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Recently, robots are widely used in numerous fields to support humans in many 
tasks. Thanks to the rapid growth of technology, the automated machines are 
becoming more powerful and more beneficial in their roles to help performing 
some tasks that humans even cannot do. Likewise, a particular type of partner 
robots which can interact closely to humans is also required to support their daily 
needs. In such cases, there are also demands for specialized robots which have the 
main ability to follow and attend specified humans in a safe close distance 
continuously. However, making them able to perform that kind of skills is not 
trivial since person-following cannot be considered as a simple task to be 
performed by robots. 
       In this thesis, we tried to train a mobile robot for performing the 
person-following task. Here, we see that the task is a complex task which can be 
broken down into several simpler sub tasks. When the robot is away from the 
target person, it should be able to perform the navigation task safely in order to 
make its position is close enough to him. Afterwards, the robot should also be able 
to perform the attending task properly once its position is close to the target 
person. In our study, we consider several previous studies which tried to make the 
robot able to accompany the target person at his left side or at his right side 
instead of following him from behind. In order to make the robot able to master the 
complex person-following task appropriately, we utilize deep reinforcement 
learning (DRL) approach for both obtaining the optimal policy for each sub task 
and integrating all those optimal policies into one strong optimal person-following 
meta-policy. 
       To obtain the optimal navigation policy, we employ the soft actor-critic 
(SAC) learning algorithm for making the robot able to approach the target person 
well. Moreover, we propose a specific framework which is intended to train a 
mobile robot to navigate quickly but safely. The framework utilizes a novel state 
transition checking method to ensure that the training environment provided for 
the robot always follows the Markov decision process properly. Furthermore, it 
also employs a novel velocity increment scheduling technique during the training 
process. The technique follows a curriculum learning strategy by setting a small 
value of velocity for the robot at the beginning of the training episode. As the 
number of episodes increases, the robot’s velocity is increased gradually so that 
the robot can gradually learn the complex task of fast but safe navigation in the 



 

training environment form the easiest level, such as the one with the slow 
movement, to the most difficult level, such as the one with the fast movement. 
       To obtain the optimal attending policies, we also use the SAC algorithm to 
make the robot able to attend the target person when its position is close to the 
target person. During the training process, we propose the U-shaped reward 
function which can guide the robot to attend the target person at his left side or at 
his right side. Moreover, we propose a novel weight-scheduled action smoothing 
technique so that the robot can generate smooth and safe trajectories for the 
attending task. To make the robot can better portray the surroundings we also 
propose a novel policy network architecture which employs one dimensional 
convolutional neural network to extract features from laser scans automatically.  
       Finally, to integrate all the optimal navigation and attending policies, we 
also propose a framework which employs the double deep Q-network which can 
make the robot learn to choose the most appropriate policy given the current state 
of the person-following environment. Inside our framework, we introduce the 
action generator module which can adjust the state of the person-following 
environment for each sub policy appropriately. Furthermore, the module is also 
able to smooth the actions generated by the robot using the action smoothing 
strategy to prevent the robot hitting the target person when it is close to him and 
when the robot’s actions are generated from changing policies. 
       From all experiments that we conduct in our study, we can conclude that 
the proposed navigation training framework is able to make the robot navigate 
approaching the target person faster with lower collision rate compared to other 
DRL-based navigation baseline frameworks. We confirm that the U-shaped 
reward function and the weight-scheduled action smoothing that we propose can 
make the robot attend the target person both at his left and right side with smooth 
and safe trajectories. We also confirm that our proposed framework can integrate 
all the navigation and attending policies for obtaining the meta-policy for the 
person-following task. For future work, we consider using dynamic environments 
for the training of the navigation and the attending tasks so that more robust 
policies can be obtained. We also plan to propose another method so that the robot 
can switch its attending position easily when it is close to the target person. 
Furthermore, we also will use computer vision techniques for detecting and 
tracking the target person so that the policies can be deployed for real robots. 
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Chapter 1

Introduction
1.1 Research Background
With the rapid growth in information technology and artificial intelligence (AI), there
has been a lot of research on a specific topic in the field of robotics which has the
main focus on developing particular robots that have a main duty to assist humans
while performing their daily tasks. In order to accomplish the tasks appropriately,
the robots must be able to interact socially with their surrounding environments [1].
More importantly, they are also required to be able to interact safely and properly
when delivering their services around humans [2]. Despite several challenges on the
development of service robots [3], there are also increasing demands toward particular
robots which are able to stay around and help a specified target person by always
following and attending him continuously.

Accordingly, typical person-following robots are needed in such scenarios when a
specific person and a robot are required to finish some common tasks altogether by
letting the robot to follow the human [4]. In more details, this kind of special robots
are equipped with cameras so that they can properly recognize the correct target
person to be followed and are usually assigned to help carrying some loads [5, 6].
Moreover, they are must also be equipped with other specific sensors so that obstacle
avoidance can also be performed well. Figure 1.1 depicts two examples of person-
following robot while helping target humans. Figure 1.1 (a) depicts a person-following
robot is carrying some personal belongings inside for a young lady. Figure 1.1 (b)
shows a robot is helping an elderly bring several shopping goods while following him
behind.

(a) Gita cargo robot [7] (b) CompaRob assistance robot [8]

Figure 1.1: Examples of person-following robots help carrying some stuffs
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However, developing person-following robots is not just a trivial task since there are
still many challenges that have to be faced with regard to the special characteristics
of the task that have to be performed by the robots [4,9]. Therefore, it can be broken
down into other several simpler tasks that have to be completed by the robot one by
one [10, 11]. Hence, appropriate methods are required in order to properly develop
the robots so that all of the sub tasks inside the substantial person-following task can
be accommodated well and properly.

One of possible options that should be considered for developing person-following
robots is robot learning, which is the intersection research field between robotics and
machine learning (ML) [12]. Instead of manually program the robots in details to
be able to perform several tasks, the approach lets robots to automatically learn
to perform those tasks by implementing machine learning techniques [13]. In most
cases, artificial neural networks (ANN) are implemented inside the robots so that
they can infer some meaningful outputs continuously given streamed data obtained
from various attached sensors. In order to make the robots can infer the outputs
correctly, training procedures which follow some ML approaches for the ANN are
required [14,15].

Reinforcement learning (RL) may become one of the ML approaches that can be
chosen when we want to solve tasks to be performed by robots [16]. Recently, this
approach has been gaining some interest and has been widely implemented in various
fields, including robotics since robots are required to perform end-to-end mapping
from sensors data to appropriate actions [17]. In contrast to supervised learning (SL)
approach which requires enormous amount of labeled data to perform the update
the ANN, RL uses a different mechanism which employs environments that provide
particular rewards related to some specific tasks for the RL agents inside the robots
while interactions are performed during the training process. In order to update
the ANN inside the robots, all experiences during the training process are used to
form optimal polices which capable of mapping states of the environments to suitable
actions which can maximize expected future rewards [18].

Furthermore, with the advancements and potentials of deep learning (DL) [19], the
concept of deep reinforcement learning (DRL) then emerges which extends traditional
RL framework with DL methods. DRL is able to make the agent to generate more
appropriate actions since it enables better feature extractions of the environment by
leveraging deeper neural network architectures with wider scope and variety of state
representations [20,21].

1.2 Person-Following Task for Robots
In this thesis, we focus on a specific task to be performed by a robot which is the
person-following task. The task involves an environment E of a specific area in which
a robot R becomes a follower of a specific target person P as the leader. In order to
make the robot able to perform the task successfully, it should be able to obtain data
of its surroundings D which are gained from sensors attached to the robot. Also, it
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Figure 1.2: The illustration of a Gazebo-based simulated environment containing all required
variables for the person-following task to be performed by the robot.

should be able to identify the correct person to be followed and then able to predict his
coordinate (px, py) accurately. Subsequently, the robot should also be able to calculate
the appropriate goal position G that must be close enough to the target person while
still taking into account the safe close distance dist between the robot and the target
person. The detailed illustration of an environment for the person-following task is
depicted in Fig. 1.2

After obtaining all data related to the person-following task as the inputs, the
robot must perform the path planning for generating the appropriate actions A to
achieve the goal coordinate (gx, gy) and avoid surrounding obstacles safely. Suppose
that all data related to the person-following task can be considered as the states of
the person-following environment S, in this thesis, we focus on obtaining a specific
person-following policy π which able to map the given states of the environment to
specific actions to be performed by the robot as follows

π : S → A. (Eq. 1.1)

Furthermore, the policy can be represented as a neural networks function which can
be deployed inside the robot. Therefore, a learning procedure for the neural networks
can be performed to train the robot for mastering the person-following task.
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Figure 1.3: The illustration of person-following task to be performed by robots in this dissertation.
We see that person-following is a complex task which can be hierarchically decomposed into left
attending task, navigation task, and right attending task.

