paths
for all initialization methods are shown in Figures 2.4 and 2.5.

2.3.3 Fitness function
The robot moves from cell to cell with predefined motion behaviors, namely “straight”, “left
turn”, “right turn”, and “U-turn”. Therefore, an energy-based fitness function can be designed
by decomposing the four above mentioned motions into trajectory phases. Each of the turn
motions has an acceleration phase and a deceleration phase. Furthermore, it is assumed that
the turn phases of the left and right turns consume the same energy and require the same time.
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S

(a) Robot moves along the obstacle.

S

(b) Robot turns to RLS and continues motion
along the obstacles.

Figure 2.3: Motion behavior of the robot and recorded backtracking points (circles) of the BSA
algorithm.

S

(a) TASP (cross one visited cell).

S

(b) TASP (cross two visited cells).

Figure 2.4: Initial TASP paths for the proposed algorithm.

Hence, the trajectory phases are acceleration, deceleration, constant-velocity straight motion,
constant-velocity turn motion, and constant-velocity U-turn motion. Therefore, the fitness for
each motion can be calculated as follows:

straight : 2JS

turn : Jdec + JT + Jacc

U-turn : Jdec + JUT + Jacc

first cell : Jacc + JS

last cell : Jdec + JS,

(2.1)

where the “turn” is either a left turn or right turn, “first cell” is the starting cell of the coverage
path, and “last cell” is the last cell of the path. in addition, Jacc, Jdec, JS, JU and JUT denote the
fitness for the above mentioned trajectory phases, respectively. Therefore, the fitness function
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S

(a) BSA.

S

(b) Spiral behavior.

S

(c) Zigzag behavior.

Figure 2.5: Initial paths for the proposed algorithm.

is given as follows:

J =
nacc∑
i=1

Jacc +
ndec∑
i=1

Jdec +
nS∑
i=1

JS +
nT∑
i=1

JT +
nUT∑
i=1

JUT. (2.2)

The number of trajectory phases taken is saved in n{acc,dec,S,T,UT}.
The energy cost for each phase is obtained experimentally using predefined velocity trajectories.
The used current and voltage of the motors are saved while executing one of the trajectories.
The obtained power is given as follows:

Pi = UiIi, (2.3)

where Pi, Ui, and Ii denote the power, voltage, and current for the i-th sampling instant,
respectively. The obtained power is integrated using the trapezoidal rule

E = δt
np−1∑
i=1

Pi + Pi+1

2 (2.4)
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to obtain the consumed energy. Here E, np, and δt are the consumed energy, number of mea-
surement points, and sampling time, respectively. The respective energy for each trajectory
phase fitness Jacc, Jdec, JS, JT, and JUT from (2.2) is obtained by calculating the power P of
each measurement using (2.3) and then the energy E using (2.4). As the time of completion,
T , of each trajectory phase is different from one another, each phase has a different number of
measurement points, n.
Conventional approaches use the number of visited cells (e.g., [78]) to evaluate the performance
of the coverage path, whereas this fitness function uses the consumed energy of the robot di-
rectly as the cost. Therefore, it can find optimal solutions, which may enable the robot to
intentionally visit a cell more than once.
Notably, the fitness values must be measured whenever the surface of either the environment or
robot changes. Depending on the surface roughness, the friction between the robot and surface
changes, thereby changing the consumed energy. Furthermore, this function assumes a hori-
zontal planar environment. Uneven areas require different energy consumption by the robot,
which also depends on its moving direction. However, as the fitness values are experimentally
obtained, they can be customized for respective situations. This is one of the advantages of the
proposed fitness function over others.
In addition, the traveling time of the entire path of the robot, and the number of visited cells
can be used as fitness functions to evaluate the performance of the HGAs.

2.3.4 Genetic operators
In nature, survival of the fittest, reproduction, and mutation are the operators to generate
a wide variety of offspring for evolution. In GA, selection, crossover, and mutation are the
analogous copies of these natural operators, respectively. The following operators are employed
in the proposed GA approach.

2.3.4.1 Selection

Selection is the process of selecting parents for creating the next generation via crossover and
mutation. The choice of the parents decides the convergence rate of the entire algorithm as
selecting only the best chromosomes in every iteration might result in a local optimum. Hence,
it is necessary to choose parents in such a way that the entire solution space is covered.
To provide a considerable diversity in the selection, this approach uses the tournament selection
(TS), which randomly selects, among all the chromosomes in the population, k candidates. The
candidate with the best fitness is chosen as a parent for the next generation. The process of
selecting k candidates and choosing the best one is repeated until all the parents are selected.
This algorithm provides a certain opportunity for weaker chromosomes to be chosen, as the set
of the k candidates always changes at random.
An elitism selection is used in addition to the TS. It selects chromosomes with good fitness
values of the current parent set. Therefore, the new population comprises chromosomes selected
via both elitism and TS.
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Table 2.2: Example of mutation operator.
Chromosome type Genes
Parent 0 0 0 3 3 2 2 2
Offspring 0 0 0 3 2 2 2 2

Table 2.3: Example of crossover operator.
Parent one 0 0 0 3 2 2 2 2
Parent two 2 2 2 1 0 0 0 3
Two point 0 0 0 1 0 2 2 2

2.3.4.2 Mutation

Mutation is a small random change in the chromosome to obtain a new solution. The mutation
operator is used to maintain diversity in the population, and is important for exploring the
search space. A probability factor pm decides whether a mutation can be applied in the current
chromosome. This approach randomly selects one gene of the chromosome and changes it to a
new randomly chosen gene. All motions, except the U-turn motion, are considered for mutation,
due to the fact that U-turn motions will result in a previously visited cell. Notably, U-turns
are used only in PTP motions. Table 2.2 illustrates an example, where the underlined gene is
the mutated one.

2.3.4.3 Crossover

The crossover operator is analogous to reproduction in nature, and it is also known as recombi-
nation [1]. A pair of parents is selected, which provide, along with their genes, a new offspring
for the next generation. In this study, the two-point crossover is used, as listed in Table 2.3,
where the offspring inherits genes from one parent until a certain locus point, following which
it inherits the genes from the second parent starting at that locus point. It switches again at
the second locus point. The two locus points are randomly chosen for each new offspring. A
probability factor pc decides whether a crossover can be applied.

2.3.5 Termination

The termination condition of the GA or HGA is based on a predefined fixed number of gener-
ations. Upon reaching the last generation, the fitness function value is compared with those in
the previous iterations. If no improvement occurs, the algorithm terminates. Otherwise, the
number of generations are extended to a chosen number, followed by the continuation of the
process.
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Table 2.4: Adjustment of a gene from an infeasible offspring.
Infeasible offspring 0 0 0 3 2 2 1 0 0
Adjusted offspring 0 0 3 3 2 2 1 0 0

S

(a) Infeasible offspring (circled section runs into
a wall).

S

(b) Adjusted feasible offspring (only one motion
is adjusted).

Figure 2.6: Adjustment procedure in the GA.

2.3.6 Point-to-point motion
If the robot runs into a cell that is surrounded by only visited cells, it moves to the nearest
unvisited cell with a PTP motion. This approach determines the nearest cells by counting the
intermediate cells, both horizontally and vertically, to reach the unvisited cell. This method
provides an approximate distance to the unvisited cells and ignores obstacles. Therefore, the
unvisited cell with the smallest distance is calculated using the A* algorithm [111]. The path
with the smallest distance is employed for the PTP motion of the robot.

2.3.7 Feasibility
There is no guarantee that the offspring would be feasible after applying mutation and crossover.
Here, “feasible” means that the path of the offspring is not in CCPP

obs and only in CCPP
visited whenever

no neighboring cell of the robots’ cell, ci, is in CCPP
unvisited. Therefore, the feasibility of each

offspring must be checked.
For the GA, this is accomplished by iteratively checking the feasibility of each gene of the
offspring. If a gene is not feasible, it is changed to a feasible motion. First, the straight motion is
tested; if it is also not feasible, the right or left turn motion is randomly selected. Subsequently,
the remaining turn motion from the aforementioned random selection is evaluated. The U-turn
motion is not tested, as it always runs into a previously visited cell and is only used in the PTP
motion. If all the motions are not feasible, the PTP motion is applied, and, the gene is changed
accordingly. Table 2.4, which corresponds to Figure 2.6, illustrates this gene adjustment, and
the bold font emphasizes that the gene is adjusted.
The HGA approach differs from the GA approach, as the former uses TASP and BSA as local
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S

(a) Infeasible offspring (circled
section runs into a wall).

S

(b) Locally improved feasible
offspring using BSA.

S

(c) Locally improved feasible
offspring using TASP.

Figure 2.7: Local improvement procedures in the HGA approach.

improvement procedures instead of only adjusting the offspring. In addition, the genes of each
offspring are evaluated for feasibility. The first gene, which is not feasible, is used as the starting
position for TASP and BSA. The subsequent genes of the original offspring are deleted. Both
TASP and BSA finish the coverage path for the offspring. These local procedures result in
candidate solutions, which cannot be obtained using only the GA. The main reason is that
both BSA and TASP can continue to generate feasible paths even upon reaching an obstacle
or a previously visited cell. The example paths for both BSA and TASP are shown in Figure
2.7.
Three different variants of the CPP algorithm are proposed:

1. HGA/BSA
2. HGA/TASP
3. HGA/Both

Figure 2.8 shows the complete GA and HGA approaches, and it is evident that the difference
between them lies in the update of the offspring.

2.4 Results and discussion

The differential-drive mobile robot shown in Figure 1.5 is used for obtaining the experimental
values of the fitness function. The robot is used for cleaning industrial areas or other floor
environments. Its differential wheels are located in the rear side of the robot, the cleaning tool
is in the front side, and a caster wheel is in the center. The robot uses an inertial measurement
unit sensor for detecting its orientation and location. Table 2.5 lists the chosen parameters
after some tuning using a trial-and-error method for the HGAs.
The following subsections present the experimentally obtained energy results and validity of
the energy-based fitness function, followed by a comparison of the HGAs with other CPP
algorithms.
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Initial population

Selection

Crossover/Mutation

Feasible?

Termination?

Evaluate fitness

End

Adjust

BSA

TASP

No

Yes

No

Yes

gene

HGA

GA

Figure 2.8: Flow chart of the GA and HGA approaches.

2.4.1 Fitness cost identification
Three experimental setups with different trajectories are considered to obtain the energy values
for all the trajectory phases, where the maximum velocity and acceleration and deceleration
times are predefined based on the robot specifications. Direct current motors are used to drive
the left and right wheels, and subsequently, current and voltage are measured.
The experiments are conducted on a carpet-like surface to obtain the energy values for each
trajectory phase of the fitness function. The energy for acceleration, deceleration and straight
motion are received by accelerating, moving straight and then decelerating. The upper plot
in Figure 2.9 shows the desired angular velocity for the left and right drive wheels, whereas
the lower plot depicts the required current and voltage to perform the motion. ϕ̇dr , ϕ̇dl denote
the desired angular velocities for the right and left drive wheel, and Ur, Ir, Ul and Il denote
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Table 2.5: Parameters for HGAs.
Parameter Values
Mutation probability pm 0.1
Crossover probability pc 0.6
Crossover method Two-point
Selection method TS + elitism
Number of generations 10
Population size 200

Table 2.6: Obtained time and energy costs for motions on carpet-like and smooth surfaces,
respectively.

Energy [J]

Motion Carpet-like
surface

Smooth
surface

Completion
time T [s]

JS 7.83 8.53 1.02
Jacc 17.09 14.95 2.10
Jdec 5.78 4.91 2.10
JT 38.57 12.31 8.28
JUT 51.22 19.16 10.56

the applied voltage and current for the right and left drive wheel, respectively. The vertical
lines distinguish the acceleration section, straight motion section, and deceleration section for
the calculation. Notably, the straight motion section comprises of multiple straight motions to
neglect the effect of residual energies from the acceleration and deceleration. The total energy
of the straight motion section is calculated and then divided by the number of straight motions
to obtain the average energy value. Figures 2.10 and 2.11 show the desired angular velocity
and used current and voltage for the turn and U-turn motions, respectively. Each experiment
condition is performed five times, and the average of the obtained motions is calculated, such
that the energy results are less affected by noise. Table 2.6 lists the energy and time values
for the carpet-like surface and smooth surface, respectively, for each motion. The time value T
denotes the required time for each motion. The energy for each motion is obtained using (2.3)
and (2.4).
The fitness function must be validated, as it is still not known whether it can be used generally
for each path. Therefore, a spiral motion is conducted, as shown in Figure 2.12. The path is
traversed five times, and the resulting consumed energy is compared with the calculated energy
using the fitness function, as depicted in the graph on the right side in Figure 2.12. The calcu-
lated energy of the spiral path is in agreement with the five experimentally obtained energies.
Table 2.7 lists the resulting average, minimum and maximum deviations of the spiral path.
The average deviation is 1.77 %, which is sufficient for energy estimation, thereby validating
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Figure 2.9: Desired angular velocity and the resulting current and voltage for acceleration,
deceleration and straight motion (the black vertical lines divide acceleration, the
straight motion and deceleration in the trajectory).

the fitness function.

2.4.2 Comparison of different approaches
In this section, comparison between the proposed HGAs with GA, TASP, BSA and distance
transform (DT) wavefront algorithm [121] is presented. MATLAB® 2018a with an i7-2670QM
CPU 2.20 GHz computer is used for the computation. The comparison is performed using three
different-sized environments, with 122, 489, and 1348 unoccupied cells, as depicted in Figures
2.13–2.15, respectively. Furthermore, the comparison is performed for the energy-based fitness
functions for smooth and carpet-like surface, traveling time, and number of visited cells. The
results for a starting position are presented in Table 2.8, where the bold values indicate the best
values for the respective fitness function objective, and “x” means that the algorithm is unable
to improve the solution from the initial candidate solutions. In addition, HGA/TASP finds the
best solutions in all three environments using the energy-based fitness function on the smooth

Table 2.7: Comparison of energy values in experiments and fitness function.
Spiral path

Average error [%] 1.77
Min error [%] 0.03
Max error [%] 3.17
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Figure 2.10: Desired angular velocity and the resulting current and voltage for turn motion.
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Figure 2.11: Desired angular velocity and the resulting current and voltage for U-turn motion.
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S

(a) Spiral path for energy evaluation.

0 68 135.66
0

200

400

600

800

(b) Resulting energy consumption versus pre-
dicted consumption

Figure 2.12: Experiments of spiral path for fitness function validation.