1.3 Research Objective and Main Contribution
The main objective of this research is to perform training procedures for the person-
following robots development using DRL approach. Along with the potentials in
training and acquiring optimal policies for robots using deep reinforcement learning
(DRL) [17,22], applying the approach to develop a person-following robot can be one
of great options to be considered. Using a combination of DL and RL, several studies
such as [23] and [24] have shown that DRL can be successfully implemented to train
agents for obtaining the policy for a robot to generate appropriate actions to follow
a specified target person. However, the person-following task to be performed by the
robot in [24] is not seen as an integrated substantial task so that another important
sub task, namely the obstacle avoidance is neglected. On the other hand, since the
policy in [23] is only focused on the attending task, the robot often fails to minimize
collisions while it is away from the target person. Thus, to make the robot able
to perform all sub tasks in the person-following problem well, the task is seen as a
complex task to be learned by robots using DRL approach. In this dissertation, the
person-following task is defined as a task that can be decomposed hierarchically from
several sub tasks as shown in Figure. 1.3.

One of abilities a person-following robot must have is the navigation skill. Suppose
that the robot is in the position of away from the target person, it has to be able
to perform a motion planning for finding safe paths in order to navigate approaching
him while also avoiding surrounding obstacles. Once it’s position is near to the target
person, the robot subsequently has to find the most appropriate position towards
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him to perform the attending task appropriately. Furthermore, Instead of making
the robot able to continuously follow behind the target person, we consider several
previous studies [23,25] which tried to make the robot able to accompany him at his
left side or at his right side. Therefore, the person-following task can be described
hierarchically as a task which includes left attending task, navigation task, and right
attending task. Hence, multiple policies which are correlated to each task in the
person-following robots development are required to be obtained during the training
process.

The main contribution in this dissertation is the specific proposed novel method
which is intended for performing the person-following task training for a mobile robot
with DRL using bottom-up approach. In the proposed method, an RL agent is trained
for each sub task in the particular person-following task to obtain a set of sub optimal
policies. Subsequently, all of those sub optimal polices are then integrated altogether
to form an optimal meta-policy, which is the person-following policy. By following our
proposed method, all of sub tasks in the person-following task can be accommodated
and a strong optimal meta-policy can be obtained during the training process.

1.4 Thesis Organization
In accordance to the research objective in this dissertation which decomposes the
particular person-following task into several sub tasks, we organize the thesis as
follows: We first discuss some previous works which are related to the main method
which is proposed in this dissertation in Chapter 2. Subsequently, the discussion
regarding how we perform the training process for the navigation task is presented
in Chapter 3. In this chapter, we present our proposed framework which is intended
to train a mobile robot using DRL so that it is able to navigate safely and quickly.
Next, we present our proposed method to perform the attending task training in
Chapter 4. Furthermore, how we integrate the optimal navigation and attending
policies is presented in Chapter 5. Afterwards, our trials to improve the polices in
the person-following task is presented in Chapter 6. Finally, Chapter 7 concludes the
thesis and discusses the future work.
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Chapter 2

Related Work
2.1 Reinforcement Learning
Reinforcement learning (RL) is one of the approaches in the machine learning
techniques which aims to build models from training data. In contrast to other
approaches, RL approach leverages the interaction between an agent and an
environment to collect the data to train the model. However, compared with the
supervised learning approach, RL does not use label for the data. Instead, it uses
rewards for all actions generated by the agent from the states of the environment. In
order to make the agent able to learn an appropriate policy, RL algorithms aim to
make it able to maximize the training reward. Furthermore, RL can be combined with
deep learning (DL) to form better agents called deep reinforcement learning (DRL).

DRL is part of machine learning techniques which is the intersection field between
DL and RL [26]. By leveraging DL in RL, it is possible to train an agent to have
better understanding of the environment where it interacts. By using DRL, the
training process for a specific policy which is represented as a DL model can be done
directly without having to previously collect enormous labeled datasets. Instead, the
policy is updated through rewards obtained from the interaction of an RL agent with
its environment during the training process. Mnih et al. [27] demonstrated that DRL
can be used to train an agent to have a human-level control skill in playing Atari
games. Moreover, Silver et al. [28] showed that the trained DRL agent even can beat
human skills in playing Go. In addition, several studies such as reported in [29–31]
and [23] had demonstrated that DRL can also be successfully applied in robotics.

In order to train a DRL agent, an environment which follows Markov Decision
Process (MDP) is needed. As described in Bellman [32], the environment should be
able to be defined in tuple (S,A, p, r, γ), where S is state space, A is action space,
p : S×A×S → [0, 1] is state transition probability function, r : S×A → [rmin, rmax]
is bounded reward function, and γ ∈ [0, 1) is the discount rate of reward. In the
training process, the DRL agent will interact with the environment which always
provides immediate reward rt whenever the agent performs an action at ∈ A based
on current state st ∈ S. The policy π : S → A is then learned by the agent by
maximizing the sum of expected future reward using a specified DRL algorithm.

In our study, we focus on the details of the implementation of the DRL environment.
As small changes in the environment may influence the resulting navigation policy [33],
we need a mechanism which ensures that the environment will always follow MDP.
In the case of navigation task, our proposed state transition checking method verifies
that the environment follows MDP by inspecting terminal state conditions which
may occur while actions are performed in the environment. Moreover, our method
examines whether each action has been successfully executed in the environment by
setting the timestep size in the environment dynamically.
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2.2 Curriculum Learning
Bengio et al. [34] introduced curriculum learning as a training strategy in the context
of machine learning which presents organized examples based on meaningful order,
gradually from simple to complex. As reported in Hacohen and Weinshall [35] and
also Narvekar [36], it is possible to make the training process of deep neural networks
and RL becomes faster with improved final performance using this strategy. However,
generating appropriate examples following a specified curriculum is considered to be
an open problem to be solved [37].

In the context of DRL, curriculum learning strategy is used to generate suitable
experiences to be sampled from the replay buffer in the update process of neural
networks. Schaul et al. [38] introduces Prioritize Experience Replay (PER) which
priorities important experiences to be sampled from the replay buffer to generate
the examples following curriculum learning scheme. Subsequently, Ren et al. [39]
combined self-paced prioritize function and coverage penalty function which could
select samples with appropriate difficulty with penalty when samples are replayed
frequently. Another studies, such as [40] and [41] use curriculum learning to schedule
ordered list of task and maps to be solved by the RL agent.

We consider that generating actions for a mobile robot to navigate fast yet safe is
a complex task. From the perspective of curriculum learning, we see that the task
can be gradually learned from simple tasks. Furthermore, we relate the difficulty of
the navigation task to the robot’s velocity range settings. We first set a small range
in the robot velocity setting at the initial training stage. Subsequently, we follow
the curriculum learning strategy by expanding the velocity range during the training
process gradually.

2.3 DRL for Person-Following Robots
With the advancements which are offered by DRL to train agents capable of producing
policies which can map states of a particular environment to suitable actions, there
have been many studies that employ the method in the field of robotics [17, 42].
Accordingly, previous studies such as Dewantara and Miura [31], Liu et al. [43], and
Guldenring et al. [44] showed that the method can also be successfully applied to train
robots for generating safe and appropriate actions while they are interacting with
humans. Moreover, several studies have tried to apply DRL for obtaining specific
policies that able to generate actions to be performed by robots which are intended
for the person-following task as well.

Pang et al. [24] applied a hybrid method of supervised learning (SL) and DRL
to train an agent with deep Q-network (DQN) for developing a robot which able to
continuously follow a specified target person from behind. In order to generate the
robot’s actions, the study uses images obtained from an RGB camera attached to
the robot as states which are then fed to the neural networks inside the agent. Even
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though they demonstrate that the transfer learning from SL to DRL can make the
training for DRL become much faster, important modules in the person-following task
namely obstacle avoidance and distance measurement towards the target person are
excluded in the study.

On the other hand, a prior study conducted by Kohari et al. [23] considered
that the obstacle avoidance should also be included in the DRL training process
for the person-following task. In the study, a simulated dynamic environment is
prepared for the robot so that it is able to avoid obstacles while performing the
attending task. When the agent generates actions, states of the target person are also
observed and considered as part of the environment’s states as the input for the policy.
Subsequently, the study is then extended by Dewa and Miura [45] who introduced a
reward function which is designed based on the pose of the robot with respect to the
pose of the target person. Nevertheless, the learned policies still give high value of
collision rate in the validation since the main concern of both studies is mostly focused
on how the robot performs the attending task towards the target person. Therefore,
we concern that person-following is a complex task and come out with the idea to
provide a multi-task environment for the RL agent during the training process.

2.4 DRL for Environments with Multiple Tasks
In order to make DRL can be successfully applied to train agents inside complex
environments, several studies have considered multi-task learning in the training
process [46]. Previously, Yang et al. [47] introduced a neural networks architecture
inside a DRL agent capable of learning multiple tasks simultaneously. The
study extends the standardized deep deterministic policy gradient (DDPG) learning
algorithm [48] by applying multiple actors to accommodate various tasks. In addition,
it also modifies the training environment so that the agent is given a vector of rewards
which corresponds to each task whenever an action is performed.

Accordingly, other studies apply transfer learning strategy to deal with multi-task
environments. Teh et al. [49] applied transfer learning strategy to distill a base
policy among all tasks in the environment. In the study, several agents are
trained simultaneously for dissimilar tasks inside different environments and share
the same base policy. Along with the progress in the training, the base policy
and all task-specific policies are optimized and regularized so that the learning
process becomes more robust. Similarly, Espeholt et al. [50] proposed a framework
for performing distributed DRL mechanism over several dissimilar environments
using multiple actors that interact with the same critic which is called the learner.
Subsequently, the study is then extended by Hessel et al. [51] who introduced a method
to stabilize the learning by normalizing the impact for all tasks so that there is no
single task which becomes more salient compared to other tasks.