S

Figure 2.13: Resulting path using HGA/BSA with the number of cell visits as fitness function.

surface and traveling time. Its solution in the medium-sized environment with traveling time
as fitness is ∼38 % faster than the DT solution. It also has the best solution for the small-
sized and medium-sized environments on the carpet-like surface, where it consumes ∼13 % and
∼27 % less energy than the TASP and BSA solutions in the small-sized and medium-sized
environment, respectively. Furthermore, HGA/TASP obtained the best solutions for travelling
time and energy consumption on the smooth surface in the large environment. The travelling
time is ∼28 % faster and the energy consumption is ∼7 % less compared to DT, respectively.
The best solution in the large-sized environment with the energy-based fitness function on
the carpet-like surface is obtained using the HGA/BSA, which consumes ∼20 % less energy
than the DT solution. In addition, HGA/BSA obtains the best results on the number of cell
visits in both the small-sized (global optimum) and medium-sized environments. Although
the DT algorithm provides the best solution for the number of visits in the small-sized and
large-sized environments, its solutions for the other fitness objectives are worse compared to
the evolutionary algorithms. This shows that in general reducing the number of cell visits is
not an appropriate objective for CPP algorithms, because a small number of visits may result
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S

Figure 2.14: Resulting path using HGA/Both and HGA/TASP with the energy-based fitness
function.

in higher traveling time or energy consumption. The resulting path of the HGA/BSA in the
small-sized environment with the number of cell visits as fitness is shown in Figure 2.13. The
path obtained using the HGA/TASP and HGA/Both in the medium-sized environment, and
path obtained using the HGA/BSA in the large-sized environment with the energy-based fitness
function on the carpet-like surface are shown in Figures 2.14 and 2.15, respectively.
The computation time for the evolutionary algorithms is presented in Table 2.9, where the
HGA/TASP has the best computation time.
In addition, the algorithms are compared for the large-sized environment using 20 randomly
chosen starting positions. Figures 2.16a, 2.16b, 2.16c, and 2.16d show the minimum, maximum,
and average values of fitness based on the required energy-based fitness on a carpet-like surface,
smooth surface, traveling time, and number of visited cells, respectively. It can be seen that the
HGA/TASP and HGA/Both have the best solutions for the carpet-like fitness function (Figure
2.16a) and traveling time (Figure 2.16c), respectively. Furthermore, the HGA/BSA has the best
average fitness for the smooth energy-based fitness function (Figure 2.16b) and best solution
for the number of cell visits next to DT (Figure 2.16d). In addition, compared with DT, the
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Table 2.9: Computation times of evolutionary algorithms for three environments.
Small
sized

Medium
sized

Large
sized

HGA/BSA 42.23 s 349.55 s 563.58 s
HGA/TASP 23.53 s 280.79 s 532.16 s
HGA/Both 104.33 s 622.86 s 1149.28 s
GA 32.56 s 893.62 s 1461.43 s

fitness for HGA/BSA is consistent and ranges from 1395 to 1423 visited cells, whereas the
fitness for DT ranges from 1361 to 1489 visited cells. Moreover, the results for the carpet-like
fitness function and traveling time (Figures 2.16a and 2.16c) are considerably consistent with
those of the HGAs. However, the BSA fails for most of the randomly chosen starting points
because it can start only next to a visited cell or an obstacle during path generation.
The above mentioned results show that the solutions of the HGA depend on the local search
algorithms. The TASP algorithm attempts to move straight as long as possible; therefore, the
HGA/TASP finds good solutions for both the energy-based fitness function and traveling time.
However, the BSA moves in a spiral next to obstacles and visits the same cell again only if no
other motion is possible. Therefore, the HGA/BSA finds the best solution for the number of
cell visits. Although the HGA/Both uses both the TASP and BSA algorithms to perform local
searches, it cannot produce better results than the HGA/TASP and HGA/BSA.

2.5 Summary
This chapter introduced a HGA algorithm to solve CPP problems for differential drive mobile
robots. The algorithm uses different existing online CPP algorithms such as TASP and BSA
as local search methods. Simulation results showed that the HGA algorithm obtained better
results than existing works for the travelling time, energy consumption and cell visits as fitness.
Furthermore, the HGA algorithm needed less computation time to solve the CPP problem
compared to a GA algorithm that does not use local search methods. In addition, results
have shown that the fitness of the HGA algorithm does not deviate much for different starting
positions in the environment.
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S

Figure 2.15: Resulting path using HGA/BSA with the energy-based fitness function on a carpet-
like surface.

36



2.5 Summary

H
G

A
/B

S
A

H
G

A
/T

A
S
P

H
G

A
/B

o
th

G
A

B
S
A

T
A

S
P

D
T

3

3.2

3.4

3.6

3.8

4

10
4

(a) Results for the large-sized environment
with different starting positions on a
carpet-like surface (the cross indicates the
mean, and the line shows the minimum
and maximum).

H
G

A
/B

S
A

H
G

A
/T

A
S
P

H
G

A
/B

o
th

G
A

B
S
A

T
A

S
P

D
T

2.6

2.7

2.8

2.9

3

3.1

10
4

(b) Results for the large-sized environment
with different starting positions on a
smooth surface (the cross indicates the
mean, and the line shows the minimum
and maximum).

H
G

A
/B

S
A

H
G

A
/T

A
S
P

H
G

A
/B

o
th

G
A

B
S
A

T
A

S
P

D
T

4500

5000

5500

6000

6500

7000

(c) Results for the large-sized environment
with different starting positions using the
traveling time based fitness function (the
cross indicates the mean, and the line
shows the minimum and maximum).

H
G

A
/B

S
A

H
G

A
/T

A
S
P

H
G

A
/B

o
th

G
A

B
S
A

T
A

S
P

D
T

1300

1350

1400

1450

1500

1550

1600

(d) Results for the large-sized environment
with different starting positions using the
number of cell visits as fitness function
(the cross indicates the mean, and the line
shows the minimum and maximum).

Figure 2.16: Performance results for different starting positions and objectives
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3.1 Introduction
This section proposes a hybrid systems approach consisting of three steps for garage parking
of a differential-drive mobile robot. In the first system state, the orientation of the robot is
controlled to a desired orientation required for the second system. In the second state, the
robot position in the global x-axis and the orientation are controlled. An I/O-linearization for
MIMO systems is used to design the linear controllers. Thereafter, the robot switches to the
third state, in which the orientation is maintained and the position is controlled in the y-axis.
This state also uses I/O-linearization for MIMO systems.
The next section presents a kinematic model of the robot, followed by the hybrid systems
approach and the I/O-linearization for the parking procedure in section 3.3. Simulation and
experimental results are shown in section 3.4. A conclusion and future works are given in
chapter 5.

3.2 Kinematic model
In this section, a kinematic model for the nonholonomic differential-drive mobile robot is derived
[111]. Figure 3.1 shows the robot with local and global reference frames, where the origin of
the local reference frame is located in the center of the drive wheels axle. x and y represent the
coordinates of the mobile robot in the global reference frame {XG, YG}, and {XR, YR} depicts
the local robot reference frame. ϕ̇l and ϕ̇r are the angular velocities of the left and right drive
wheels, respectively. The radius of the drive wheels is denoted by r and the width of the
robot is 2l. The angular difference between local and global reference frame is given by θ. θ̇ is
the angular velocity of the robot, which coincides with that of the local reference frame. The
velocity v in XR direction in Figure 3.1 can be derived as follows:

v = vl + vr

2 (3.1)

with

vl = rϕ̇l

vr = rϕ̇r.
(3.2)

The drive wheels can not contribute to sideways motion in the local reference frame, hence the
velocity in YR is always zero. From previous equations, the dynamics of the robot in the global
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Figure 3.1: Differential-drive mobile robot and global and local reference frames.

reference frame with respect to ϕ̇l and ϕ̇r are as follows:

ẋ = cos θ

(
rϕ̇r + rϕ̇l

2

)

ẏ = sin θ

(
rϕ̇r + rϕ̇l

2

)
.

(3.3)

Furthermore, the angular velocity of the robot is

θ̇ = r

2l
(ϕ̇r − ϕ̇l). (3.4)

Hence, the kinematics model of the robot is

ẋ = r

2

cos θ cos θ
sin θ sin θ

1
l

−1
l


︸ ︷︷ ︸

G(x)

u

y = h(x)

(3.5)

with

ẋ =
[
ẋ ẏ θ̇

]⊤
,

u =
[
ϕ̇r ϕ̇l

]⊤
and y is the output of the system.
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Control θ
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Figure 3.2: Hybrid system for parking control.

3.3 Hybrid systems approach

This section introduces the hybrid systems approach for the parking procedure, followed by
the I/O-linearizations with the corresponding controller and stability analysis for each hybrid
system.
Figure 3.2 shows the hybrid system for the parking procedure, where x0 denotes the initial
state of the mobile robot. Each of the three subsystems ζi, i = 1, 2, 3, is a state in the hybrid
system. The first state ζ1 controls θ to rotate the robot in the desired position for the next
controller. The reference θref depends therefore on the initial location x0 of the robot in the
x-axis. If it is in the left half plane and smaller than the threshold −ϵx, then θref = 0°, and if
the robot is on the right half plane and greater than ϵx, then θref = 180°, otherwise θref = 90°.
Thus, the reference for the first system is described as follows

θref =


0°, if x0 < −ϵx

180°, if x0 > ϵx

90°, otherwise.

The hybrid system will switch to state ζ2 if the absolute error eθ is in between a certain tolerance
ϵθ, and if the absolute error ex is smaller than the tolerance ϵx, then the system switches to ζ3.
State ζ2 controls x and θ with the new reference θref = 90°. If the absolute errors ex and eθ of
the robot are in the tolerance range ϵx and ϵθ, respectively, then the hybrid system switches
to ζ3. The third state controls y and θ, and the parking procedure is finished after the robot
reaches its final position yref = 0, while maintaining θ at 90° and thus x = 0. The complete
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Figure 3.3: Parking control strategy.

procedure is shown in Figure 3.3, where the gray dashed arc shows the range of interest for the
parking procedure, the red dotted lines are the trajectory of the robot, the gray dashed robots
present the end posture after states ζ1 and ζ2 and the green dashed robot is the final posture
of the robot in state ζ3. The system can only operate in the vicinity of the parking region due
to the reason that the errors in the states ζ2 and ζ3 get higher the farther away the robot is
from the parking position.

3.3.1 Input/output-linearization
The I/O-linearization [53, 112] is obtained by differentiating y until all inputs u appear in
the equation, such that the Lie-derivative LGh(x) of the robot model has to be nonzero. It
can be seen that LGh(x) ̸= 0 if the states of the system are chosen as outputs y. Hence, the
I/O-linearization is realized after the first differentiation. Here, the I/O-linearization for state
ζ2 has outputs

y = h(x) =
[
x
θ

]
.

Consequently, the Lie-derivative

LGh(x) =
[
1 0 0
0 0 1

]
r

2

cos θ cos θ
sin θ sin θ

1
l

−1
l

 [ϕ̇r
ϕ̇l

]

= r

2

[
cos θ cos θ

1
l

−1
l

] [
ϕ̇r
ϕ̇l

] (3.6)

is obtained. It can be seen that the system is well defined in D1 with{
D1

∣∣∣∣∣D1 ⊂ R, D1 ̸=
(n + 1)π

2

}
, n ∈ Z.
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Furthermore, the region of interest θ ∈ Ω1 ⊂ D1 is defined as{
Ω1

∣∣∣∣ 0 ≤ Ω1 ≤ π, Ω1 ̸=
π

2

}
.

The input u for the robot is obtained from (3.6) as follows:[
ϕ̇r
ϕ̇l

]
=
[ 1

r cos θ
l
r

1
r cos θ

− l
r

] [
w1
w2

]
︸ ︷︷ ︸

w

, (3.7)

with w1 and w2 being the new pseudo inputs of the system.
The I/O-linearization for state ζ3 uses

y = h(x) =
[
y
θ

]

as outputs. Thus, its Lie-derivative is as follows:

LGh(x) =
[
0 1 0
0 0 1

]
r

2

cos θ cos θ
sin θ sin θ

1
l

−1
l


= r

2

[
sin θ sin θ

1
l

−1
l

] (3.8)

and the I/O-Linearization is well defined for the region D2

{D2 |D2 ⊂ R, D2 ̸= nπ} , n ∈ Z.

The region of interest θ ∈ Ω2 ⊂ D2 is in the neighborhood of π/2 and is therefore well defined.
The input u is obtained from (3.8) as follows:[

ϕ̇r
ϕ̇l

]
=
[ 1

r sin θ
l
r

1
r sin θ

− l
r

] [
w1
w2

]
. (3.9)

3.3.2 Controller design

After the I/O-linearization, a linear controller with a single gain is applicable to states ζ2 and
ζ3. The controller for ζ2

w1 = kxex

w2 = kθζ2
eθ

(3.10)
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y = [θ y]⊤

y = [θ x]⊤

θ

θ and x
controller

θ and y
controller

Linearization

RobotSwitching
condition

controller
ζ1

ζ2

ζ3

[x y θ]⊤θ

[xref yref θref]⊤

[w1 w2]⊤
−

[
ϕ̇l ϕ̇r

]⊤

[
ϕ̇ l

ϕ̇ r
]⊤

[
ϕ̇l ϕ̇r

]⊤
[ex ey eθ]⊤

[w1 w2]⊤

Figure 3.4: Blockdiagram of the system.

and for ζ3

w1 = kyey

w2 = kθζ3
eθ

(3.11)

with

ex = xref − x

ey = yref − y

eθ = θref − θ

(3.12)

are designed, with kx, kθζ2
, ky and kθζ3

being the control gains. ex, ey and eθ are the errors with
the desired references xref, yref and θref. Furthermore, the state ζ1 controls θ with the linear
dynamics of (3.4). Hence, I/O-linearization is not applied and a controller similar to (3.10) and
(3.11) can be used as follows:

ϕ̇r = l

r
kθζ1

eθ (3.13)

ϕ̇l = − l

r
kθζ1

eθ, (3.14)

where kθζ1
is the control gain. The fraction l/r is used to simplify the control system dynamics

and thus gain tuning. The negative sign in (3.14) guarantees stability of the system, which is
shown in the next subsection.
A full block diagram of the hybrid system is shown in Figure 3.4 with a block for the switching
conditions, the robot plant, the controllers and the corresponding feedback linearizations.
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3.3 Hybrid systems approach

3.3.3 Stability analysis

The error equation is differentiated with respect to time as follows:

ėx = ẋref − ẋ = −ẋ (3.15)
ėy = ẏref − ẏ = −ẏ (3.16)
ėθ = θ̇ref − θ̇ = −θ̇, (3.17)

where the references are constant and thus zero. Substituting (3.4) into (3.17) leads to

ėθ = − r

2l
(ϕ̇r − ϕ̇l). (3.18)

Substituting (3.13) and (3.14) into (3.18), we have

ėθ = − r

2l
( l

r
kθζ1

eθ + l

r
kθζ1

eθ) = −kθζ1
eθ, (3.19)

which is stable for all kθζ1
> 0. Therefore, state ζ1 is stable.