Apart from the aforementioned methods, various studies have considered that a
single complex task can be broken down into other simple sub tasks resulting a
new approach called hierarchical RL [52]. In this type of approach, an RL agent
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learns a meta-policy for a substantial task and sub policies which are correlated to
each sub task simultaneously [53]. In order to make the learning mechanism can be
realized, Sutton et al. [54] previously proposed a specific framework that is intended
for hierarchical RL called Options which then influences other related studies such as
reported in [55–57]. Accordingly, the framework is also extended by Frans et al. [58]
who introduced a shared state space over multi-task setting in the learning process.
The study then becomes the most closely related work to our proposed method.

Even though in our proposed method the agent also shares the same states from
the complex environment with other sub policies for each sub task, we do not perform
updates for those sub policies since we have already obtained a set of optimal sub
policies from the previous training. In our proposed method, we consider several other
studies which employ ensemble learning along with the RL mechanism to integrate
all sub policies in our environment. Previously, Marivate and Littman [59] introduced
a method which employs a weighted linear combination over Q-values from several
agents while interacting with different environments. Similarly, Carta et al. [60]
proposed an ensemble methodology with agreement threshold technique for several
RL agents which are trained at different epochs. Other than that, Elliot et al. [61]
proposed a crowd ensemble learning technique with weight sharing over a modified
DQN agent for one specific task to speed up the learning process. Liu et al. [62]
introduced a method which uses an RL agent to integrate three types of deep neural
network models that have been trained beforehand. The integration process in the
study is performed by making the agent learn to set the appropriate weight for each
model in order to produce the final output.

Most of the ensemble methods described in the aforementioned studies apply
weighting for each sub task since the main objective is to integrate several similar
classifiers. However, the condition is quite different with the person-following task
because all sub tasks have dissimilar goals. Since the the task can be decomposed into
several different sub tasks, we let an RL agent learn to choose the most appropriate
optimal policy which corresponds to the most suitable sub task for generating the
most applicable action given the current state of the complex environment.
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Chapter 3

Navigation Task Training with DRL
To train a mobile robot to navigate using end-to-end approach which maps sensors
data into actions, we can use deep reinforcement learning (DRL) method by providing
training environments with proper reward functions. Although some studies have
shown the success of DRL in navigation task for mobile robots, the method needs
appropriate hyperparameter settings such as the environment’s timestep size and the
robot’s velocity range to produce a good navigation policy. The previous existing DRL
framework has proposed the use of odometry sensor to generate dynamic timestep
size in the environment to solve the mismatch problem between the timestep size
and the robot’s velocity. However, the framework lacks a procedure for checking
terminal conditions which may occur during action executions resulting inconsistency
in the environment and poor navigation policies. In the case of navigation task,
terminal conditions may happen when the robot achieves the navigation goal position
or collides with obstacles while performing an action in one timestep. To cope with
this problem, we propose a state transition checking method in the DRL environment
which is specific for navigation task that leverages odometry and laser sensor to ensure
that the environment follows Markov Decision Process with dynamic timestep size.
We also introduce a velocity increment scheduling to stabilize the mobile robot during
training. Our experiment results show that state transition checking along with the
velocity increment scheduling are able to make the robot navigate faster with higher
success rate compared to other existing DRL frameworks.

3.1 Background
In navigation tasks, DRL is proven to be successfully implemented to train agents to
perform path planning [63], [64]. It also offers some advantages in training a mobile
robot to avoid obstacles and also to achieve navigation destination points. Provided
training environments which follow MDP, we only need suitable state representation
and also appropriate rewards as the input for the DRL agent to generate the velocity
of the robot to navigate in the training process [65]. We also do not have to collect
enormous labeled data to train navigation policies, as in the training procedure in
supervised learning since the robot will learn from interactions with the training
environments [66]. As mentioned in several studies [67–69], it is also possible to
use the learned policies for the mobile robot to navigate in new unknown complex
environments without having to retrain the DRL agent.

However, challenges in DRL method do exist [70], [22]. In order to get an optimal
policy to be applied for mobile robots to navigate using the method, we need to
appropriately implement the training environment and also carefully set the proper
hyperparameters [57]. One of the hyperparameters that should be correctly set in the
DRL environment is the timestep size which indicates the duration of a single action
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(can be selected and performed) in the environment [71]. Wrongly choosen timestep
size will cause poor performance since the Q-function may collapse to V-function so
that the DRL agent will not get enough information to select actions resulting higher
reward [72]. In the case of navigation task training with DRL, the second problem
which may occur is how we can train the DRL agent to generate velocities which can
make a robot to navigate quickly but still considered as safe since faster navigation
may cause higher collision rate.

A new way to solve the timestep size problem in DRL environment has been
introduced by openai ros *1 which sets dynamic timestep size for each action to
be performed in the DRL environment. The openai ros package sets the duration
of each action by comparing the output velocity from the DRL agent to the current
robot’s velocity from odometry sensor so that the timestep size will always match with
the robot’s velocity. Nevertheless, the package always assumes that all actions will
always be successfully executed in the environment and does not put much attention
on terminal conditions which may occur in the middle of performing an action. In the
case of robot navigation, terminal conditions may happen when the robot achieves the
navigation goal position or collides with obstacles during an action execution. When
the terminal conditions occur, the environment should move to terminal state and a
training episode should be ended. Otherwise, the condition may lead to inconsistency
in the environment which can make the training process fail.

To solve the second problem, several studies such as [73] and [74] include the DRL
agent’s output action, which is the velocity, as the magnitude for the reward function
to make it able to generate high velocity value for autonomous outdoor vehicles. In
the context of DRL based robot navigation task, although the agent is forced to
generate higher velocity value as in [75] and [76], only small values are set for the
robot’s maximum velocities which prevent it from navigating quickly. Even though
[73] demonstrates that the DRL agent can generate smaller velocity towards obstacles,
the aforementioned studies mostly focus on how to make the agent generate faster
velocity rather than consider how the robot can navigate safely in the environment
using the learned policy.

In the navigation task, the goal of our study is to train a mobile robot to navigate
fast yet safe in indoor environments using DRL method. In our study, we focus
on DRL navigation for a mobile robot which is equipped with laser sensor to detect
obstacles and odometry sensor to estimate the robot’s velocity. In order to accomplish
our objective, we propose a novel framework for DRL based navigation which extends
the ordinary RL mechanism and previously existing frameworks by applying state
transition checking in the DRL environment to ensure that it will always follow MDP.
Moreover, we also apply velocity increment scheduling which is based on curriculum
learning for the mobile robot during the training process of the DRL agent as depicted
in Fig. 3.1 [77].

In our proposed state transition checking method, we extend openai ros package
so that it becomes aware of terminal conditions which may occur in the middle of

*1 http://wiki.ros.org/openai ros
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Figure 3.1: The block diagram of our proposed framework in the navigation training. We extend
the ordinary RL mechanism and previously existing frameworks by applying state transition checking
in the navigation environment. Moreover, we also implement velocity increment scheduling for the
DRL agent during the training process.

performing an action in the environment. The method continuously checks whether
the current state should move to terminal state whenever the DRL agent meets
terminal conditions which may happen in the navigation task, such as arriving at the
navigation goal position, colliding with obstacles, or reaching the maximum steps.
The current state will then be immediately changed to terminal state when one of
those conditions occurs. By doing so, we can ensure that the DRL environment will
always follow MDP. We also do not have to manually set the timestep size in the
environment since the duration of each action to be performed will be dynamically
set not only by using odometry but also by using laser sensor.

In contrast to other methods, our proposed framework schedules the range of the
robot’s velocity using a velocity increment scheduling mechanism to make a DRL
agent learn to navigate fast. The scheduler will set the range of the robot’s velocity
with a small value at the beginning of the training. It then will expand the range
gradually along with the increasing number of the training episode. By using the
mechanism, the DRL agent is given the opportunity to gently learn the skill to
navigate fast but safe from the easiest level to the hardest level.

3.2 Proposed DRL-Based Navigation Training Framework
The details of our proposed framework are presented in this section. We first describe
the properties of the DRL environment which we use to train the agent for the
navigation task. Subsequently, we describe the learning algorithm which is used to
train the agent. Afterwards, we describe our proposed state transition checking in
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the environment and our proposed velocity increment scheduling for the mobile robot
in the training process.

3.2.1 DRL-Based Navigation Environment
We follow the definition of MDP to describe our environment for training a mobile
robot to navigate in an indoor setting as outlined in the following subsections.

3.2.1.1 Navigation State Space
We need to carefully design the state space in the DRL environment since it will
greatly affect the generated actions by the agent. To make the DRL agent able to
generate appropriate actions to navigate, it needs information related to the goal
position and the surrounding obstacles from the laser sensor attached to the mobile
robot. Additionally, it also needs information related to the current robot’s state
which is represented as the previous velocity generated by the agent which has been
successfully executed in the environment. Therefore, the state space in this study
consists of laser scan data from the laser sensor, the goal coordinate position, and
also the robot’s previous velocity [78].