For the stability proof of ζ2, ėx and ėθ are required, and hence the following equation is obtained:[
ėx

ėθ

]
=
[
−ẋ

−θ̇

]
= r

2

[
− cos θ − cos θ
−1

l
1
l

] [
ϕ̇r
ϕ̇l

]
. (3.20)

Substituting (3.7) and (3.10) into (3.20) leads to[
ėx

ėθ

]
= −

[
kx 0
0 kθζ2

]
︸ ︷︷ ︸

Kζ2

[
ex

eθ

]
, (3.21)

which is stable if Kζ2 is positive definite.
The same procedure is used for the system ζ3 with error dynamics ėy, ėθ, and (3.9) and (3.11):[

ėy

ėθ

]
=
[
−ẏ

−θ̇

]
= r

2

[
− sin θ − sin θ
−1

l
1
l

] [
ϕ̇r
ϕ̇l

]

= −
[
ky 0
0 kθζ3

]
︸ ︷︷ ︸

Kζ3

[
ey

eθ

]
.

(3.22)

Thus, system ζ3 is stable if Kζ3 is positive definite. Since there is no cycle in the hybrid system
in Figure 3.2 (no state can switch to a previous state) and each state converges to its desired
values, the entire system is stable.
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Table 3.1: Initial position and orientation x0, control gains kx, ky and kθζi
for the controllers,

and threshold values ϵx, ϵθ, for simulation and experiment.
Value

Parameter Simulation Exp. #1 Exp. #2 Exp. #3

x0 −
√

2 m −1 m 1 m 0.5 m
y0 0 m 0 m 0 m 0.5 m
θ0 210° 90° 45° 30°
kθζ1

1.6 1/s 0.84 1/s 0.84 1/s 0.84 1/s
kx 0.9 rad/s 0.4 rad/s 0.4 rad/s 0.4 rad/s
kθζ2

0.6 1/s 0.3 1/s 0.3 1/s 0.3 1/s
ky 0.7 rad/s 0.3 rad/s 0.3 rad/s 0.3 rad/s
kθζ3

0.6 1/s 0.3 1/s 0.3 1/s 0.3 1/s
ϵθ 0.5° 1.5° 1.5° 1.5°
ϵx 0.01 m 0.05 m 0.05 m 0.05 m

3.4 Results and discussion
This section presents the simulation and experimental results for the proposed hybrid systems
approach.

3.4.1 Simulation results
Simulations for the proposed controller are done with MATLAB® 2018a. Table 3.1 shows the
gains for the controllers, the initial position and orientation of the mobile robot, and the chosen
threshold values for the switching conditions. The maximum possible angular velocity ϕ̇max of
the robot is 10.163 rad/s. The trajectories for x, y, θ and states ζi, i = 1, 2, 3 are shown in Figure
3.5. The reference θref1 correspond to θref in ζ1, and θref2 corresponds to the angular references in
ζ2 and ζ3. The robot converged to the desired orientation in state ζ1 in less than 5 s, and then it
switched to state ζ2 in which the robot converged to the desired orientation and position in less
than 15 s. The parking procedure completed in less than 20 s. The angular velocity commands
for the left and right drive wheel are shown in Figure 3.6. Both, the angular velocity for the
right wheel and the left wheel do not reach the maximum possible angular velocity, hence the
gains are chosen well enough for the controllers. Furthermore, since the robots initial position
is at the boundary of the range of interest for the parking controller, the angular velocities will
not saturate to their limits for any initial position for the chosen gains.

3.4.2 Experimental results
The differential drive mobile robot for the experiment is shown in Figure 1.6, which uses an
IMU to measure heading θ and encoders for measuring angular velocities of each wheel. Both
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Figure 3.5: Simulation results of robot trajectories and state transitions.
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Figure 3.6: Simulation results of wheel angular velocities.

measurements are used to calculate the robots position in the global reference frame. The
angular velocities of each wheel are the reference commands for an internal controller of the
robot. The experimental parameter values are shown in Table 3.1. Due to safety reasons, gains
are set smaller than those in the simulation. Furthermore, the thresholds are set to larger
values in the experiment. Figure 3.7 shows the resulting robot trajectories and system states.
The profiles are similar to the simulation results. In all experiments, the robot converged to
the desired orientation in state ζ1 in less than 6 s, and then it switched to state ζ2 in which
the robot converged to the desired orientation and position in less than 20 s. The parking for
all experiments completed in less than 30 s. The measured angular velocities of each wheel are
illustrated in Figure 3.8, where the profiles are similar to the simulations with smaller angular
velocities due to the chosen gains. The trajectory of the robot in the global reference frame is
shown in Figure 3.9.
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Figure 3.7: Experimental results of robot trajectories and state transitions.
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Figure 3.8: Experimental results of wheel angular velocities.

3.5 Summary
This chapter proposed a parking control approach for differential drive mobile robots. An
hybrid systems approach consisting of three states was introduced. The first state controls the
orientation of the robot and from there I/O-linearization with a linear controller was used to
control the position of the robot such that the robot parks at the desired pose. Simulation
and experimental results have shown that the robot is able to reach its desired states in each
control step and parks at the desired pose.
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Figure 3.9: Experimental results of robot planar trajectories.
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4 Probabilistic Safe Path Planning

4.1 Problem formulation

This study considers a planar motion of arbitrary-shaped mobile robots whose configuration
space CPTP ∈ SE(2) = R2 × SO(2) is the special Euclidean group which consists of two-
dimensional position and orientation. Furthermore, the configuration space is divided into
open space CPTP

free ⊆ CPTP and obstacles CPTP
obs ⊂ CPTP, where CPTP

free + CPTP
obs = CPTP. In a determin-

istic environment, the objective is to find a path from the start node xS ∈ CPTP
free to the goal

node xG ∈ CPTP
free . The complete path P = (x0, x1, . . . , xt, xt+1, . . . , xtgoal) is described by the

set of nodes whose ends are the start and goal nodes, xS = x0 and xG = xtgoal , respectively.
Moreover, xt is the parent node of xt+1, t ∈ N is the respective integer time instant, and tgoal
is the final time instant. The optimization problem is described as follows:

minimize
tgoal∑
t=1

J(xt)

subject to xt ∈ CPTP
free ∀t ∈ {0, . . . , tgoal},

where J(xt) is the cost function. In belief space planning, the collision condition is described
by chance constraints and the cost function is the expected cost of J(xt). Accordingly, the
stochastic optimization problem is described as

minimize
tgoal∑
t=1

E[J(xt)]

subject to p(xt ∈ CPTP
obs ) ≤ Γ ∀t ∈ {0, . . . , tgoal},

where E[·], p(·) and Γ denote the expected value, probability of the outcome, and threshold
value for collision, respectively.
Static and dynamic obstacles in the configuration space are represented as convex polygons,
as illustrated in Figure 4.1, which allows a fast collision analysis and makes it possible to
incorporate a probabilistic collision check [11]. It is assumed that each vertex of an obstacle is
known, and the obstacles are obtained from an offline map. In the following section, the robot
is assumed to be a point robot, and therefore collision will occur when the robot point is inside
the obstacle. Using the known obstacle vertices and robot position qt = [xt, yt]⊤, the collision

51



4 Probabilistic Safe Path Planning

a

Figure 4.1: Convex obstacle representation in the configuration space.

conditions are expressed as follows:
ne∧

i=1
a⊤

i qt < bi, (4.1)

where ne is the number of edges and ai and bi denote the parameters of the straight-line
equation a⊤

i qt = bi of edge i, respectively.

4.2 Hybrid A* algorithm and state and environment
uncertainties

This section describes the uncertainty propagation for a kinematic model of a nonholonomic
mobile robot [114]. After briefly explaining the conventional HA* algorithm [29], the linear
velocity model of dynamic obstacles and their uncertainty propagation is introduced.

4.2.1 Kinematic model uncertainty propagation
In this work, the velocity model from [114] is used to model the kinematics of the nonholonomic
mobile robot. The deterministic kinematic model of the form

xt+1 = f(xt, ut) (4.2)

with nonzero angular velocity is as follows [114]:xt+1
yt+1
θt+1

 =

xt

yt

θt

+

−
vt

ωt
sin θt + vt

ωt
sin (θt + ωtδt)

vt

ωt
cos θt − vt

ωt
cos (θt + ωtδt)

ωtδt

 , (4.3)

where xt = [xt, yt, θt]⊤ ∈ SE(2) is the pose of the robot at time instant t with xt, yt being
the position in the global reference frame and θt being the heading of the robot. Moreover,
ut = [vt, ωt]⊤, where vt and ωt are the linear and angular velocities, respectively, and δt is
the sampling time. The model for straight motions can be obtained using L‘Hôpital‘s rule for
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4.2 Hybrid A* algorithm and state and environment uncertainties

Figure 4.2: Example motions for HA* using the velocity model.

lim
ωt→0 f(xt, ut) as follows:xt+1

yt+1
θt+1

 =

xt

yt

θt

+

vtδt cos θt

vtδt sin θt

0

 . (4.4)

Example motions using the velocity model for HA* are shown in Figure 4.2. The additive
Gaussian process noise is integrated into the model by replacing ut = [vt, ωt]⊤ with ût =
[v̂t, ω̂t]⊤, where[

v̂t

ω̂t

]
=
[
vt

ωt

]
+ εM (4.5)

with

εM ∼ N (0, ΣM). (4.6)

Here, ΣM is the covariance matrix of the random variable εM . The Gaussian probability
distribution Σxt is obtained using the prediction step of the EKF [45]. Hence, the nonlinear
kinematic model of the robot has to be linearized at each time instant around the input ut and
state mean µxt

µxt+1 ≈ Ãtµxt + B̃tut

Ã = ∂f

∂x
(µxt , ut)

B̃ = ∂f

∂u
(µxt , ut),

(4.7)
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where

Ãt =

1 0 − vt

ωt
cos µθt + vt

ωt
cos (µθt + ωtδt)

0 1 − vt

ωt
sin µθt + vt

ωt
sin (µθt + ωtδt)

0 0 1

 (4.8)

B̃t =
[
b̃1, b̃2

]

b̃1 =


− sin µθt

+sin (µθt
+ωtδt)

ωt
cos µθt

−cos (µθt
+ωtδt)

ωt

0



b̃2 =


vt(sin µθt

−sin (µθt
+ωtδt))

ω2
t

+ vt cos (µθt
+ωtδt)δt

ωt

−vt(cos µθt
−cos (µθt

+ωtδt))
ω2

t
+ vt sin (µθt

+ωtδt)δt

ωt

δt


(4.9)

for ωt ̸= 0. For straight motions, the linearization is given as follows:

Ãt =

1 0 −vtδt sin µθt

0 1 vtδt cos µθt

0 0 1

 (4.10)

B̃t =

δt cos µθt 0
δt sin µθt 0

0 0

 . (4.11)

With the linearized model, Gaussian uncertainty distribution Σxt+1 can be updated as follows:

µxt+1 = f(µxt , ut)
Σxt+1 = ÃtΣxtÃ

⊤
t + B̃tΣMB̃⊤

t ,
(4.12)

where B̃tΣMB̃⊤
t is the mapping of the motion noise from the control space to state space [114].

4.2.2 Algorithm overview
The conventional HA* [29] is a variation of the A* algorithm [105]. Unlike the A* algorithm,
the HA* algorithm assigns a continuous mobile robot coordinate to each discrete cell in the
working space. Each node of the planner is expanded by applying three different actions: no-
turn, left turn, and right turn for forward and reverse motions (Figure 4.2). Reverse motions
are only applied if a forward motion violates a collision constraint. A kinematic model of the
mobile robot is used to generate new states for the planner ((4.3) and (4.4)), and the same
cost-to-goal heuristics as in [29] are applied: The non-holonomic-without-obstacles heuristic,
which uses Reeds and Shepp paths [100] to compute the shortest path to the goal (assuming no
obstacles) from every point in the working space, and the holonomic-with-obstacles heuristic,
which employs the occupancy grid of the configuration space to compute the shortest path to

54



4.2 Hybrid A* algorithm and state and environment uncertainties

the goal via dynamic programming. The maximum heuristic cost of both heuristics is used for
the path planner.
For every N th node, an expansion of the current node to the goal with Reeds and Shepp paths
is generated, where N depends on the cost-to-goal heuristic. If the expansion does not collide
with any obstacles, the HA* algorithm is completed.
The HA* algorithm uses a cost function to penalize the reverse motion and switching of the
motion direction of the path traveled:

J(xt) = lt(1 + rtCrev) + |rt − rt−1|Csw, (4.13)

where lt is the distance traveled from time instant t− 1 to time instant t, and Crev and Csw are
the penalty gains for driving in reverse and switching the direction of motion, respectively. rt

denotes the boolean state of driving forward or reverse (reverse is set to 1).
This work modifies the HA* algorithm by considering Gaussian uncertainties in the robot’s
motion, as well as the static obstacle position. Furthermore, dynamic obstacles with uncertain
state information are considered. Hence, the robot’s uncertain state is updated at each node
expansion using (4.12). If the condition

p(xt ∈ Cobs) ≤ Γ (4.14)

is satisfied the current node is probabilistically safe and the expected cost

E[J(xt)] = µlt(1 + rtCrev) + |rt − rt−1|Csw (4.15)

is calculated, where µlt is the mean distance traveled from time instant t− 1 to time instant t.
If the condition is not satisfied the node will be pruned.

4.2.3 Static and dynamic obstacles
4.2.3.1 Static obstacles

The static obstacles are expressed in a manner that is similar to [74]. The probability distri-
butions of the static obstacles are time invariant, i.e.,[

xSj

ySj

]
︸ ︷︷ ︸

xSj

=
[
xSj

0
ySj

0

]
︸ ︷︷ ︸

x
Sj

0

+εSj (4.16)

with

εSj ∼ N (0, ΣSj ) j ∈ {1, . . . , nS}, (4.17)

where [xSj , ySj ]⊤ is the position of obstacle j, [xSj
0
, ySj

0
]⊤ is the nominal position of obstacle

j, and nS is the number of static obstacles in the configuration space. Hereafter, all static
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obstacles have the same covariance, i.e., ΣSj
= ΣS .