Fig. 3.2 depicts variables that we use to formulate the state space. Suppose that
the robot’s current state is at the linear and angular velocity of vt−1 and ωt−1, we
represent the navigation goal position Pgoal as the relative coordinate of px and py

from the robot’s current position. In contrast to [79], we do not directly use all of
the laser scan values to represent the surrounding obstacles around the robot. We
follow [80] and [81] who divide the laser scans into sectors and then only include
values which represent all sectors in the state space. Therefore, the state space s ∈ S
is defined as,

S = {Lsctr, px, py, vt−1, ωt−1}, (Eq. 3.1)

where Lsctr = {lsctr,i | i ∈ 1 . . . M} denotes all of the sector’s laser scans and M
denotes the number of sector.

To compute Lsctr, as also depicted in Fig. 3.2, we first adjust N laser scans obtained
from the laser sensor L = {lj | j ∈ 1 . . . N} by limiting the values to a radius
constraint of lmax so that the RL agent can more easily portray the state space in the
environment. The function to compute the adjusted laser scan values ladj is given by

ladj,k =

{
lj , lj ≤ lmax

lmax, lj > lmax,
(Eq. 3.2)

where k ∈ {1, 2, . . . , N}. Subsequently, we compute the average values of the adjusted
laser scans for all sectors using the following formula:

lsctr,i =
∑i(N/M)

z=i(N/M)−(N/M)+1 ladj,z

N/M
. (Eq. 3.3)
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Figure 3.2: An illustration of a robot’s position towards obstacles and a goal in our study. The
state space in our study is composed of sector’s laser scan, navigation goal coordinate, and the
robot’s previous velocity. We limit the laser scan values to a specified radius constraint so that the
agent can more easily portray the state space.

We also define a terminal state which ends an episode in the training or validation
process. Current state will move to terminal state sT whenever the robot successfully
arrives at a defined goal position, collides with barriers, or reaches the allowed
maximum steps in each episode.

3.2.1.2 Navigation Action Space
We use continuous action space [27] so that the agent will generate more dimension
output actions resulting more smooth robot’s trajectories when it navigates [24]. The
continuous action space a ∈ A is defined as

A = {v, ω}, (Eq. 3.4)

where v and ω denote linear and angular velocity to be published to the mobile robot
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respectively. Here, we assume that the robot in the environment is a differential drive
robot which can be controlled by publishing v and ω.

To control the generated output action so that it will always follow ranges of v ∈
[vmin, vmax] and ω ∈ [ωmin, ωmax] for time step t, we adjust the velocities as follows

vadj = vmin + (vnet
t + 1)(vmax − vmin)

2
, (Eq. 3.5)

ωadj = ωmin + (ωnet
t + 1)(ωmax − ωmin)

2
, (Eq. 3.6)

where vadj and ωadj denote the adjusted velocities, whilst vnet
t and ωnet

t denote the
velocities generated from the RL agent (the policy networks). Finally, we clip the
action using the following functions:

vt =


vmax, vadj > vmax

vadj , vmin ≤ vadj ≤ vmax

vmin, vadj < vmin,

(Eq. 3.7)

ωt =


ωmax, ωadj > ωmax

ωadj , ωmin ≤ ωadj ≤ ωmax

ωmin, ωadj < ωmin.

(Eq. 3.8)

3.2.1.3 Navigation Reward Function
We follow [81] which designs the reward function for the navigation task based on the
artificial potential field method [82]. Using the function, the RL agent will be given
a positive reward kgoal when the robot is able to arrive at the specified destination
point. A negative penalty reward −kcrash will also be given to the agent whenever
the robot collides with obstacles. Additionally, the reward obtained by the agent will
be computed based on the attractive potential field Uattr towards the goal position
and the repulsive potential field Urep towards surrounding obstacles.

The function to calculate the immediate reward for the time step t is defined as,

rt =


kgoal, dgoal < ϵgoal

−kcrash, dobs < ϵobs

−Uattr − Urep − rt−1, otherwise,
(Eq. 3.9)

where dgoal and dobs denote the current robot’s distance to the goal position and the
nearest distance to an obstacle. Here, ϵgoal and ϵobs denote small distance tolerance
values toward the goal position and toward an obstacle. Note that the function also
includes reward from the previous time step rt−1 to force the robot moving faster to
reach the goal position.

We use the following formula to compute Uattr in the reward function,
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Uattr = kattr ∗ dgoal, (Eq. 3.10)

where kattr denotes the constant for the attractive field. On the other hand, we use
the following formula to compute the repulsive force:

Urep = krep

N∑
i=1

(
1

c + dmap obs
i

)
− krep ∗N

c + lmax
, (Eq. 3.11)

where krep denotes the constant for the repulsive field and N denotes the number
of surrounding obstacles. Here, dmap obs

i denotes the distance of the robot to the
detected obstacle i in the local map whilst c and lmax denote a constant to limit the
repulsive field and the maximum laser scan range value respectively.

3.2.2 Soft Actor-Critic
Soft Actor-Critic (SAC) is one of model-free, off-policy DRL algorithms which was
introduced by Haarnoja et al. [83]. Dissimilar to other DRL algorithms which
only consider maximizing expected future reward in the training process, SAC also
aims to maximize entropy along with the future reward by utilizing a stochastic
actor. As a result, the algorithm gives better performance since it is able to make
the agent explores more in the environment compared to other algorithms which
use deterministic actor architecture, such as DDPG [48] and Twin Delayed Deep
Deterministic (TD3) policy gradient algorithm [84].

As depicted in Fig. 3.3, we need three types of functions to implement SAC which
are all implemented as neural networks, namely policy networks, value networks,
and Q networks. Since SAC is included as one of actor-critic frameworks in DRL
algorithms, the policy network becomes the actor, whilst the value network along with
the Q network become the critic. Additionally, SAC structure uses two Q networks
to solve positive bias problem in the policy improvement step as has been previously
described in [85]. It also uses a target value network in the structure so that the
training process becomes more stable [27].

For each step iteration in time step t, the policy network generates and performs
an action at based on the current state of the environment st to obtain the next
state st+1 and the immediate reward rt. Subsequently, an experience which consists
of tuple (st, at, rt, st+1) is stored in the replay buffer D. At the end of each training
episode, the policy network and all of the critic networks are all updated by previous
experiences sampled from D. The updates are sequentially performed for 1) the
value networks, 2) both Q networks, 3) the policy networks, and 4) the target value
networks.

We choose to employ SAC in our study since it is one of the leading state-of-the-
art methods which may improve the convergence ability and may able to avoid the
high sample complexity problem in DRL training. We also choose to apply SAC
since the algorithm can be appropriately used to train DRL agents performing task
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Figure 3.3: The structure of Soft Actor-Critic (SAC) algorithm proposed by Haarnoja et al. [83].
SAC employs five neural network functions which composed of policy network, Q network, and value
network. The update process of all networks are done by using data which are sampled from the
replay buffer for each episode iteration.

in environments with continuous action space. In the case of navigation task with
differential drive robot, the output of the policy networks is the linear and the angular
velocity at = {vnet

t , ωnet
t } to be published to the mobile robot. However, SAC does

not provide a mechanism to limit the range of vnet
t and ωnet

t in the environment.
Therefore, we need an additional clipping function to ensure that the final output
actions from the RL agent always lay in a specified range.

3.2.3 State Transition Checking
We propose a state transition checking procedure inside an RL environment which
is specifically intended for navigation task by leveraging odometry and laser sensor
attached to the mobile robot. In our proposed method, the odometry sensor is utilized
to automatically determine the dynamic timestep size which is needed to successfully
perform each action in the environment. Furthermore, the laser sensor is employed
to detect whether the current state should move to terminal state while an action is
performed in the environment. In addition, the data from the laser sensor and the
odometry sensor are directly used in our method instead of modeling them. We notice
that, specific for the navigation task, current state may move to terminal state before
an action can be successfully performed in the environment. This condition may
happen since the robot may arrive at the goal position or may collide with obstacles
in the middle of performing an action and before the action is considered as done
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Figure 3.4: An illustration of the proposed state transition checking method in the DRL
environment. The state transition checking is represented as yellow rounded rectangles inside an
RL environment. It leverages odometry sensor to determine the dynamic timestep size and also laser
sensor to immediately stop the current action whenever terminal conditions occur in the environment.

to be executed in the environment. When the condition occurs, the action should
be cut and the environment’s state should be moved to terminal state to keep the
consistency in the environment.

Fig. 3.4 depicts the illustration of our proposed state transition checking method in
the RL environment. The proposed checking function is represented as yellow rounded
rectangles which will continuously check whether an action has been successfully
performed in the environment or whether one of the terminal conditions occurs by
using data obtained from odometry and laser sensor attached to the mobile robot.
Note that the timestep size in the environment will be dynamically assigned as the
width of the yellow rounded rectangle may vary for each action as shown in the case of
action a0, a1, and a2. In the case of action a3, the state transition checking function
is able to cut the action and capable to prevent the environment to move from state
s3 to state s4. Instead, the environment moves from state s3 to terminal state sT .

The detailed formulation of our proposed state transition checking method is given
by

st+1 ∼


sT , dobs < ϵobs or dgoal < ϵgoal or t = N

κ(st), vodom ≈ vt and ωodom ≈ ωt

st, otherwise.
(Eq. 3.12)
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Here, the next state st+1 becomes the terminal state sT whenever the robot collides
with obstacles (dobs < ϵobs), arrives at the navigation goal position (dgoal < ϵgoal), or
when the maximum step in one episode is reached (t = N). Suppose that we train
the RL agent using SAC, the environment will move to the next state if the robot’s
current velocity obtained from odometry sensor (vodom, ωodom) is close to the output
action from the RL agent (vt, ωt), as described in the following formula:

κ(st) = p(st+1|st, {vt, ωt})πϕ({vt, ωt}|st), (Eq. 3.13)

where πϕ denotes the stochastic policy which generates the probability of taking action
at = {vt, ωt} in state st. Moreover, p denotes the transition probability function in
the RL environment, given the current state st and current action at.

In more details, we define Algorithm 3.1 to implement our proposed state
transition checking procedure in an RL environment. The proposed algorithm extends
openai ros package and the standardized step function in OpenAI Gym framework [86]
which performs the generated output action from the RL agent to the environment.
As shown in line 3 through line 27, the algorithm utilizes a main looping procedure
which will publish the velocity of the robot (line 4), obtain data from odometry and
laser sensor (line 5 and line 6), and check the terminal conditions (line 9) continuously.
Whenever one of the terminal conditions occurs based on the data from laser sensor,
the looping procedure will be stopped and the environment will move to terminal
state (line 16). Otherwise, the looping will only be stopped if the current robot’s
velocity obtained from the odometry sensor {vodom, ωodom} is equal to the output
action generated by the RL agent at = {vt, ωt} with a velocity difference tolerance
ξ (line 19). In addition, the robot will be stopped whenever the allowed maximum
steps in one episode is reached (line 20).

3.2.4 Velocity Increment Scheduling
During the training process, we propose the velocity increment scheduling for the
mobile robot along with our proposed state transition checking method to make
the robot can navigate faster while still maintaining high value of success rate.
Our proposed scheduling technique is one implementations of curriculum learning
which manages the range value of the robot’s velocity. In the early stage of the
training process, a small velocity range is initially set. Subsequently, as the number
of training episodes rises, we gradually increase the range of the robot’s velocity
linearly. Therefore, the complex task of generating appropriate actions which enables
the mobile robot to navigate fast yet safe can be gradually and gently learned by the
RL agent.

Suppose that we want to schedule the robot’s velocity from lower speed A to higher
speed B during N training episodes. Additionally, speed A has range of linear velocity
of va ∈ [va

min, va
max] and range of angular velocity of ωa ∈ [ωa

min, ωa
max], whilst speed

B has range of linear velocity of vb ∈ [vb
min, vb

max] and range of angular velocity of
ωb ∈ [ωb

min, ωb
max]. Using our velocity increment scheduling technique, the range of
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Algorithm 3.1: Step procedure in an RL environment with the proposed state
transition checking method
Input: action at = {vt, ωt}
Output: observation observ, reward r, done done
Data: goal coordinate {pgoal

x , pgoal
y }, robot coordinate {probot

x , probot
y }, obstacle

distance threshold ϵobs, goal distance threshold ϵgoal, velocity difference
threshold ξ, current step t, maximum step in one episode N

1 crash← goal← false
2 unpause the environment
3 while true do
4 PublishVelocity(vt, ωt)
5 L ← GetLaserScan()
6 O ← GetOdometry()

7 dgoal ←
√

(pgoal
x − probot

x )2 + (pgoal
y − probot

y )2

8 dobs ←Min(L)
9 if (dobs < ϵobs) or (dgoal < ϵgoal) then

10 if dobs < ϵobs then
11 crash← true
12 else
13 goal← true
14 end
15 stop the robot
16 break
17 else
18 (vodom, ωodom)← GetCurrentVels(O)
19 if | vodom − vt |< ξ and | ωodom − ωt |< ξ then
20 if t = N then
21 stop the robot
22 end
23 break
24 end
25 end
26 sleep for some time
27 end
28 pause the environment
29 observ ← GetObservation(L)
30 r ← ComputeReward(crash, goal,L)
31 done← crash or goal or t = N
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the linear velocity for the current episode eps is given by

veps ∈ [va
min, va

max + eps ∗∆vmax] , (Eq. 3.14)

where ∆vmax = (vb
max − va

max)/N denotes the increment of the higher bound of the
linear velocity for each episode. Here, we do not expand the range of the lower bound
of the linear velocity since it is always set to zero and we do not want the robot to
move backward while navigating. Similarly, the range of the angular velocity for the
current episode eps is given by

ωeps ∈ [ωa
min − eps ∗∆ωmin, ωa

max + eps ∗∆ωmax] , (Eq. 3.15)

where ∆ωmin = (|ωb
min| − |ωa

min|)/N denotes the increment of the lower bound of
the angular velocity for each episode and ∆ωmax = (ωb

max − ωa
max)/N denotes the

increment of the higher bound of the angular velocity for each episode.

3.3 Experiment Results and Discussions
In this section, detailed analysis and discussion of the experiment results for our
proposed framework is presented. We first describe the experiment setup including
the implementation and the baselines for comparison. Subsequently, we present our
analysis towards the experiment results.

3.3.1 Experiment Setup
3.3.1.1 Implementation
In order to validate our proposed framework, we conduct several experiments to train
DRL agents to generate actions for a robot to navigate in an indoor environment. We
implement our framework inside the Gazebo simulator [87] with a differential drive
based Fetch robot [88] along with the Robot Operating System (ROS) [89] to subscribe
data from the laser sensor and the odometry sensor. By using the ROS application
programming interface (API), we directly feed the data from the sensors to the state
transition checking method in our proposed framework. All of the navigation training
environments used in this study are coded in Python which follow the standardized
OpenAI Gym framework [86] and run on a workstation with an Nvidia Titan RTX
graphic processor.

Fig. 3.5 depicts the maps which we use to train and to validate all of the DRL
agents for the navigation task in this study. In the training process, we utilize a very
simple map (Fig. 3.5 (a)) containing only four static cylinder obstacles. Additionally,
we employ a more complex map (Fig. 3.5 (b)) in the validation process containing
new static obstacles namely several boxes and several static human models. For both
maps, we set the same one initial robot position and a goal position which is randomly
picked from three candidates for each episode.
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(a) The map for the navigation training (b) The map for the navigation validation

Figure 3.5: Maps used in the navigation task experiments. Red circles represent the initial position
of the mobile robot whilst green stars denote the navigation goal positions. For each episode, we set
a random goal position for both maps.

Table 3.1: The hyperparameter settings of the SAC algorithm and the RL environment for the
navigation task training.

Hyperparameter Setting

SAC Algorithm Parameter
Learning rate of all networks (η) 0.0003
Discount rate of reward (γ) 0.99
Soft update coefficient (τ) 0.01
Batch size 128
Replay buffer size 100,000

RL Environment Parameter
Number of laser scan sectors (M) 10
Reward for arriving at the goal position (kgoal) 100
Distance to goal threshold in meter (ϵgoal) 0.6
Penalty for collisions (kcrash) 100
Min. distance to obstacle threshold in meter (ϵobs) 0.4
Const. for attractive field (kattr) 100
Const. for repulsive field (krep) 2.0
Const. to limit the repulsive field (c) 0.04
Const. to limit the max. laser scan range in meter (lmax) 2.0
Velocity difference threshold (ξ) 0.3

All of the training process for the DRL agents are performed with SAC algorithm
which is trained using Adam optimizer [90] and implemented using Pytorch library
[91]. Moreover, we use network architectures which are shown in Fig. 3.6. We use the
same two hidden layers with the same number of hidden neurons for each layer for
all network architectures. In addition, the hyperparameters used in our experiments
are listed in Table 3.1. We refer to [83] and [81] to define the hyperparameters for
the SAC algorithm and for the RL environment with some additional adjustments.
Furthermore, we refer to [78] to define the resolution of laser scans to compute values
which represent each sector around the robot using Eq. 3.3.
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Figure 3.6: Network architectures for the SAC algorithm used in this study. (a) Policy network.
(b) Q Network. (c) Value network. The policy network serves as the actor, whilst the Q network
and the Value network serve as critics.

3.3.1.2 Baselines
For comparison purpose, we train several DRL agents using other previously existing
frameworks with SAC algorithm and with the same map. We compare our proposed
framework with openai ros and gym-gazebo which are a framework and a toolkit
intended for training robots inside Gazebo simulator with ROS framework. Moreover,
we also train DRL agents using our framework without the velocity increment
scheduling. The followings are the baselines which we use for the comparison:
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1. openai ros. In contrast to our proposed framework which uses both odometry
and laser sensor, the openai ros package only uses odometry sensor to determine
the dynamic timestep size in the DRL environment.

2. gym-gazebo. Unlike our proposed framework and the openai ros package, the
gym-gazebo toolkit [92] uses fixed time step in the DRL environment. In our
experiments, we set the same timestep size of 0.1s in the environment for all
robot’s velocity setting scenarios.