4.2.3.2 Dynamic obstacles

The dynamic obstacles are assumed to be convex with an estimated mean heading and velocity.
This work uses a linear velocity model for the dynamic obstacle

xDt+1

yDt+1

ẋDt+1

ẏDt+1

 =


1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

AD


xDt

yDt

ẋDt

ẏDt


︸ ︷︷ ︸

xDt

+εD, (4.18)

where xDt , yDt denote the position, and ẋDt , ẏDt denote the velocity in x and y direction in the
global reference frame, respectively. εD ∼ N (0, ΣD) is a random variable with Gaussian noise
distribution with covariance matrix ΣD. In the following, it is assumed that the robot is able to
detect and track a dynamic obstacle at each time instant for example with the methods in [99]
and [8]. It is often sufficient to assume a linear motion of a dynamic obstacle [110]. A linear
model allows a one time computation of the mean state and the covariance of the dynamic
obstacle using the KF [45]

µxDt+1
= At

DµxD0
(4.19)

ΣxDt+1
= At+1

D ΣxD0

(
A⊤

D

)t+1

+
t∑

k=0
At−k−1

D ΣD
(
A⊤

D

)t−k−1
,

(4.20)

where µxDt
and ΣxDt

are the mean and the covariance matrix of the dynamic obstacle at time
instant t, respectively. Process noise is used to increase the uncertainty while propagating
the mean state and covariance in time, which increases robustness without specific knowledge
of the dynamic obstacles’ behavior. In this case, the process noise of the dynamic obstacle
can be tuned based on confidence of the unknown future behavior of the dynamic obstacle.
If it is certain that the dynamic obstacle will continue moving in the measured direction at
the measured velocity, small values for the process noise matrix can be selected as parameters
inside the algorithm. If the dynamic obstacle behaved in a nonlinear manner in previous time
instants, larger values for the process noise should be selected.

4.3 Path planning under Gaussian uncertainty

This section introduces the collision condition for probabilistic safe motion of robot points and
arbitrary-shaped mobile robots. Results and a discussion are given in the end of this section.
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4.3.1 Probabilistic collision check

Two methods for calculating the probability of collision are presented in the following.

4.3.1.1 Chance constraints

The objective is to guarantee that the probability of a collision with any obstacle is less than
the assigned value Γ . In a deterministic world, a collision will occur if (4.1) is satisfied. Hence,
in belief space context the inequality, i.e.,

p(xt ∈ Cobs) = p

(
ne∧

i=1
a⊤

i qt < bit

)
≤ Γ (4.21)

has to be evaluated. Here, bit is only time dependent for a dynamic obstacle and a is not time
dependent since we assume no rotation of obstacles. Since normality is preserved by linear
transformations [10], a new random variable, εd ∼ N (µd, σ2

d) can be introduced with

µd = a⊤µqt − b (4.22)
σ2

d = a⊤Σqta, (4.23)

where µqt is the mean value of the position of the mobile robot with respective covariance
matrix Σqt at time instant t. Mean and covariance are taken from the mean vector and co-
variance matrix of robot state xt, respectively. Therefore, the new inequality condition for the
probability of collision is as follows:

p(εd < 0) ≤ Γ . (4.24)

This probabilistic constraint is shown to be equivalent to the following deterministic constraint
using the mean and variance of d, together with the inverse Gaussian error function [11, 14]:

µd ≥
√

2σ2
d erf−1 (1− 2Γ) . (4.25)

The left-hand side of the above equation is the mean distance between the center of the robot
and the line segment of the obstacle, and the right-hand side represents the minimum allowed
distance between the center of the robot and the line segment. Hence, the chance constraint is
satisfied if

ne∨
i=1

a⊤
i µqt − bit ≥

√
2a⊤

i Σqtai erf−1 (1− 2Γ) (4.26)

is true. This approach can be extended for obstacles with an uncertain position and trans-
lation [74]. The current work assumes static and dynamic obstacles. The mean distance µd

is unchanged for static obstacles and can be calculated for dynamic obstacles with updated
parameters bit based on the translation of the dynamic obstacle at time instant t. The variance
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for d for both static and dynamic obstacles is as follows:

σ2
d = a⊤ (Σqt + ΣO) a, (4.27)

where ΣO is the covariance matrix of the respective obstacle. Then, the final inequality equa-
tions for a single obstacle are shown as below:

ne∨
i=1

a⊤
i µqt − bit ≥

√
2a⊤

i (Σqt + ΣO) ai erf−1 (1− 2Γ) . (4.28)

This inequality condition has to be extended for multiple obstacles, which can be obtained
using an upper bound for the probability of collision with at least one obstacle using Boole‘s
inequality [11], i.e.,

p(xt ∈ Cobs) ≤
nO∑
j=1

p

nOj∧
i=1

a⊤
jiµqt < bjit

 ≤ nO∑
j=1

γj = Γ , (4.29)

where nOj
represents the number of line-segments for obstacle j and nO is the total number of

obstacles. It is shown that this inequality can only be guaranteed if

γj = γ = Γ
nO

. (4.30)

Hence, the conjunction of inequalities at each time instant t, i.e.,

nO∧
j=1

nOj∨
i=1

µdji
≥
√

2σ2
dji

erf−1 (1− 2γ)
 (4.31)

has to be satisfied to guarantee safe execution. Hereafter, the HA* algorithm that employs this
method for the probabilistic collision check will be referred to as the chance constraint hybrid
A* (CCHA*).

4.3.1.2 Exact collision probability

The inverse Gaussian error function will be over-conservative for an increasing number of obsta-
cles in the configuration space (see (4.30)). Hence, many nodes will be pruned and a solution
may not be found in a many-obstacle case. This drawback can be circumvented using the
Gaussian error function directly to obtain the exact probability of collision for the respective
obstacle [74]:

δjit = 1
2

1− erf
 a⊤

jiµqt − bjit√
2a⊤

ji (Σqt + ΣO) aji

 , (4.32)
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4.4 Arbitrary-shaped mobile robots

where δjit is the probability of collision with line segment i of obstacle j at time instant t. The
inequality equation for all obstacles at one time instant using the Boole’s inequality is as follows

p(xt ∈ Cobs) ≤
nO∑
j=1

min
i=1,··· ,nOj

δjit = ∆t(xt), (4.33)

where ∆t(xt) is the probability of collision for xt at time instant t. The CCHA* algorithm that
uses this method are referred to as CCxHA*, where “x” indicates that the algorithm uses the
Gaussian error function and as such calculates the exact probability of collision per obstacle.

4.3.2 Cost function extension

This section introduces an extension of the cost function for the HA* algorithm

E[J(xt)] = µlt(1 + rtCrev)
+ |rt − rt−1|Csw

+ k ln(1−∆t(xt)).
(4.34)

A new soft constraint is added for considering the probability of collision for the mobile robot,
where k ≤ 0 is a tuning gain employed as a trade-off between traveled distance and path safety.
Instead of pruning nodes that do not satisfy the probability of collision Γ , the cost function
penalizes the cost of nodes with high probability of collision. This approach has the advantage
that no nodes will be pruned, and accordingly the algorithm may find a path where other
approaches will fail. This path may, however have a high probability of collision. Hereafter, all
HA* algorithms using the adapted cost function are labeled SCHA*, where SC refers to “soft
constraint”.

4.4 Arbitrary-shaped mobile robots
In general, path planning algorithms work with point robots [29]. This can be achieved by
inflating the obstacles based on the robot’s shape and heading. For circular mobile robots, the
obstacles simply have to be inflated by the radius of the robot. However, for arbitrary-shaped
mobile robots, the obstacles must be inflated using the Minkowski difference [63], where each
possible heading also has to be considered. This can computationally and memory-wise be very
demanding. Uncertainty in the robot’s heading complicates the inflation. One simplification for
the configuration space is the segmentation of the robot into smaller circular parts to achieve
a similar result as for circular mobile robots [122], where the obstacles will be inflated with the
radius of the respective segment of the robot. In this work, the robot is separated into several
smaller circles as shown in Figure 4.3.
The collision check for the center of motion is the same as in (4.31) and (4.33) using the
parameters for the inflated obstacle. For the other segments, the uncertainty of the heading
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4 Probabilistic Safe Path Planning

Figure 4.3: Segmentation of a rectangular robot into smaller segments.

has to be included. The general equation for deriving the center of each segment is as follows:[
xj

t

yj
t

]
=
[
xt

yt

]
+
[
cos θt − sin θt

sin θt cos θt

] [
lxj

t

lyj
t

]
︸ ︷︷ ︸

g(xt)

, (4.35)

where [xj
t , yj

t ]⊤ is the position of the center of a selected square segment j at time step t, and
indicates the selected square segment, and [lxj

t
, lyj

t
]⊤ is the corresponding translation value. This

transformation is nonlinear, which means that resulting variables are no longer Gaussian [10].
Therefore, the transformation will be approximated by the Taylor series expansion as follows:[

xj
t

yj
t

]
≈ g(µxt) +∇ g(xt)|µxt

(x− µxt)

=
[
xt

yt

]
+
[
−sµθt

−cµθt

cµθt
−sµθt

] [
lxj

t

lyj
t

]
θt

+
[
cµθt

+ sµθt
µθt −sµθt

+ cµθt
µθt

sµθt
− cµθ

µθt cµθt
+ sµθt

µθt

] [
lxj

t

lyj
t

]
,

(4.36)

where sµθt
and cµθt

are abbreviations for sin µθt and cos µθt , respectively; xj
t and yj

t on the
right-hand side of this equation are of the form xj

t = a1xt + b1θt + c1 and yj
t = a2yt + b2θt + c2

with the constants a1, a2, b1, b2, c1, c2. Hence, it is sufficient to calculate the expectation and
variance for the general case, i.e., Z = aX+bY+c, where a, b, and c are constants and X, Y, and
Z are random variables. Subsequently, the expectation and variance are calculated in terms of
moment expression. Since it is a linear transformation, the expectation for Z is as follows:

E[Z] = E[aX + bY + c] = aE[X] + bE[Y] + c. (4.37)
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The complete calculation of the variance is shown in Appendix A, and the resulting equation
is as follows:

var(Z) = a2var(X) + b2var(Y) + 2ab cov(X, Y). (4.38)

Therefore, the mean and variance for the transformed coordinates are[
µxj

t

µyj
t

]
=
[
µxt

µyt

]
+
[
cµθt

−sµθt

sµθt
cµθt

] [
lxj

t

lyj
t

]
(4.39)σ2

xj
t

σ2
yj

t

 =
[
σ2

xt

σ2
yt

]
+
s2

µθt
l2
xj

t

+ sµθt
cµθt

lxj
t
lyj

t
+ c2

µθt
l2
yj

t

c2
µθt

l2
xj

t

− sµθt
cµθt

lxj
t
lyj

t
+ s2

µθt
l2
yj

t

σ2
θt

+ 2
[
σxt,θt 0

0 σyt,θt

] [
−sµθt

−cµθt

cµθt
−sµθt

] [
lxj

t

lyj
t

] (4.40)

Then, cov(xj
t , yj

t ) can be calculated in a similar manner (the full equation is shown in Appendix
A):

cov(a1xt + b1θt + c1, a2yt + b2θt + c2)
= a1a2cov(xt, yt) + a1b2cov(xt, θt)
+ a2b1cov(yt, θt) + b1b2var(θt).

(4.41)

The covariance can be expressed in vector form as follows:

σxj
t ,yj

t
= σxt,yt +

[
σxt,θt

σyt,θt

]⊤ [−sµθt
−cµθt

cµθt
−sµθt

] [
lxj

t

lyj
t

]

+
[
sµθt

cµθt

(
l2
yj

t
− l2

xj
t

)
− c2µθt

lxj
t
lyj

t

]
σ2

θt
.

(4.42)

Hence, the covariance matrix for the square center positions is

Σqj
t

=
 σ2

xj
t

σxj
t ,yj

t

σxj
t ,yj

t
σ2

yj
t

 . (4.43)

The above equations can be used to calculate the probability of collision for each of the square
centers with either (4.31) or (4.33) using the inflated obstacle parameters, where the maximum
probability of collision of all segment centers will be used per obstacle. An example figure of the
resulting confidence ellipses for the square segments is shown in Figure 4.4, where the robot’s
heading is 45° and the selected covariance matrix of the robot is

Σx =

 0.003 −0.0009 −0.00005
−0.0009 0.003 −0.00005
−0.00005 −0.00005 0.05

 .
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Figure 4.4: Rectangular robot with 95 % confidence ellipses.

It is shown that the confidence ellipses for four square centers are angled and have larger
radii than the ellipse of the robot’s center. This follows from the fact that variance σ2

θ of the
heading and covariances σx,θ, σy,θ are considered. Hereafter, algorithms (i.e., HA*, CCHA*,
CCxHA*, and SCHA*) that incorporate the shape of the robot are labeled with the prefix
arbitrary-shaped mobile robot (ASR).

4.4.1 Results and discussion
This subsection demonstrates the validity of the approaches applied in this section. The variants
of the proposed algorithms (i.e., CCHA*, CCxHA*, SCHA*, ASR CCHA*, ASR CCxHA* and
ASR SCHA*) are examined to evaluate their strengths and weaknesses. The above proposed
algorithms are compared with existing approaches in a clustered, static environment, and an
environment with a dynamic obstacle. For the comparison, the conventional A* [105], the HA*
algorithm [29, 86], ASR HA* considering the shape of the robot using the approach of [122],
the RRT algorithm [64], the closed-loop rapidly-exploring random tree (CLRRT) algorithm
[61, 76], the HeAT-RT [5] as well as the probabilistic approaches CCRRT and online CCRRT
(CCxRRT) [74, 75], which are based on CLRRT, are all implemented. All kinematic planners
use the same motion model, and all probabilistic planners use the same uncertainties and
uncertainty propagation method. The RRT-based planners for comparison are random in their
search, which generate different solution paths in every calculation, and therefore each RRT
algorithm is executed 1000 times for both environments. The success rate, shortest distance,
mean computation time, standard deviation σtime, mean distance, and standard deviation of
the distance σdist are calculated for evaluation. A plan is considered successful if it finds a
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4.4 Arbitrary-shaped mobile robots

solution within 20 s. Furthermore, RRT-based planners are generally unable to exactly reach
the goal pose, but the vicinity of µgoal ∈ Xgoal ⊂ SE(2). Here, the vicinity to the goal is defined
to be in a range of 0.5 m with a heading difference of less than 20°.
An evaluation of the proposed cost function (see (4.34)) is presented. Finally, the performance
of the algorithms is evaluated using MCS [105].
The robot used for simulation has a length of 1.27 m and a width of 0.75 m. The robot will
move with a fixed linear velocity of v = 0.5 m/s (except for HeAT-RT) and, for the HA*-
based planners, an angular velocity of ω = 10π/180 rad/s. Furthermore, the environments are
discretized with a cell size of 0.5 m and an angle increment of 5π/180 rad. The penalties for
driving in reverse and switching the driving direction are set to the same values, i.e., Crev = 1.0
and Csw = 1.0, respectively. The algorithms are tested in ROS Kinetic [98] on a GNU/Linux
Ubuntu 16.04 laptop with an Intel® Core™i7-8550U CPU @ 1.80 GHz× 8 and 8 GB memory.

4.4.1.1 Results on static environment

In this section, the algorithms are compared in a static environment with nine obstacles (Figure
4.5). The process noise and initial covariance matrix for the robot are as follows:

ΣM =
[
0.001 0

0 0.0005

]
Σx0 = 0.0001I3.

The covariance matrix for the static obstacles is

ΣS = 0.1I2.

The gain for the soft constraint is k = −1.5 and the chance constraint parameter is Γ = 0.25.
Figure 4.5 shows the resulting path attaining the shortest distance (solid red) and expanded
nodes (solid orange) for the ASR CCxHA* algorithm. It is shown that the algorithm pruned
all nodes that were too close to the obstacles, and the final path attempted to keep as much
distance as possible from all obstacles. The resulting path attaining the shortest distance
(solid red) using the CCRRT algorithm and a path with “zig-zag” motions (dash-dotted blue)
using the CCxRRT algorithm are shown in Figure 4.6. The path segments with “zig-zag”
motions are emphasized with black circles. The paths for all algorithms are shown in Figure
4.7. Both the A* and RRT algorithms move close to obstacles to generate short distance paths.
The conventional HA* algorithm, which did not consider the robot shape, moved close to the
obstacles while CCHA* moved very conservatively, although it did not consider the shape of
the robot. The ASR CCHA* was not able to find a solution (not shown in the figure) because
it pruned all nodes that were considered “too dangerous”. This result was derived from the
number of obstacles, where the allowed probability of collision per obstacle (see (4.30)), i.e.,
γ ≈ 0.028 was very conservative in terms of satisfying Boole’s inequality. The CCxHA* and
ASR CCxHA* algorithms were able to find a solution that guaranteed ∆t(xt) ≤ Γ for ∀t.
Furthermore, the SCHA* and ASR SCHA* algorithms found robust solutions without pruning
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any nodes. The HA* algorithms move the robot in reverse only if the forward motion violates the
collision constraints, whereas the CLRRT-based algorithms take a backward motion based on
the position of the randomly expanded node. Therefore, the best solution of the CLRRT-based
algorithms took a different route than the other algorithms. Table 4.1 shows the performance
of the algorithms. The probabilistic approaches required more time to check for collisions than
the conventional HA* and CLRRT algorithms. CCHA* and CCRRT use the same method
for collision check and have, therefore, the same collision check computation time per node.
Accordingly, the collision check time per node is the same for CCxHA* and CCxRRT. The
CCHA* algorithm, which used the inverse Gaussian error function, required approximately
10 times more time per node than the HA* algorithm, while the algorithms that employed a
Gaussian error function (CCxHA*, ASR CCxHA*, SCHA* and ASR SCHA*) needed slightly
more; this was because they calculated the Gaussian error function for each line segment.
Additional time per node was needed if the shape of the robot was considered. It is shown that
a trade-off occurred between computation time and robustness. The RRT-based planners were
able to find paths that are shorter in distance than the HA*-based algorithms, but the mean
distance of all trials was larger than the distance of any HA*-based planner. Furthermore, only
9.5 % of the paths of CCRRT were successful in finding a path within the given time frame.
The mean computation time of CCRRT and CCxRRT is much larger than that of CCHA* and
CCxHA*. In addition, the standard deviation of the distance and computation time is large for
the CCRRT and CCxRRT path planners. The HeAT-RT algorithm expanded fewer nodes than
most other planners but generated a path near an obstacle and had a larger mean computation
time compared to the proposed probabilistic algorithm CCxHA*. In addition, the HeAT-RT
had the largest standard deviation of the distance.
The best performance of the proposed algorithms in the static environment in terms of travelling
distance and computation time are provided by the CCxHA* and the ASR SCHA*.

4.4.1.2 Results in a dynamic environment

In this section, the algorithms are evaluated in a dynamic environment. The dynamic obstacle
had a square size of 0.5 m with linear velocity v = 0.3536 m/s and a heading direction of 135°.
The initial covariance matrix and process noise of the dynamic obstacle are given as follows:

ΣxD0
= 0.001I4

ΣD =


0.001 0 0 0

0 0.001 0 0
0 0 0.0001 0
0 0 0 0.0001

 .

The covariance matrix of the static obstacles was the same as in the static environment, and
elements of the covariance matrix and the process noise of the mobile robot were increased for
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4 Probabilistic Safe Path Planning

Figure 4.5: The resulting path (solid red) and all expanded nodes (solid orange) using the ASR
CCxHA* algorithm (the dashed ellipses are plotted every 5th node with a confidence
of 95 %).

this environment, where Σx0 = 0.01I3 and the process noise is given as follows:

ΣM =
[
0.01 0

0 0.005

]
.

The parameters for the chance constraints and the soft constraint are Γ = 0.4 and k = −1.5,
respectively.
Results are shown in Figures 4.8 and 4.9, where the former shows the result of the ASR CCHA*
algorithm at a selected node. The robot attempted to cross the path of the dynamic obstacle
behind it while considering its own uncertainty and that of the dynamic obstacle. Figure 4.9
shows the results for all the algorithms. Most HA* algorithm variants crossed the path of the
dynamic obstacle behind it, except for the HA* algorithm, the CCxHA* algorithm, which did
not consider the robot shape and the ASR SCHA* algorithm, which conservatively crossed
the path of the dynamic obstacle ahead of it. Table 4.2 shows the results for each of the
planner. It is shown that the SCHA* variations expanded many nodes and therefore had a
larger computation time. Due to the dynamic obstacle, the soft constraint part increased,
which will lead to the expansion of many nodes. Furthermore, most of the algorithms had a
similar traveled distance as the HA* and ASR HA* algorithms. The CCxRRT algorithm had
a similar computation time as the CCxHA*, but a larger mean distance with a large standard
deviation. The CCRRT algorithm had the second-largest mean computation time, which is
more than two times larger as for the ASR CCHA*. Both the A* and RRT moved, as in the
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4.4 Arbitrary-shaped mobile robots

Figure 4.6: The resulting path attaining the shortest distance (solid red) using the CCRRT
algorithm and a “zig-zag” motion (dash-dotted blue) using the CCxRRT algorithm
(the black circles emphasize the path segments with a “zig-zag” motion).

static environment, very close to the obstacle. Furthermore, the HeAT-RT expanded the fewest
nodes but had the largest standard deviation of the distance and a larger mean computation
time compared to the proposed CCHA*, CCxHA* and SCHA* algorithms.
The CCxHA* and ASR CCxHA* performed best among the proposed algorithms in terms of
computation time and travelling distance.

4.4.1.3 Results for different soft constraint gains

This section compares the result of the HA* algorithm with those of the SCHA* algorithm
using different k gains for the soft constraint. Figure 4.10 shows the resulting paths, where the
conservatism of the SCHA* algorithm increases with a decreasing gain value for k. Furthermore,
Table 3 shows that the number of expanded nodes, the traveled distance and the computation
time also increases. For k = −0.1, the traveled distance is less than for the HA* algorithm
(see Table 4.1); however the SCHA* algorithm with k = −0.1 moves close to the obstacles.
The traveled distance of the SCHA* algorithm with k = −0.5 and k = −1.5 is similar to the
traveled distance of HA*. Based on these results, the gain value of the soft constraint should be
set between −0.5 and −1.5 to achieve a good traveling distance, computation time, and safety.
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4.4 Arbitrary-shaped mobile robots

Figure 4.7: Resulting paths for all algorithms in a clustered, static environment.

4.4.1.4 Performance Comparison

This work adapted the MCS algorithm in [62], which was modified for dynamic obstacles and
robots with nonlinear dynamics, where the robot state was updated at each expanded node for
the motion command of the final path. Algorithm 4 shows a pseudo-code of the MCS algorithm.
Variable pcoll(R, ·) denotes the probabilities for robot R to not collide with the tested obstacle.
S i,Dj denote static obstacle i and dynamic obstacle j, respectively. AR, ASi and ADj denote
the area of the robot R, static obstacle i and dynamic obstacle j, respectively. O is the set of
all obstacles and nS , nD is the number of static and dynamic obstacles, respectively. Function
randc() calculates the Gaussian random variable. This work used P = 1000 particles for the
MCS, and the probability of collision was calculated based on the shape of the robot. The
results of the static and dynamic environments are shown in Figure 4.17. The red lines indicate
the MCS results for the proposed algorithms assuming a point robot, the blue lines indicate the
algorithms that consider the shape of the robot, and the green and purple lines show the results
of the planners used for comparison, except A* and RRT, which cannot be evaluated using the
MCS since they do not use a robot model. The probability of collision was significantly reduced
for the static environment. Only CCxRRT and the proposed CCxHA* had high values, likely
because they did not consider the shape of the robot and allowed a probability of collision of
∆t(xt) ≤ 0.25, but CCxHA* was still ∼31 % better than CCxRRT. The result of the dynamic
environment was similar. In both environments, the CCHA* algorithm variation indicated
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Figure 4.8: The ASR CCHA* algorithm result at a selected node in the dynamic environment.

almost no probability of collision while the CCxHA* algorithm had a small value based on
the setting of Γ . ASR CCxHA* improved the probability of collision by ∼54 % compared to
the deterministic planner ASR HA*. It can be seen that the algorithms that do not consider
uncertainties had the largest probability of collision. Furthermore, most ASR variations (blue
lines) of the proposed algorithms have a very low probability (close to 0 %) of collision in both
the static and dynamic environments.

The performance of the algorithms was evaluated using a clustered, static environment, and
an environment with a dynamic obstacle. In addition, the true probability of a collision was
calculated using the MCS.
The results showed that the proposed algorithms were able to find probabilistically safe paths
within the set threshold, i.e., Γ . Furthermore, the CCHA* algorithm was very conservative,
thus exhibited a very low probability of collision (Figure 4.17). However, with an increase in
the number of obstacles, the CCHA* algorithm may fail to find a solution due to the pruning
of all expanded nodes. The CCxHA* algorithm showed good results with a small increase in
the computation time per node compared with the CCHA* algorithm (Tables 4.1 and 4.2). All
proposed algorithms were able to avoid the dynamic obstacle with a decreased probability of
collision (Table 4.2). The method considering arbitrary-shaped mobile robots further increased
probabilistic safety at the cost of additional computation time per node. Therefore, the ASR
variations of CCHA*, CCxHA*, and SCHA* can be used as global approaches for predicting
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Algorithm 4 Monte Carlo Simulation
1: procedure ProbabilisticCollisionCheck
2: for all Nodes do
3: reset(pcoll)
4: for j ← nS do
5: for i← P do
6: û← u + randc(0, ΣM)
7: xt+1 = f(xt, û)
8: xSj = xSj

0
+ randc(0, ΣS)

9: Sj ← xSj

10: if AR ∩ASj = ∅ then
11: pcoll(R,Sj)← pcoll(R,Sj) + 1
12: end if
13: end for
14: end for
15: for j ← nD do
16: for i← P do
17: û← u + randc(0, ΣM)
18: xt+1 = f(xt, û)
19: xDj

t+1
= µx

Dj
t+1

+ randc(0, ΣDj )

20: Dj ← xDj
t+1

21: if AR ∩ADj = ∅ then
22: pcoll(R,Dj)← pcoll(R,Dj) + 1
23: end if
24: end for
25: end for
26: pcoll(R,O)← 1
27: for k ← 1 to nS do
28: pcoll(R,O)← pcoll(R,O) · pcoll(R,Sk)
29: end for
30: for k ← 1 to nD do
31: pcoll(R,O)← pcoll(R,O) · pcoll(R,Dk)
32: end for
33: pcoll(R,O)← 1− pcoll(R,O)

P nO

34: store(pcoll(R,O))
35: end for
36: end procedure
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4 Probabilistic Safe Path Planning

Figure 4.9: Resulting paths in the dynamic environment.

an initial probabilistically safe path.
The proposed soft constraint approach successfully found probabilistic robust paths for both
environments. However, computation time and number of expanded nodes was large for the
dynamic environment, which indicates that the heuristics approach should be extended to
consider dynamic obstacles. The ASR SCHA* outperformed both ASR CCHA* and ASR
CCxHA* in the static environment. The ASR CCHA* failed to find a solution and the ASR
CCxHA* had a large computation time (Table 4.1). Moreover, results indicated that the gain
values for the SCHA* algorithm should be in the range of k = −0.5 to −1.5 to achieve good
results for safety and traveled distance (Table 4.3).
CCHA* and CCxHA* outperformed CCRRT and CCxRRT in terms of mean computation
time and mean traveled distance (Tables 4.1 and 4.2). In addition, the results of the HA*
algorithms are deterministic, whereas the results of the RRT-based planners are random. The
shorter computation time of the proposed HA*-based planners is the result of two factors.
First, the RRT-based planners compute a new motion command for each node, whereas the
HA*-based planners use a fixed motion command that can be stored beforehand in a lookup
table. Second, HA*-based planners store each expanded node in a list, and the node with the
lowest total cost (heuristic cost plus cost-so-far) is selected for expansion. Such a procedure
requires a heap algorithm; here, binary heap [118] is used, which has an average time com-
plexity for inserting a value of O(log n) and extracting the minimum value of O(log n), where
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4.5 Probabilistic robust path planning using the χ2-distribution

Table 4.3: Traveled distance and computation time per node in a static environment for the
SCHA* algorithm.

Soft
constraint k

Distance [m] Expanded
nodes

Comp.
time [s]

−0.1 19.82 400 ∼ 0.174
−0.5 20.62 813 ∼ 0.406
−1.5 20.81 1333 ∼ 0.592
−3.0 21.34 1846 ∼ 0.936
−5.0 22.01 1713 ∼ 0.794
−10.0 21.88 1917 ∼ 0.994
−100.0 23.10 5499 ∼ 3.176

n is the number of nodes in the list. Meanwhile, the RRT-based approaches use a list for all
expanded nodes, where the cost of each node has to be updated based on the newly expanded
node, which requires O(n) time. In CLRRT, CCRRT and CCxRRT the updated list has to be
sorted, which takes O(n log n) time [89].
The larger mean distance of the RRT-based planners is a result of detours and “zig-zag” mo-
tions (Figure 4.6) caused by random selection of new nodes in the configuration space [75].
In contrast the proposed algorithms are guided by heuristics, therefore expand nodes close to
the goal, and change motion directions only if a collision constraint is violated, hence avoiding
“zig-zag” motions (Figure 4.5).
The heuristics approach used for the proposed algorithms do not consider dynamic obstacles,
which result in a large number of node expansions. Therefore, future studies should extend the
algorithms with heuristics considering dynamic obstacles to reduce the number of expanded
nodes and computation time.