3. Ours without VIS. We only use the state transition checking method in the
environment without the velocity increment scheduling for the robot in the
training process.

3.3.2 Results and Analysis
The success rate values of training process in various speed settings are presented
in Fig. 3.7. As depicted in Fig. 3.7 (a), our proposed framework which combines
the state transition checking and the velocity increment scheduling gives high value of
success rate. In addition, the training which schedules speed A to speed D gives better
performance than the training which schedules speed A to C. Similarly, as shown
in Fig. 3.7 (b), the success rate of our framework without the velocity increment
scheduling with speed D is close to the success rate of the framework with speed A
which has the lowest linear and angular velocity range value setting. Here, we confirm
that lower range value of angular velocity can make the robot to navigate more stable.

Furthermore, we can see that the higher we set the velocity range value of the robot,
the lower the success rate that we can get. As shown in Fig. 3.7 (b), we get the highest
success rate when we set the robot at the lowest speed (speed A). When we increase
the robot’s velocity setting to speed B or speed C, the success rates then decrease
gradually. On the other hand, Fig. 3.7 (c) shows that the training process with
the openai ros package fails and stops at the very early stage when we set the robot
with higher velocity range values since the robot never reaches the desired velocity
obtained from odometry sensor when it collides with obstacles. As also shown in Fig.
3.7 (d), the mismatch problem of the timestep size and the robot’s velocity occurs
with the gym-gazebo toolkit which uses fixed timestep size, resulting very unstable
training process.

The progress of the time to goal value of the training process in various speed
settings is presented in Fig. 3.8. By comparing Fig. 3.8 (a) to other sub figures, we
can see that our proposed framework with the velocity increment scheduling is able
to make the robot learn to move faster along with the increasing number of episodes.
Moreover, the scheduling mechanism is proven able to reduce the average time to goal
value. We get lower average time to goal values at the end of the training process for
speed A in Fig. 3.8 (a) compared to the average time to goal value for speed A in Fig.
3.8 (b) and in Fig. 3.8 (c). Additionally, we also can see from Fig. 3.8 (a) that our
proposed framework which schedules speed A to speed D is able to make the robot to
have more stable average time to goal value compared to the training process which
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(d)

(a) (b)

(c)

Figure 3.7: The success rate of the navigation training process in various speed settings. (a) Our
proposed framework. (b) Our proposed framework without the velocity increment scheduling. (c)
The openai ros package. (d) The gym-gazebo toolkit.

schedules speed A to speed C.
Table 3.2 shows the details of all experiments conducted in this study. We can

see that our proposed framework which combines the state transition checking along
with the velocity increment scheduling gives the best success rate both in the training
and in the validation process compared to other frameworks in all robot’s velocity
setting scenarios. On the other hand, the gym-gazebo toolkit gives the lowest average
time to goal value among other frameworks. However, it results in lower success
rate compared to our proposed framework both in the training and in the validation
process. Therefore, we confirm that our framework can make the robot to navigate
faster yet safe in the environment since it gives lower average time to goal values
compared to other frameworks with speed A and speed B.

The stability and robustness of our proposed framework is also shown in Table
3.2. Our proposed state transition checking in the RL environment is proven able
to stabilize the training process with various robot’s velocity settings. The second
block of the table lists the training results of our proposed framework without the
velocity increment scheduling. From the list in the second block, we can clearly see
that the success rate decreases and the average time to goal increases if we rise the
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(a) (b)

(c) (d)

Figure 3.8: The average time to goal of the navigation training process in various speed settings. (a)
Our proposed framework. (b) Our proposed framework without the velocity increment scheduling.
(c) The openai ros package. (d) The gym-gazebo toolkit.

robot’s velocity (speed A through speed C). On the other hand, experiment results
with the gym-gazebo toolkit do not show the same pattern due to the mismatch
problem between the timestep size in the environment and the robot’s velocity setting.
Similarly, experiment results with the openai ros package show that it does not robust
to various robot’s velocity settings. In our experiments, the robot gets stuck on some
obstacles and cannot finish the training for speed B, speed C, and speed D. From
the results of our proposed framework, we can confirm that the framework can make
the training process more stable and also able to be successfully conducted in various
speed settings compared to other existing frameworks.

We also present plots of some generated navigation trajectories of the robot which is
trained with our proposed framework in the validation map. As depicted in Fig. 3.9,
we confirm that the higher we set the angular velocity range value of the robot, the
more shaky the robot is. We can obviously see that we get very oscillate trajectories
(denoted in blue lines) when we set the robot velocity with speed C in the training
process. Including the velocity increment scheduling strategy in the training process
gives better trajectories which can minimizes the collision risk (denoted in orange
lines). Nevertheless, we still get oscillating trajectories as shown in the orange lines
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Table 3.2: Performance of our proposed framework in various speed settings. In both training and
validation process, we confirm that the success rate of our proposed framework outperforms success
rates of the baselines. Furthermore, we show that our framework can shorten the average time to
goal while still maintaining a high success rate.

Framework Speed
Training Validation

Success Rate Avg. Time Goal Eps. Ends Success Rate Avg. Time Goal
(%) (s) (%) (s)

Ours A→C 90.08 26.48 10,000 44.39 19.08
A→D 96.79 23.19 10,000 91.10 16.63

Ours w/o VIS

A 96.49 32.92 10,000 74.50 27.47
B 88.67 29.56 10,000 62.80 23.79
C 81.38 20.53 10,000 38.55 19.18
D 94.85 16.77 10,000 58.35 14.20

openai ros

A 96.55 28.10 10,000 73.09 21.16
B 36.95 30.38 693 n/a n/a
C 0.0 0.0 12 n/a n/a
D 6.66 30.03 15 n/a n/a

gym-gazebo

A 2.14 68.83 10,000 0.0 n/a
B 61.83 23.8 10,000 67.85 21.89
C 62.41 15.16 10,000 2.20 15.99
D 89.79 12.83 10,000 32.25 12.89

Speed A:

{
v ∈ [0.0, 0.4] m/s

ω ∈ [−1.2, 1.2] rad/s

Speed B:

{
v ∈ [0.0, 0.5] m/s

ω ∈ [−1.5, 1.5] rad/s

Speed C:

{
v ∈ [0.0, 0.75] m/s

ω ∈ [−2.0, 2.0] rad/s

Speed D:

{
v ∈ [0.0, 0.75] m/s

ω ∈ [−1.2, 1.2] rad/s

from Fig. 3.9 (b) and Fig. 3.9 (c).
On the contrary, we get more smooth trajectories if we set the robot with lower

angular velocity in the training process. As we can see from Fig. 3.9, the trajectories
generated from our proposed framework give better results when we schedule the
velocity of the robot from speed A to speed D. Here, we only schedule the linear
velocity in the training process. We can obviously see that the trajectories denoted
as red lines are very similar to the trajectories denoted as green lines for all target
settings in the validation map. This confirms that our proposed velocity increment
scheduling strategy is able to make the robot to generate smooth trajectory as when
we set the robot with speed A, but with higher linear velocity setting which can give
better average time to goal value for the robot to navigate.

3.4 Conclusion on Navigation Task Training
In this chapter, we proposed a framework for DRL based navigation for mobile
robots with state transition checking in the RL environment and velocity increment
scheduling for the robots during the training process. Based on the results in this
study, we can conclude that the proposed framework performs well both in the training
and in the validation process which enables the RL agent to learn a policy which can
make the robot able to navigate fast yet safe in the environment. Moreover, we show
that our proposed state transition checking in the RL environment is crucial to make
the training process robust to various robot’s velocity settings. In addition, we show
that our proposed velocity increment scheduling strategy is able to assist the RL agent
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Figure 3.9: The plot of some robot’s trajectories over several speed settings in the validation
process. The robot’s initial positions are represented as red circles whilst the target locations are
represented as green stars. (a) The target is at the position of (2, 8). (b) The target is at the
position of (5, 8). (c) The target is at the position of (8, 8). We demonstrate that the robot is able
to generate more smooth trajectory using our proposed framework.

to gently and gradually learn the complex task of navigating in an environment in
high speed and with high success rate. The proposed framework has been validated
in a simulated environment with various velocity settings which confirms that our
proposed framework has better performance compared to other frameworks.
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Chapter 4

Attending Task Training with DRL
In this chapter, we present the application of soft actor-critic (SAC) learning algorithm
to train a mobile robot to attend a target person at specific locations inside a Gazebo
simulator. Since our previous study confirmed that the appropriate attending position
while the target person is standing or walking is at his left or his right side, we design
a novel U-shaped reward function behind the target person’s position with respect
to the robot’s position. To make the robot can better portray the surroundings, we
also propose a novel SAC architecture which employs one dimensional convolutional
neural networks (CNN) to extract features from laser scans automatically during the
training process. We also introduce the use of weight-scheduled action smoothing
which able to stabilize actions generated by the agent in the attending task training.
Our experiment results show that the robot is able to attend the target person at
the designed location using our proposed reward function and SAC architecture.
Furthermore, the weight-scheduled action smoothing which is introduced in this paper
is able to make the agent generate more smooth actions. Most importantly, the
proposed method does not prevent exploration, which becomes one of crucial aspects
to make the agent can learn appropriately during the training process.