4.5 Probabilistic robust path planning using the
χ2-distribution

In the previous section the probability of collision is calculated using the Gaussian error function
or the inverse Gaussian error function. Calculating the probability of collision using the former
can be computationally expensive (depends on the number of obstacles) on the other hand,
planners using the inverse Gaussian error function (i.e., CCHA*) are very conservative and
may not find a solution. This section introduces an approach that uses the χ2-distribution
to detect a collision with an obstacle under state and environment uncertainties. Confidence
ellipses generated with the χ2-distribution are used to get an area of possible robot states for
each time instant t. The area of the confidence ellipse is enclosed with two circles with equal
radius. Collision occurs if one of the circles overlaps with an obstacle. The following explains
the approach in detail with comparisons with the proposed planners of the previous section.
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Figure 4.10: Results for different gains of the SCHA* algorithm.

4.5.1 Generation of confidence ellipses

A not rotated ellipse at the origin is described by(
x

rx

)2

+
(

y

ry

)2

= 1, (4.44)

where rx and ry are the radii of the ellipse in x and y-direction, respectively. The confidence
ellipse of an uncorrelated Gaussian distribution of the form

Σ =
[
σ2

x 0
0 σ2

y

]
(4.45)

is expressed with the following(
x

σx

)2

+
(

y

σy

)2

= s, (4.46)
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(a) Collision probability for the static environment.
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(b) Collision probability for the dynamic environ-
ment.

Figure 4.11: Monte Carlo simulation for static and dynamic environments.

where s denotes the scale factor of the confidence ellipse. It can be seen that (4.46) follows a
χ2-distribution. The χ2-distribution is defined as the sum of squares of Gaussian distributions

Q =
kDOF∑
i=1

X2
i , (4.47)

where kDOF is the number of degrees of freedom, Xi is a Gaussian distributed random variable
and Q is a χ2 distributed random variable. Therefore, s ∼ χ2

2 in (4.46) is a χ2-distributed
random variable with two degrees of freedom. The variable s is calculated using the selected
confidence pconf for the confidence ellipse. The following equation

p (s < kth) = pconf (4.48)
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v̂1v̂2

√
sλ1

√
sλ2

Figure 4.12: Confidence ellipse of a correlated covariance matrix.

with the threshold value kth has to be satisfied. Since the χ2-distribution has two degrees of
freedom s can be calculated with

s = −2 ln (1− pconf). (4.49)

The area of the resulting confidence ellipse contains all Gaussian distributed data points of Σ
up to a confidence of pconf.
Generally for robotic systems the Gaussian random variables are correlated, hence the covari-
ance matrix is expressed as follows

Σ =
[

σ2
x σx,y

σx,y σ2
y

]
. (4.50)

(4.46) can still be used but has to be adjusted for σx,y. Now the eigenvalues λ1, λ2 are used for
the radii, hence the adjusted equation is as follows(

x

λ1

)2

+
(

y

λ2

)2

= s. (4.51)

Furthermore, the normalized eigenvectors v̂1, v̂2 represent the rotated coordinate system for
the confidence ellipse. Since a covariance matrix is always positive definite the eigenvalues and
eigenvectors can be calculated with

λ1,2 = 1
2

(
σx + σy ±

√
(σx − σy)2 + 4σ2

x,y

)
(4.52)

v1,2 =
[

−σy+λ1,2
σx,y

1
]⊤

(4.53)

v̂1,2 = v1,2

∥v1,2∥2
. (4.54)

Figure 4.12 shows a generated confidence ellipse for a correlated covariance matrix Σ.
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4.5 Probabilistic robust path planning using the χ2-distribution

Isosceles triangle

rc

µqt

Figure 4.13: Confidence ellipse with the isosceles triangle and the two circles.

4.5.2 Collision detection

In this approach collision occurs if an obstacle enters the area of the confidence ellipse. There-
fore, the same approach as shown in Figure 4.3 can be used to cover the confidence ellipse.
Here, two circles of equal radius are selected to cover the confidence ellipse along the larger
eigenvalue. It can be seen that the smallest possible radius of the circles equals the length of
the equally sized sides of an isosceles triangle, where the hypotenuse is the connection of the
intersection points of the confidence ellipse with the lines along the eigenvectors v̂1, v̂2. Fig-
ure 4.13 shows a confidence ellipse with the isosceles triangle and the resulting circles. Using
trigonometric equations the radius of the circles is as follows

rc = s (λ1 + λ2)
2
√

sλmax
, (4.55)

where rc is the radius of the circles. The center of the circles are calculated using the eigenvector
v̂max of the larger eigenvalue λmax together with the corresponding radius of the confidence
ellipse

c1,2 = µqt ±
(√

sλmax − rc

)
v̂max, (4.56)

where c1,2 are the coordinates of the centers of both circles and µqt is the mean position of the
mobile robot and therefore the center of the confidence ellipse. Figure 4.13 shows a confidence
ellipse covered by two circles of equal radius. After obtaining the centers of the circles and the
radius the collision check can be done using (4.1). The equations for each obstacle have to be
adjusted for the circle radius. Hence, collision occurs if the following conjunction of inequalities
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Figure 4.14: 95 % confidence ellipses with circles covering the confidence ellipse of the front left
square segment.

for an inflated obstacle is satisfied
ne∧

i=1
a⊤

i (µqt − xpi
+ rcai) < 0, (4.57)

where xpi
is a point on line segment i. The current state µqt of the mobile robot is collision

free if the following conjunction for all obstacles is satisfied

nO∧
j=1

nOj∨
i=1

a⊤
ji

(
µqt − xpjit

+ rcaji

)
≥ 0

 , (4.58)

where the parameter xpjit
is time dependent to accommodate for dynamic obstacles. The

planners that use the confidence ellipses to generate collision free paths are named confidence
ellipse hybrid A* (CEHA*).

4.5.3 Extension for arbitrary-shaped robots

The approach can be extended for arbitrary-shaped mobile robot by covering the confidence
ellipse of each square and rectangle segment (Figure 4.4) of the robot with two circles. An
example using the same covariance matrix as for Figure 4.4 is given in Figure 4.14. The path
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4.5 Probabilistic robust path planning using the χ2-distribution

Figure 4.15: Resulting paths of the planners in the static environment.

of the ASR is collision free if the following conjunction of inequality constraints is satisfied

nO∧
j=1

nSeg∧
k=1

nOj∨
i=1

a⊤
ji

(
µqt − xpjit

+ (rck
+ rk) aji

)
≥ 0

 , (4.59)

where nSeg is the number of segments of the robot, rck
is the radius of the circles covering the

confidence ellipse of segment k, and rk is the inflation radius of segment k. Here the inflation
radii are rsq and rrec for the square segment and rectangle segment of the robot as seen in
Figure 4.3. The planners that consider the shape of the robot and use the confidence ellipses
are named arbitrary-shaped mobile robot confidence ellipse hybrid A* (ASR CEHA*).

4.5.4 Results and discussion

The proposed algorithms using confidence ellipse to find probabilistic robust paths are compared
in the following in the same static and dynamic environments as in the previous section. The
best performing algorithms in terms of computation time and probabilistic robustness from the
previous section, namely CCxHA*, ASR CCxHA*, ASR SCHA*, ASR HA*, and HeAT-RT
are selected for comparison. The same process noise and environment uncertainties as in the
previous section or chosen for the path generation. The covariance matrix used to generated
the confidence ellipses is the sum of the covariance matrix of the robots or square segment
position Σ{qt,qj

t } and the covariance matrix of the position of the respective static or dynamic
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Figure 4.16: Resulting paths of the planners in the dynamic environment.

obstacle ΣO

Σtotal = Σ{qt,qj
t } + ΣO, (4.60)

where Σtotal is the covariance matrix of the sum. Furthermore, the confidence value was set to
pconf = 0.1 for CEHA* and pconf = 0.02 for ASR CEHA*. Finally, the performance is evaluated
using MCS.
The results for the static and dynamic environment are shown in Figures 4.15 and 4.16, re-
spectively. It can be seen that the ASR CEHA* is more conservative than the CEHA* even
though the confidence value is much smaller. Furthermore, both planners moved forward and
backwards on the spot in the dynamic environment until the dynamic obstacle passed the
mobile robot. Table 4.4 shows the comparison with other planners. Among all the planners is
CEHA* the fastest with a computation time of ∼0.069 s in the static environment and ∼0.032 s
in the dynamic environment. CEHA* is more than 3 times faster than the second fastest
probabilistic robust planner CCxHA* in the static environment and more than 9 times faster
in the dynamic environment. In the dynamic environment the confidence ellipse approach
considering the shape of the robot has a smaller computation time than the CCxHA* planner
which does not consider the shape of the robot. Furthermore, ASR CEHA* is almost as fast
as the deterministic planner ASR HA*. The travelling distance of the proposed planners is
larger compared to the other planners, especially ASR CEHA* has a larger travelling distance
compared to other ASR approaches.
The MCS shows that both planners are able to reduce the probability of collision. But the
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4.5 Probabilistic robust path planning using the χ2-distribution

Table 4.4: The traveled distance and computation time per node in the static and dynamic
environments compared with selected planners from the previous section (the last
two columns are omitted for brevity).

Algorithm Shortest
distance [m]

Collision check
time per node [µs]

Expanded nodes
(best solution)

Computation
time [s]

Static environment
CEHA* 21.99 ∼ 153 174 ∼ 0.069
ASR CEHA* 24.49 ∼ 448 424 ∼ 0.48
CCxHA* 20.51 ∼ 240 408 ∼ 0.22
ASR CCxHA* 22.83 ∼ 898 5086 ∼ 13.84
ASR SCHA* 22.15 ∼ 885 2022 ∼ 3.5
ASR HA* 21.40 ∼ 67 580 ∼ 0.11
HeAT-RT 18.90 ∼ 15 288 ∼ 0.32± 0.51

Dynamic environment
CEHA* 19.25 ∼ 173 103 ∼ 0.032
ASR CEHA* 22.25 ∼ 360 140 ∼ 0.119
CCxHA* 18.25 ∼ 224 550 ∼ 0.3
ASR CCxHA* 18.36 ∼ 637 671 ∼ 1.08
ASR SCHA* 18.84 ∼ 589 4138 ∼ 4.9
ASR HA* 18.25 ∼ 56 584 ∼ 0.11
HeAT-RT 19.05 ∼ 14 72 ∼ 0.96± 0.51

CEHA* planner has a larger probability of collision compared to the other probabilistic robust
planners. On the other hand, the ASR CEHA* has almost no probability of collision (close to
0 %) in both the static and dynamic environments. Furthermore, CEHA* and CCxHA* have
a similar probability of collision in the dynamic environment but CEHA* is more than 9 times
faster in generating the path. CEHA* improved the probability of collision by ∼15 % in the
static environment compared to HeAT-RT with a faster computation time.

In this section a new planning approach for probabilistic robustness using confidence ellipses
was proposed. The planners were compared with other probabilistic robust planners in a clus-
tered, static environment and a dynamic environment. The true probability of collision was
calculated using the MCS.
Results showed that the planners were able to find probabilistically safe paths in both the
static and dynamic environments (Figures 4.15 and 4.16). Furthermore, the ASR variation
generated very conservative paths, thus the paths had a very low probability of collision. The
planners outperformed other probabilistic robust algorithms in terms of computation time with
a similar probability of collision. However, setting the pconf parameter is not intuitive compared
to setting the parameter Γ of the previous section.
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(a) Collision probability of the confidence ellipse
planners for the static environment.
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(b) Collision probability of the confidence ellipse
planners for the dynamic environment.

Figure 4.17: Monte Carlo simulation for static and dynamic environments of the confidence
ellipse planners and selected planners of the previous section.

Even though the computation time of the collision check is faster for the confidence ellipse
approach compared to the planners of the previous section, the time complexity is the same.
As with the chance constraint and exact chance constraint planners, the time complexity for
inserting a value is O(log n) and the time complexity of extracting a value of the list is O(log n)
as well.

4.6 Measurement feedback and adaptive velocity
This section introduces measurement feedback to the planner such that the state uncertainty of
the mobile robot is updated leading to a more realistic uncertainty provided the real system is
equipment with sensors for measurements. In addition, an approach is proposed that selects the

82



4.6 Measurement feedback and adaptive velocity

(mx, my)

Laser range

Figure 4.18: Feature detection of a static obstacle.

robots linear velocities with respect to the current probability of collision. The SCHA* planner
of the previous section will be extended for measurement feedback and adaptive velocities and
the performance will be compared with an existing planner. A new cost function considering
travelling time instead of travelling distance will be introduced for the adaptive velocities.

4.6.1 Measurement feedback

In the following it is assumed that the measurement is received from laser range sensors (e.g.,
Lidar), where the localization of the robot is calculated by detecting known features such as
corners from static obstacles. Figure 4.18 shows a mobile robot detecting with a Lidar sensor
a feature of the static obstacle, where mx and my denote the coordinates of the feature in the
global reference frame. The blue dashed circle denotes the laser range of the Lidar sensor.

4.6.1.1 Measurement model

The same measurement model as in [114] is used for the feature detection, where the equation
of the deterministic measurement model is in the following form

zi
t = h (xt, j, m) , (4.61)

where zi
t is the measurement vector of the ith-feature which corresponds to the jth-landmark of

the feature map m. Here, it is assumed that the correspondence between the detected feature
and the landmark on the map is known. The nonlinear measurement model with additive

83



4 Probabilistic Safe Path Planning

Gaussian noise is expressed as follows
ri

t

ϕi
t

si
t

 =


√

(mj,x − xt)2 + (mj,y − yt)2

atan2(mj,y − yt, mj,x − xt)− θt

mj,s

+ εQ, (4.62)

where ri
t is the range to the landmark, ϕi

t is the corresponding bearing and si
t is the signature

of the landmark. [mj,x, mj,y]⊤ are the coordinates of the landmark and mj,s is the landmarks
signature. The signature is not used in the following but is kept for completeness. The additive
Gaussian noise is expressed with εQ ∼ N (0, ΣQ) with the covariance matrix ΣQ.