4.1 Background
Attending a specific target person is one of required basic tasks for an autonomous
mobile service robot. To make the robot able to generate appropriate actions to
attend the target person based on various conditions, we can train the robot (agent)
using DRL by providing training environments which follow MDP and letting the
robot to interact with them. In addition, we also need well designed reward functions
inside the environments for guiding the robot to learn appropriate policies which will
map the given state of the environments to suitable actions.

The position of the robot towards the target person is a very important aspect in
the case of training a service robot for attending a specific person using DRL [25].
Therefore, we need to carefully formulate a reward function based on the appropriate
position of the robot towards the target person. In our previous study [23], we
confirmed that the appropriate attending positions for a mobile robot to the target
person while he is standing or walking are at his left or his right side. Hence, we
should design a reward function in the environment which can force the robot to
position itself at the left side or at the right side of the target person.

In this study, we design a new reward function in the training environment by
relating the reward distribution with the relative position of the robot towards the
target person which can guide the robot to the appropriate attending positions.
Furthermore, we employ SAC [83], which is one of the state-of-the-art DRL
algorithms, to train the RL agent (robot). We also design a new architecture inside
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the SAC agent which uses one dimensional CNN which extract features from all of
the laser scans automatically so that the robot can better portray the surroundings.

In addition, we introduce a novel method called weight-scheduled action smoothing
for performing the attending task training which does not prevent the exploration
for the RL agent and able to make the robot generate more smooth actions while
attending the target person. Since smoothing the robot actions may prevent the RL
agent to find the right or the left attending goals around the target person, we modify
the action smoothing strategy [74] and follow the curriculum learning strategy [34]
to schedule the smoothing weights for the current action and for the previous action
during the attending task training procedure.

4.2 Proposed DRL-Based Attending Training Framework
4.2.1 Attending Task Training System Architecture
The overview of our proposed training system is depicted in Fig. 4.1 which are
divided into several components. As shown in the figure, we create a module
which represents the training environment of the Gazebo simulator called the person
attending environment. Moreover, we also develop another module called the soft
actor-critic agent which represents the learning algorithm which we employ in the
attending task training procedure. Each of the module in the architecture will be
described briefly in the following subsections.

4.2.1.1 Gazebo Data Helper
One of modules inside our person attending environment is the Gazebo data helper.
This module is responsible for subscribing the Gazebo model states, laser scans, and
odometry data from the Gazebo simulator continuously. Moreover, the module passes
the data to the reward calculator, the observation generator, and also the action
performer module.

4.2.1.2 Reward Calculator
The module calculates relative robot’s position rewards for the agent based on the
relative position of the robot towards the target person’s position. Fig. 4.2 (a) shows
the U-shaped rewards distribution plot of the robot’s relative position behind the
target person, which is the extended version of our previous work [23]. By using our
proposed reward formula, we do not want the robot to follow the target person from
behind. Instead, we want the robot to be able to accompany the target person at his
left or his right side. Additionally, the module also calculates the orientation reward
which is shown in Fig. 4.2 (b) based on the orientation difference angle between the
robot and the target person which is denoted as α, and the error tolerance ϵ. If
terminal conditions do not occur, the final rewards received by the agent are the sum
of the position rewards and the orientation rewards. Otherwise, the agent will receive
penalties of big negative values.
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Figure 4.1: The overall architecture of the system in this study. We created the person attending
environment which consists of several Python modules based on the OpenAI Gym framework that
relates the Gazebo simulator and the soft actor-critic [83] agent using ROS application programming
interface.

Figure 4.2: The position and the orientation reward of our person attending environment. (a) The
reward distribution of the robot’s relative position towards the position of the target person. (b) The
calculation of the orientation reward which is based on target person’s relative orientation towards
the robot’s orientation. Blue circles represent the target person whilst white circles represent the
robot.
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4.2.1.3 Observation Generator
The observation generator module is responsible for generating the state which
consists of: a) laser scans (662 values), b) target person’s relative coordinate from
the robot (2 values), c) robot’s previous action (2 values), and d) the target person’s
relative orientation (1 value). In our environment, we use all of the laser scans to
form the state instead of just using several laser scan values, such as in [78].

4.2.1.4 Action Performer
The module is in charge of performing the given action from the policy nets to
the robot inside the Gazebo simulator. It is also responsible for checking terminal
conditions which may occur during the performance of actions in the environment.
Hence, we implement the action performer module based on our state transition
checking method [77].

4.2.1.5 Soft Actor-Critic Agent
We propose a novel architecture inside our SAC agent. As depicted in Fig. 4.3, given
the state from the observation generator module, the policy nets extracts features
from the laser scans using 1D convolutional neural networks. Afterwards, it generates
the action by concatenating the learned features with other state values.

4.2.2 Weight-Scheduled Action Smoothing
To make the robot able to generate smooth and safe actions while attending the target
person at his left side or at his right side, we propose the weight-scheduled action
smoothing mechanism during the training process inside the attending environment.
We modify the action smoothing strategy [74] which able to maintain the continuity
of actions generated by the robot by adjusting the current action to the previous
action using fixed weights. Nevertheless, instead of using fixed weights, our proposed
weight-scheduled action smoothing follows the curriculum learning strategy [34] to
schedule the weights during the training process so that the RL agent (the robot) can
explore the environment sufficiently.

Suppose that we want to perform N training episodes for the robot inside the
attending environment to obtain the left attending policy and the right attending
policy. In order to generate the current action at to be performed in the environment
within time step t, we propose the following equation

at =
[
1−∆v 0

0 1−∆ω

]
aπ

t +
[
∆v 0
0 ∆ω

]
at−1, (Eq. 4.1)

where aπ
t denotes the action generated by the attending policy network within

time step t and at−1 denotes the previous action which has been executed in the
environment. Here, ∆v = eps ∗ (Cv/N) denotes the scheduled weight for the linear
velocity and ∆ω = eps∗(Cω/N) denotes the scheduled weight for the angular velocity

32



Figure 4.3: The structure of the proposed policy networks inside our SAC agent. In our structure,
we employ a 1D convolutional neural networks which extracts features from the laser scan during
the training process.

at the current episode eps. Moreover, Cv and Cω denote final weights for the previous
linear and angular velocity at the end of the training respectively which are set to 0.7
and 0.9 following Cai et al. [74].

4.3 Experiment Results and Discussion
For the training and the validation procedure, we prepare a world inside the Gazebo
simulator as depicted in Fig. 4.4. To obtain the left and the right attending policies,
we perform the attending task training with the weight-scheduled action smoothing for
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Figure 4.4: The simulated Gazebo environment for the training and the validation process of the
attending task. We prepared an empty world filled with a target person to be attended and a Fetch
robot.

several agents using the SAC learning algorithm [83] along with the Adam optimizer
[90]. We use PyTorch library [91] to implement all of the neural networks which
represent all of the agents. We then set 5,000 episodes of 1,000 steps for the attending
task training. We only end the episode whenever the robot collides with obstacles or
hits the target person.

The plot of trajectories generated by the robot in the validation process for the
attending task is depicted in Fig. 4.5. As shown in Fig. 4.5 (b), the generated
trajectories without applying any action smoothing techniques are shaky and unstable,
especially when the robot’s position is a little bit far from the target person. As a
result, the robot cannot reach the attending goals for some initial positions. Similarly,
the condition also occurs when we employ the action smoothing strategy [74] in the
training process. As shown in fig. 4.5 (c), the robot seems only try to get closer to the
target person and ignores both left and right attending goals. This is due to the fact
that the strategy uses fixed and small weights for the current actions generated by
the agent compared to the weights for previous actions performed in the environment.
Although the strategy is able to make the robot maintain the continuity of the actions
and generate smooth trajectories, it prevents the agent finding the attending goals
around the target person.

On the contrary, Fig. 4.5 (a) shows very smooth trajectories of the robot while
attending the target person. Since our proposed weight-scheduled action smoothing
method sets big values of weights for current actions and gradually decrease them, it
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(a) Robot's attending trajectories of our proposed weight-scheduled action smoothing

(b) Robot's attending trajectories without applying action smoothing

(c) Robot's attending trajectories for applying the action smoothing strategy 

Figure 4.5: Attending trajectories of the robot at various initial positions behind the target person
in the validation process. Blue circles represent the position of the target person while red circles
represent the initial positions of the robot. Green circles represent the left and the right attending
goal positions toward the target person.
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gives the opportunity for the agent to explore more in the environment to find the left
and the right attending goals. As a result, the robot is capable of generating smooth
actions at the end of the training and also able to reach both attending goals at the
left and at the right side of the target person. Nevertheless, we also face the same
problem mentioned in [58]. Since we set two goal positions for the attending task,
the agent tends to choose only one goal and ignores another goal for each training
session. Therefore, we need several training sessions to produce the optimal left and
right attending policies. The main reason for this problem is that both attending
goals are equal and give the same rewards for the agent. Moreover, as also mentioned
in [93], the agent will only choose one same goal in each training session because of
the catastrophic forgetting problem which is commonly occurs in RL-based training.
In the following subsection, we show that the problem can be solved using the method
which is proposed in this article.