4.6.1.2 Kalman filter update

The function h (xt, j, m) has to be linearized for the correction step of the EKF. Hence, the
resulting measurement matrix H̃ i

t is

H̃ i
t = ∂h

∂xt

(µxt , j, m) (4.63)

=


− mj,x−µxt√

(mj,x−µxt )2+(mj,y−µyt )2 −
mj,y−µyt√

(mj,x−µxt )2+(mj,y−µyt )2 0
mj,y−µyt

(mj,x−µxt )2+(mj,y−µyt )2 − mj,x−µxt

(mj,x−µxt )2+(mj,y−µyt )2 −1
0 0 0

 . (4.64)

The correction step of the EKF to obtain the updated state covariance matrix Σxt+1 is as follows

St = HtΣ̄xt+1H⊤
t + Qt (4.65)

Lt = Σ̄xt+1H⊤
t S−1

t (4.66)
Σxt+1 = (I3 −LtHt) Σ̄xt+1 , (4.67)

where the above equations correspond to the correction step for all detected features n at time
instant t with

Ht =
[
H1

t , . . . , Hn
t

]⊤
∈ R3n×3 (4.68)

Qt = diag (ΣQ, . . . , ΣQ) ∈ R3n×3n. (4.69)

Furthermore, Σ̄t+1 is the state covariance matrix of the mobile robot after the prediction step
of the EKF and Lt ∈ R3×3n is the Kalman gain. It can be seen, that the computation of the
inverse of the matrix St ∈ R3n×3n will be large if many features are detected. Generally, in
an implementation the state covariance matrix is updated iteratively for each detected feature.
But a better solution is the use of the extended information filter (EIF) in the correction step
instead of using EKF [32]. In the EIF the inverse of St does not have to be calculated, instead
the sum of each measurement is taken and the inverse of a R3×3 matrix is taken ones to obtain
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Σxt+1

Ω̄xt+1 = Σ̄−1
xt+1 (4.70)

Σxt+1 =
[
Ω̄xt+1 +

n∑
i=1

[H i
t ]⊤Σ−1

Q H i
t

]−1

, (4.71)

where Ω̄t+1 is the information matrix of the prediction step, which corresponds to the inverse
of the covariance matrix Σ̄xt+1 .

4.6.1.3 Control feedback

Using measurement feedback in a path planner may lead to unreachable states for the real
system, due to the fact that the state covariance matrix Σxt may be much smaller than the
state covariance matrix of the prediction step Σ̄xt . There is no guarantee that the real system
can reach the new state with a small covariance matrix from the previous state with a large
covariance matrix. Hence, Bry et al. [19] proposed a planning approach that incorporates a
stabilizing controller in the correction step of the EKF. The result is a larger covariance matrix
for states that can guarantee reachability for the mobile robot. The following shows the update
step of the EKF with a stabilizing control gain Kt

µxt+1 =
(
Ãt − B̃tKt

)
µxt (4.72)

ΣΛt+1 =
(
Ãt − B̃tKt

)
ΣΛt

(
Ãt − B̃tKt

)⊤
+ LtHtΣ̄t+1 (4.73)

Σt+1 = Σxt+1 + ΣΛt+1 , (4.74)

where ΣΛt is the additional covariance matrix calculated with Kt. Σt+1 is the state covariance
matrix which is the summation of the state covariance matrix obtained from the EKF and the
control covariance matrix. The above equations can be adjusted such that the EIF will be used
instead of the EKF for the correction step. The main problem is the calculation of ΣΛt+1 which
is expressed with the Kalman gain Lt. The term LtHtΣ̄t+1 can be calculated with (4.67) and
(4.71)

LtHtΣ̄t+1 = Σ̄xt+1 −Σxt+1 (4.75)

ΣΛt+1 =
(
Ãt − B̃tKt

)
ΣΛt

(
Ãt − B̃tKt

)⊤
+ Σ̄xt+1 −Σxt+1 . (4.76)

The obtained covariance matrix Σt+1 can be used for the proposed probabilistic robust path
planners in the previous sections.

4.6.2 Adaptive velocity
This subsection introduces the policy that sets the linear velocity of the mobile robot with
respect to the current probability of collision. In addition, a new cost function is introduced
that minimizes the travelling time instead of the travelling distance.
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The absolute values of the linear velocity are assumed to range from vmin = 0.1 m/s to vmax =
1.0 m/s and are discretized with a step size of δv = 0.1 m/s for the planner. The planner should
select large velocities for the next time instant if the probability of collision is small and vice
versa. Hence, if the probability of collision ∆(xt) = 0.0 the largest velocity and as an upper
bound the smallest velocity should be selected if ∆(xt) ≥ 0.45. Therefore the linear velocities
can be selected with the following expression

vt = vmax −
(

δv

⌊
min (∆t(xt), ∆max)

δ∆

⌋)
, (4.77)

where δ∆ is the discretization of the collision probabilities and ⌊·⌋ expresses the floor function.
The HA* algorithms always move with the same turn radius, therefore the angular velocity of
the mobile robot should be adjusted with respect to the current linear velocity

ωt = vt

R
, (4.78)

where R is the turn radius of the mobile robot in the HA* planner.

4.6.2.1 Cost function

This approach will select linear velocities with respect to the probability of collision of the
mobile robot, therefore the cost function should minimize the travelling time instead of the
travelling distance. The following is the cost function for this path planning approach

E[J(xt)] = δt [1 + k ln (1−∆t(xt)) + kλλmax] , (4.79)

where kλλmax is a penalty for the covariance matrix with a gain kλ and λmax = eig(Σt+1).
The penalty guides the path to areas where a measurement feedback is received such that the
mobile robot is more certain about its current state. The planners using measurement feedback
and adaptive velocities are named adaptive soft constraint hybrid A* (ASCHA*).

4.6.3 Results and discussion
This section demonstrates the performance of the ASCHA* planner. The planner is compared
with existing planners (i.e., HeAT-RT, CLRRT, CCxRRT) and planners of the previous sections
in the clustered, static environment and the dynamic environment. The same parameters as in
the previous sections are used for the planners, in addition the ASCHA* planners gains for the
cost function are k = −0.5 and kλ = 0.6. The range for the laser sensor is set to 2.5 m and the
covariance matrix for the measurement model is set to

ΣQ =

0.01 0 0
0 0.01 0
0 0 0.01

 . (4.80)

86



4.6 Measurement feedback and adaptive velocity

Figure 4.19: Resulting paths with adaptive velocities in the static environment.

Figure 4.20: Resulting paths with adaptive velocities in the dynamic environment.
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Figure 4.21: Performance of the eigenvalue penalty in a static open environment.

Furthermore, the controller Kt is generated using pole placement for the linearized and dis-
cretized canonical nonholonomic mobile robot kinematic model.

Ã =

1 0 − sin θδtv
0 1 cos θδtv
0 0 1

 (4.81)

B̃ =

cos θδt 0
sin θδt 0

0 δt

 (4.82)

λ1,2,3 = [−0.05,−0.05,−0.5], (4.83)

where λ1,2,3 are the selected poles and the control gain is generated for a discrete set of headings
θ and a discrete set of velocities v, where it is assumed that the controller will be stable for
headings and velocities between the discretization steps.
Figures 4.19 and 4.20 show the resulting paths of ASCHA* and ASR ASCHA* in the static and
dynamic environments. The 95 % confidence ellipses are plotted every third node. Especially,
in the dynamic environment it can be seen, that the state uncertainty first increases until the
robot is close enough to a static obstacle. The mobile robot receives a measurement feedback
near the static obstacles and hence the state uncertainty decreases. Table 4.5 shows the com-
parison with the existing planners, where the travelling time, collision check time per node,
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expanded nodes, and the computation time are compared. In both the static and dynamic
environments does the adaptive velocity approach has the fastest travelling time but also a
larger computation time compared to most other planners. The larger computation time and
collision check time per node results from the additional computation time for the measure-
ment feedback and correction step with the EIF. Even though the computation time is larger,
the adaptive velocity showed its effectiveness. The travelling time of ASCHA* is ∼36 % and
∼37 % faster than the second fastest planner HeAT-RT in the static and dynamic environment,
respectively.
In the following the effectiveness of the λmax penalty is shown. Figure 4.21 shows the paths
of ASCHA* and ASR ASCHA* in an open space without a dynamic obstacle. Both planners
moved first near a static obstacle to receive measurement feedback and then continued moving
to the goal location instead of moving straight and directly to the goal. Hence, the penalty in
the cost function can guarantee that the mobile robot will not move to the goal location with
a large uncertainty, provided static obstacles are in the vicinity of the goal.

The performance of the adaptive velocity planners was evaluated using a clustered, static
environment and an environment with a dynamic obstacle.
The results showed that the planner generated in both environments probabilistic robust paths
with the smallest travelling time. Furthermore, the penalty for the eigenvalues of the state
uncertainty will guide the robot close to static obstacles such that measurements can be re-
ceived (Figure 4.21). Due to the measurement feedback and the correction step calculation is
the computation time of the proposed planners larger than the computation time of most other
planners. Hence, these planners may be more suitable as global planners and local corrections
can be generated using faster probabilistic robust planners such as CEHA*.

4.7 Summary
This chapter proposed probabilistic robust path planning algorithms for nonholonomic mo-
bile robots. The algorithms consider Gaussian uncertainty of the robot, static obstacles, and
dynamic obstacles. The proposed planners find probabilistic robust paths in both static and
dynamic environments. The uncertainty of the mobile robot was extended for mobile robots of
any shape were the proposed algorithms that consider the shape of the robot are able to further
increase the safety. Furthermore, a variation of the planner was proposed that omits compu-
tationally heavy calculations in the planner (such as the Gaussian error function) and instead
uses a geometric approach. The proposed planner finds probabilistic safe paths and reduces the
computation time compared to other approaches. Moreover, a planner is proposed that uses
a measurement model for a laser range sensor in the planning process to receive information
of the robots localization. In addition, the planner adapts its current linear velocity according
to the current probability of collision. The resulting paths have a shorter travelling time than
other planners and the mobile robot attempts to move in the vicinity of static obstacles such
that it can receive a measurement feedback.
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Table 4.5: Comparison of the travelling time and computation time of the adaptive planners
with existing approaches.

Algorithm Travelling
time [s]

Collision check
time per node [µs]

Expanded nodes
(best solution)

Computation
time [s]

Static environment
ASCHA* 21.68 ∼ 379 1412 ∼ 1.025
ASR ASCHA* 23.22 ∼ 1101 1769 ∼ 3.58
CEHA* 43.97 ∼ 153 174 ∼ 0.069
ASR CEHA* 48.97 ∼ 448 424 ∼ 0.48
CCxHA* 41.03 ∼ 240 408 ∼ 0.22
ASR CCxHA* 45.65 ∼ 898 5086 ∼ 13.84
ASR SCHA* 44.29 ∼ 885 2022 ∼ 3.5
ASR HA* 42.80 ∼ 67 580 ∼ 0.11
HeAT-RT 34.0 ∼ 15 288 ∼ 0.32± 0.51
CLRRT 37.0 ∼ 15 1720 ∼ 0.57± 0.74
CCxRRT 38.0 ∼ 240 10242 ∼ 2.65± 3.02

Dynamic environment
ASCHA* 21.28 ∼ 221 2408 ∼ 1.014
ASR ASCHA* 21.39 ∼ 477 2980 ∼ 2.78
CEHA* 38.5 ∼ 173 103 ∼ 0.032
ASR CEHA* 44.5 ∼ 360 140 ∼ 0.119
CCxHA* 36.5 ∼ 224 550 ∼ 0.3
ASR CCxHA* 36.71 ∼ 637 671 ∼ 1.08
ASR SCHA* 37.68 ∼ 589 4138 ∼ 4.9
ASR HA* 36.5 ∼ 56 584 ∼ 0.11
HeAT-RT 34.0 ∼ 14 72 ∼ 0.96± 0.51
CLRRT 34.0 ∼ 14 699 ∼ 0.27± 0.57
CCxRRT 35.0 ∼ 224 788 ∼ 0.55± 0.71
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5.1 Conclusions
This thesis proposed algorithms for CPP problems that address different objectives of the
coverage path. Furthermore, a parking controller and probabilistic robust PTP path planners
are introduced. A separate conclusion is given for each chapter of the thesis:

• Chapter 2 proposes a HGA algorithm to generate coverage paths that improve the travel-
ling time, energy consumption or number of cell visits. The proposed fitness function for
the energy consumption is proven to be valid for differential-drive mobile robots in planar
environments. Results have shown that energy-efficient paths are different from those
with the number of cell visits as a fitness function. Hence, energy cannot be optimized by
reducing the number of repetitive visits. The HGA algorithm with TASP and BSA shows
significant results: HGA/BSA finds good solutions for both the number of visited cells
and smooth energy-based fitness function, whereas HGA/TASP provides good solutions
for the both energy-based fitness functions and traveling time. HGA/TASP reduced the
travelling time by ∼28 % and the energy consumption on the smooth surface by ∼7 %
on the large environment compared to DT. Furthermore, HGA/TASP has the fastest
computation time among the HGAs. In addition, the evolutionary algorithms can find
solutions for different-sized environments, and their fitness was consistent for randomly
selected starting positions.
The HGA can improve the solutions obtained from other CPP algorithms such as TASP
and BSA. TASP is an appropriate algorithm for faster traveling, whereas BSA shows good
results for the number of cell visits. Because the properties of TASP and BSA are inher-
ited for the HGA, HGA/TASP has good results for the traveling time, and HGA/BSA
provides good results for the number of cell visits.

• Chapter 3 proposes a hybrid systems approach for parking control. The proposed con-
troller provides good results in simulations and experiments. The robot is able to reach
its desired states in each control step and is safely parked at the desired pose.

• Chapter 4 proposes novel variations of the HA* algorithm, which consider the probability
of collision with an obstacle. Furthermore, a method is proposed which considers the
shape of the robot in the probabilistic collision calculations. The performance is evalu-
ated with an environment with many static obstacles and an environment with a dynamic
obstacle. In addition, the true probability of collision is calculated using the MCS algo-
rithm. Results show that the variations are able to find probabilistic safe paths inside
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the set threshold pcoll. Results show that the CCHA* algorithms are very conservative
and therefore have a very low probability of collision. However, with increasing number
of obstacles the CCHA* may fail in finding a solution due to pruning all the expanded
nodes. The CCxHA* shows good results with small increase in the computation time
per node compared to the CCHA* algorithms. All proposed algorithms are able to avoid
the dynamic obstacle with a decreased probability of collision. Furthermore, results have
shown that best gain values for the SCHA* algorithm should be in the range of k = −0.5
and k = −1.5 to achieve a good result for safety and travelled distance. The method
to consider the shape of the robot further increased the probabilistic safety at the cost
of additional computation time per node. ASR CCxHA* improved the probability of
collision by ∼54 % compared to the deterministic planner ASR HA*. Most ASR of the
proposed planners had close to 0 % probability of collision. Since the computation time
is larger for the ASR variations the algorithms can be used for a global plan as a first
probabilistic safe path.
The planners that use the confidence ellipse for obstacle detection had small computa-
tion times, compared to other existing planners, with resulting probabilistic robust paths
making these planners versatile for path generation in any environment or robot shape.
The ASR variation of the CEHA* approach also had close to 0 % probability of collision.
The proposed planners that employ measurement feedback and adaptive velocities with
respect to the current probability of collision successfully generated paths in both the
static and dynamic environments. In addition, the resulting paths had the smallest trav-
elling time among all compared path planners. The resulting path of the ASCHA* was
∼36 % and ∼37 % faster than the second fastest planner HeAT-RT in the static and
dynamic environment, respectively.

5.2 Future works
In the future the HGA can be extended with more different local search algorithms. The
combination of several local search algorithms should be analyzed more in order to obtain
better results in terms of travelling time and energy efficiency. So far the algorithm assumes full
knowledge of the environment, an extension could be an online approach, where the environment
is separated into smaller regions based on the sensor limits of the mobile robot. A combination
of an online algorithm e.g. TASP and HGA/TASP could lead to optimal online paths.
So far the parking controller is not aware of its environment, the approach could be extended
by including constraints so that the algorithm is able to perform the parking motion without
hitting any obstacles.
So far only Gaussian noise is considered, the planners can be adapted e.g. using particles to
consider non-Gaussian noise as well. Furthermore, the current model for dynamic obstacles
assumes constant velocities, using a better model with e.g. constant turning radius could result
in a more precise estimation of the dynamic obstacle behaviour during the planning process.
In addition, heuristics that consider dynamic obstacle may further improve the computation
time of the path planners. The approach considering the arbitrary-shape of the mobile robot
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in SE(2) can be extended for SE(3), which can then be used for e.g., robotic manipulators to
provide probabilistic robust solutions.
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A Linear transformation of variance and
covariance

It is known that variance and covariance can be expressed using the expectation of random
variables as follows:

var(X) = E[(X− E[X])2], (A.1)
cov(X, Y) = E[(X− E[X])(Y − E[Y])]. (A.2)

Furthermore, the expectation of aX + bY + c is

E[aX + bY + c] = aE[X] + bE[Y] + c. (A.3)

Using (A.1) and (A.3)

var(aX + bY + c)
= E[(aX + bY + c− E[aX + bY + c])2]
= E[(a(X− E[X]) + b(Y − E[Y]) + c− c)2]

(A.4)

Using the principles of (A.3) again and the binomial formula,

= E[a2(X− E[X])2] + E[b2(Y − E[Y])2]
+ E[2ab(X− E[X])(Y − E[Y])]

(A.5)

Hence,

var(aX + bY + c) = a2var(X) + b2var(Y)
+ 2ab cov(X, Y).

(A.6)

The covariance for Z1 = a1X1 + b1Y1 + c1 and Z2 = a2X2 + b2Y2 + c2 can be calculated similarly,
i.e.,

cov(Z1, Z2)
= E[(a1X1 + b1Y1 + c1 − E[a1X1 + b1Y1 + c1])

(a2X2 + b2Y2 + c2 − E[a2X2 + b2Y2 + c2])],
(A.7)
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which can be simplified using (A.3),

cov(Z1, Z2) = E[(a1(X1 − E[X1]) + b1(Y1 − E[Y1])
(a2(X2 − E[X2]) + b2(Y2 − E[Y2])].

(A.8)

Rearranging above equation and using (A.2) led to the final result for the covariance as follows:

cov(Z1, Z2) = a1a2cov(X1, X2) + b1b2cov(Y1, Y2)
+ a1b2cov(X1, Y2) + a2b1cov(X2, Y1).

(A.9)

96



List of Abbreviations

ASCHA* adaptive soft constraint hybrid A*
ASR arbitrary-shaped mobile robot
ASR ASCHA* arbitrary-shaped mobile robot adaptive soft constraint hybrid A*
ASR CCHA* arbitrary-shaped mobile robot chance constraint hybrid A*
ASR CCxHA* arbitrary-shaped mobile robot exact collision probability chance constraint

hybrid A*
ASR CEHA* arbitrary-shaped mobile robot confidence ellipse hybrid A*
ASR HA* arbitrary-shaped mobile robot hybrid A*
ASR SCHA* arbitrary-shaped mobile robot soft constraint hybrid A*
BP backtracking point
BSA backtracking spiral algorithm
CCHA* chance constraint hybrid A*
CCRRT chance constraint RRT
CCRRT* chance constraint RRT*
CCxHA* exact collision probability chance constraint hybrid A*
CCxRRT exact collision probability chance constraint RRT
CEHA* confidence ellipse hybrid A*
CLRRT closed-loop rapidly-exploring random tree
CPP coverage path planning
DT distance transform
EIF extended information filter
EKF extended Kalman filter
GA genetic algorithm
HA* hybrid A*
HeAT-RT heuristic arrival time field-biased random tree
HGA hybrid genetic algorithm
HGA/Both HGA with both BSA and TASP
HGA/BSA HGA with BSA
HGA/TASP HGA with TASP
I/O-linearization input/output-linearization
IMU inertial measurement unit
KF Kalman filter
MA memetic algorithm
MCS Monte Carlo simulation
MIMO multiple input multiple output
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List of Abbreviations

OLS opposite lateral side
PRM probabilistic roadmap
PTP point-to-point
RLS reference lateral side
RRBT rapidly-exploring random belief tree
RRT rapidly-exploring random tree
SCHA* soft constraint hybrid A*
TASP turn-away starting point
TS tournament selection
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Symbol Unit Description

AD − Transition matrix of the dynamic obstacle
ϕ̇dl

rad/s Desired angular velocity of the left drive wheel
ϕ̇dr

rad/s Desired angular velocity of the right drive wheel
ϕi

t rad Bearing of the landmark i
rt − Boolean state of driving forward or reverse (reverse is set to 1)
C − Permutation of visited cells
c m Coordinates of the current cell
CCPP − 2-dimensional configuration space for the CPP algorithm
CCPP

free − obstacle free cells in the configuration space for the CPP algorithm
CCPP

obs − obstacle cells in the configuration space for the CPP algorithm
CCPP

unvisited − unvisited cells in the configuration space for the CPP algorithm
CCPP

visited − visited free cells in the configuration space for the CPP algorithm
c1,2 − Coordinates of the centers of the two circles covering the confidence

ellipse
rc m Radius of the circles covering the confidence ellipse
u − Input vector of the continuous mobile robot system
y − Output vector of the continuous mobile robot system
x − State vector of the continuous mobile robot system
ΣΛt − Control covariance matrix at time instant t
ΣxDt

− Covariance matrix of the dynamic obstacle at time instant t
ΣO − Covariance matrix of current obstacle
Σqt − Covariance matrix of the mobile robot position at time instant t
Σ̄t+1 − State covariance matrix in the prediction step
ΣM − Covariance matrix of the random Gaussian process noise
ΣD − Covariance matrix of the process noise of the dynamic obstacle
ΣQ − Covariance matrix of the measurement model
Σxt − Covariance matrix of the robot at time instant t
Σqj

t
− Covariance matrix of square segment j at time instant t

ΣS − Covariance matrix of the static obstacles
Σtotal − Sum of all covariance matrices
σxt,θt m rad Covariance of the mobile robot of the x-axis position and the head-

ing at time instant t
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σxj
t ,yj

t
m2 Covariance of square segment j of x-axis and y-axis at time instant

t
σyt,θt m rad Covariance of the mobile robot of the y-axis position and the head-

ing at time instant t
CPTP − Configuration space of the PTP path planner
CPTP

free − Free space in the configuration space of the PTP path planner
CPTP

obs − Obstacle space in the configuration space of the PTP path planner
Crev − Penalty for driving in reverse
cstart m Coordinates of the starting cell
Csw m Penalty for switching the direction of motion
Ii A Current of the motors at the i-th sampling instant
Il A Applied current on the left drive wheel
Ir A Applied current on the right drive wheel
∆t − Probability of collision with all obstacles
δjit − Probability of collision of line segment i of obstacle j at time instant

t
δ∆ − Discretization step of the collision probability
∆max − Maximum collision probability
δt s Sampling time
δv m/s Discretization step of the linear velocity
εd m Random Gaussian variable of the distance from mobile robot to

obstacle line segment
εD − Random Gaussian noise of the dynamic obstacle
xDt − State vector of the dynamic obstacle at time instant t
xDt m Position of the dynamic obstacle in x-axis at time instant t
yDt m Position of the dynamic obstacle in y-axis at time instant t
Dj − Description of dynamic obstacle j
ADj − Area of dynamic obstacle j
λ1,2 − Eigenvalues of the covariance matrix for the positional uncertainty
v1,2 − Eigenvectors of the covariance matrix for the positional uncertainty
v̂max − Eigenvector of the maximum eigenvalue
E J Energy consumption of the motors
ϵθ rad Threshold in the heading
ϵx m Threshold in x-axis
eθ rad Error in the heading
ex m Error in x-axis
ey m Error in y-axis
In − n-dimensional identity matrix
Γ − Threshold probability of collision
Xgoal − Goal space
H̃ i

t − Measurement matrix of the linearized measurement model
ζi − State i of the hybrid system
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Ω̄t+1 − Information matrix of the state in the prediction step
J − Cost or fitness objective function of the optimization problem
Jacc J; s;− Cost for the acceleration phase
Jdec J; s;− Cost for the deceleration phase
JS J; s;− Cost for the straight motion phase
JU J; s;− Cost for the turn motion phase
JUT J; s;− Cost for the U-turn motion phase
kλ − Gain for the covariance matrix eigenvalues penalty
kx 1/s Control gain in x-axis
ky 1/s Control gain in y-axis
kθζi

1/s Control gain for the heading of the i-th hybrid system
Lt − Kalman gain at time instant t
kDOF − Number of degrees of freedom of the χ2-distribution
λmax − Maximum eigenvalue of the covariance matrix
l m Distance from the rear axis center to the left or right drive wheel
lxj

t
− Distance to the robot center of square segment j in x-axis at time

instant t
lyj

t
− Distance to the robot center of square segment j in y-axis at time

instant t
Ã − Transition matrix of the linearized system at time instant t
B̃ − Input matrix of the linearized system at time instant t
xpi

− Point on line segment i
M − Permutation of motions
mi − Selected motion for cell ci

m − Feature map
µd m Mean distance between mobile robot and obstacle line segment
µqt − Mean position of the mobile robot at time instant t
µxt − Mean state at time instant t
µxDt

− Mean state of the dynamic obstacle at time instant t
µgoal − Mean state at goal area
µθt rad Mean heading of the mobile robot at time instant t
µlt m Mean travelled distance at time instant t
µxt m Mean position of the mobile robot in x-axis at time instant t
µxj

t
m Mean position of square segment j in x-axis at time instant t

µyt m Mean position of the mobile robot in y-axis at time instant t
µyj

t
m Mean position of square segment j in y-axis at time instant t

mx m Global coordinate in direction of the x-axis of the feature point
my m Global coordinate in direction of the x-axis of the feature point
nS − Number of static obstacles
nacc − Number of acceleration phases in the CPP path
ndec − Number of deceleration phases in the CPP path
NGA − Number of genes in the chromosome
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xSj
0

− Nominal state of static obstacle j

xSj
0

m Nominal position of static obstacle j in x-axis at time instant t

ySj
0

m Nominal position of static obstacle j in y-axis at time instant t

v̂1,2 − Normalized eigenvectors of the covariance matrix for the positional
uncertainty

np − Number of measurement points
nQ − Number of visited cells
nS − Number of straight motion phases in the CPP path
nSeg − Number of line segments of the current obstacle
nT − Number of turn motion phases in the CPP path
nD − Number of dynamic obstacles
ne − Number of line segments of the obstacle
nOj

− Number of line segments of obstacle j
nO − Number of static and dynamic obstacles
nS − Number of static obstacles
nUT − Number of U-turn motion phases in the CPP path
O − Set of static and dynamic obstacles
ωt

rad/s Angular velocity of the mobile robot at time instant t
ω̂t

rad/s Angular velocity of the mobile robot at time instant t subject to
additive Gaussian noise

P − Number of particles
P − Set of states that represent the generated path
pc − Probability of applying crossover in the HGA approach
pcoll − Probability of collision
pconf − Selected confidence for the confidence ellipse
xj

t − Position of square segment j in x-axis at time instant t

yj
t − Position of square segment j in y-axis at time instant t

Pi W Power consumption of the motors at the i-th sampling instant
γ − Threshold probability of collision for one obstacle
εM − Random Gaussian process noise
w − Pseudo input vector of the system
εQ − Random Gaussian variable of the measurement model
qt − Position vector at time instant t
r m Wheel radius of the drive wheels
rrec m Radius of the rectangular segment of the robot
rsq m Radius of the square segment of the robot
ri

t m Range of the landmark i to the current robot position
R − Description of the mobile robot
AR − Area of the mobile robot
s − Scale factor of the confidence ellipse
si

t − Signature of landmark i
k m Gain for the soft constraint of SCHA*
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x0 − Initial state of the mobile robot system
Σt+1 − Sum of the state covariance matrix and the control covariance ma-

trix
Sj − Description of static obstacle j
ASj − Area of static obstacle j
εSj − Random Gaussian noise of static obstacle j
xSj − State of static obstacle j
xSj m Position of static obstacle j in x-axis at time instant t
ySj m Position of static obstacle j in y-axis at time instant t
t s Time
tgoal s Final time instant
θ rad Heading angle of the mobile robot
θref rad Reference point for the heading
θt rad Heading of the mobile robot at time instant t
lt m Travelled distance at time instant t
R m Turn radius of the mobile robot
ut − Input vector at time instant t
ût − Input vector at time instant t subject to additive Gaussian noise
σ2

d m2 Variance of the distance between mobile robot and obstacle line
segment

σ2
θt

rad2 Variance of the heading at time instant t
σ2

xt
m2 Variance of the mobile robot in x-axis at time instant t

σ2
xj

t

m2 Variance of square segment j in x-axis at time instant t

σ2
yt

m2 Variance of the mobile robot in y-axis at time instant t
σ2

yj
t

m2 Variance of square segment j in y-axis at time instant t

v m/s Linear velocity of the mobile robot
vl m/s Linear velocity of the left wheel
vmax m/s Maximum velocity for the adaptive velocity planner
vmin m/s Minimum velocity for the adaptive velocity planner
Ui V Voltage of the motors at the i-th sampling instant
Ul V Applied voltage on the left drive wheel
Ur V Applied voltage on the right drive wheel
vr m/s Linear velocity of the right wheel
vt

m/s Linear velocity of the mobile robot at time instant t
v̂t

m/s Linear velocity of the mobile robot at time instant t subject to
additive Gaussian noise

ϕ̇l rad/s Angular velocity of the left drive wheel
ϕ̇r rad/s Angular velocity of the left drive wheel
x m Position of the mobile robot in x-axis
xref m Reference point for the x-axis coordinate
xt m Position of the mobile robot in x-axis at time instant t
xt − State vector at time instant t
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y m Position of the mobile robot in y-axis
yref m Reference point for the y-axis coordinate
yt m Position of the mobile robot in y-axis at time instant t
zi

t − Measurement vector of feature i at time instant t
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