4.4 Conclusion on Attending Task Training
From our experiment results, we show that our proposed U-shaped reward function
in the environment can guide the robot to attend the target person at the desired
location using our proposed architecture in the SAC agent. Furthermore, the weight-
scheduled action smoothing which is introduced in this paper is able to make the
agent generate more smooth actions. Most importantly, the proposed method does
not prevent exploration, which becomes one of crucial aspects to make the agent can
learn appropriately during the training process.

36



Chapter 5

Multiple Policies Integration with DRL
Given a training environment which follows MDP for a specified task, a DRL agent
is able to find possible optimal policies which map states of the environment to
appropriate actions by repeatedly trying various actions to maximize training rewards.
However, the learned policies cannot be reused directly in the training process for
other new tasks resulting wasted precious time and resources. To solve this problem,
we propose a DRL-based method [94] for training an agent capable of selecting the
appropriate policy for current state of the environment from a set of previously trained
optimal policies for a given task which can be decomposed into other sub tasks. We
implement our proposed method to a person-following robot task training that can
be broken down into three sub tasks, namely: navigation, left attending, and right
attending. Using the proposed method, the previously trained optimal navigation
policy obtained from our previous work is integrated to attending policies which are
trained in this study. Our experiment results show that the proposed method is
able to integrate all sub policies using the action smoothing method even though the
navigation and the attending policies have dissimilar input structures, unalike output
ranges, and are trained in different ways. Moreover, our proposed method shows
better results compared to training from scratch and training using transfer learning
strategy.

5.1 Background
In line with the rapid growth in the fields of robotics, there are also increasing demands
for service robots which have a main objective to assist and stay close with humans
for supporting their daily needs. In order to successfully help finishing some tasks,
robots are required to maintain close contacts when they interact and also be able to
generate safe actions at the same time. For that reason, developments for particular
robots which have the main ability to follow and attend a specified target person
are also desired. Nevertheless, there are still many challenges that have to be dealt
with when developing this type of partner-robots since person-following is not just
a simple and ordinary task [4, 9]. Accordingly, the task can be seen as a complex
duty to be performed by robots which can be decomposed into other several simpler
tasks [10,11].

Since adjusting the previously learned policy by retraining the agent for the
navigation task may lead to catastrophic forgetting effect which may ruin the prior
optimal attending policy [93], one of possible solutions to make the agent able to
learn both tasks well is by extending the standard RL procedures so that temporally
abstract actions can be accommodated [95,96]. Hence, an RL agent is trained inside
a complex environment to select among subroutines or sub goals instead of primitive
actions [97]. By following this approach, Frans et al. [58] proposed a method to
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perform the RL training for a substantial task in a hierarchical way by breaking down
it into several sub tasks. In more details, a sub agent is assigned for each sub task and
then a meta agent is set for all sub agents by sharing the same state space from the
environment. However, the meta agent and all sub agents are trained simultaneously
to form all of the sub policies and the meta policy altogether. Therefore, the method
is not intended to be used directly in which a set of optimal sub policies have already
been obtained from the previous training.

In this chapter, we propose a novel and general DRL-based method which is
intended to perform a training procedure for an agent inside a complex environment
by integrating multiple optimal policies from the previous training. In our proposed
method, we modify the prior work of Frans et al. [58] by dividing the training process
into two sequential stages for obtaining the optimal policy for each sub task and for
acquiring the optimal meta policy. Moreover, we also introduce a module capable of
integrating generated actions from those policies by applying the action smoothing
strategy [74] which uses weighting for the current action and the previous action so
that the robot can generate smooth and safe actions while it is around the target
person. Furthermore, we show the implementation of our proposed method in the
case of person-following robot training. To the best of our knowledge, this is the
first work that applies DRL for training a robot to follow a specified target person by
integrating the navigation and the attending optimal policies which have been learned
beforehand.

5.2 Proposed DRL-Based Polices Integration Framework
5.2.1 General Framework for Policies Integration with DQN
Suppose that we have several RL environments which follow Markov decision process
(MDP) and are associated with particular tasks Etask with specific reward functions
rtask and state space Stask. We then can train several agents to maximize rewards
using any reinforcement learning algorithms inside those environments to obtain a set
of optimal policies ∏

= {πtask | task ∈ 1 . . . N}, (Eq. 5.1)

where πtask denotes the optimal policy which maps Stask into corresponding actions
for each task and N denotes the number of environments. Furthermore, we can
create a new complex combined environment Ecomb = {Etask | task ∈ 1 . . . N}
which has multiple objectives and can be decomposed hierarchically into other
sub-environments. Moreover, the new combined environment also has a combined
reward function rcomb = {rtask | task ∈ 1 . . . N} which consists of multiple reward
functions that represent the corresponding objective for each sub-task.

In order to obtain the optimal policy for the environment Ecomb, we can train
an RL agent which able to reuse optimal policies

∏
from the previous training

processes by assuming that we can convert the corresponding state space from the
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combined environment Scomb into the state space for a specific sub-task using the
state conversion function σtask : Scomb → Stask. Therefore, given the current state of
the combined environment, we then can obtain a set of actions for each task in Ecomb

as follows

A = {πtask(σtask(Scomb)) | task ∈ 1 . . . N}. (Eq. 5.2)

Thus, the optimal policy for the RL agent is then given by the following equation:

π∗(Scomb) = argmax
a∈A

Qπ(Scomb, a). (Eq. 5.3)

The optimal policy will make the RL agent choose the most appropriate action to be
executed in the environment from A given the current state Scomb. Here, Qπ denotes
a neural network function which estimates the score for each possible action given the
current state of the environment. Qπ follows the Bellman equations [18]:

Qπ(s, a) = Eπ

[ ∞∑
k

γkrt+k+1 | st = s, at = a

]
, (Eq. 5.4)

where γ denotes the discount factor for the future reward which has range value of
[0, 1].

Fig. 5.1 shows the general overview of our proposed method. Since our goal is
to reuse optimal policies obtained from previous training processes, we divide our
method into two main stages. At the first stage, we let each RL agent to interact
with the corresponding environment in the initial policies training. We then use all
optimal policies obtained from the previous stage in the policies combination training
stage. At the second stage, we train an RL agent with the Double DQN [98] learning
algorithm so that it becomes able to select the most appropriate policy for the given
current state of the environment. Here, we use the Double DQN since it has a simple
structure and it is easy to be implemented [24]. Moreover, it employs two Q networks
which can solve the overestimation bias problem during the training and can make
the learning process becomes more stable [85,98].

Algorithm 5.1 shows the detailed procedure in our proposed method to integrate
multiple optimal policies using the Double DQN learning algorithm. In contrast to
Frans et al. [58] who perform the training for all task and the training for the policy
selection agent simultaneously, we first perform the initial policy training steps which
are shown in line 6 through 13. Once we obtain a set of optimal policies for all
tasks, we then move to the second stage of our proposed method which is the policies
integration training steps that are shown in line 15 through 31. In the second stage,
a set of actions generated from the previously trained policies are obtained in line 17
through line 19 given the current state st ∈ Scomb from the combined environment
Ecomb at time step t. Subsequently, in line 20 and 21, the agent will select the
most appropriate policy for the current state to generate the proper action at to be
executed in the environment as shown in line 22. Finally, the update steps for all
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Algorithm 5.1: Policies Integration with Double DQN
1 Prepare Ecomb = {Etask | task ∈ 1 . . . N}
2 Initialize networks Qπ with random weight θ

3 Initialize networks Q̂π with random weight θ− = θ

4 Initialize a replay buffer for the policy integration D
5 Initialize policies

∏
= {πtask | task ∈ 1 . . . N}

6 repeat
7 for task = 1, N do
8 for t = 1, T do
9 Select task action atask

t generated from πtask, given current task
state stask

t

10 Execute atask
t in Etask, observe task reward rtask

t and new task state
stask

t+1
11 Update πtask using j transitions (stask

j , atask
j , rtask

j , stask
j+1 )

12 end
13 end
14 until convergence
15 repeat
16 for t = 1, T do
17 for task = 1, N do
18 Generate action atask

t from πtask, given current state st ∈ Scomb

from Ecomb

19 end
20 With probability ϵ, select random atask

t as at

21 Otherwise, select at = argmax
atask

Qπ(st, atask; θ)

22 Execute at in Ecomb, observe reward rt ∈ rcomb and new state st+1
23 Store transition (st, at, rt, st+1) in D
24 Sample a random transition batch (sj , aj , rj , sj+1) from D
25 Set a′ = argmax

a′
Qπ(st+1, a′; θ)

26 Set r′ = rj + γ Q̂π(st+1, a′; θ−)

27 Set yj =

{
rj , eps. terminate at step j + 1
r′, otherwise

28 Perform a gradient descent step on (yj −Qπ(sj , aj ; θ))2 w.r.t. θ

29 Every C steps, reset Q̂π = Qπ

30 end
31 until convergence
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1) Initial Policies Training

state reward

Figure 5.1: The general overview of our proposed method in this article. We extend the previous
work from Frans et al. [58] so that optimal policies obtained from the previous training can be
reused for another new task. In the initial policies training, we let several RL agents to form optimal
policies from the data (state, action, reward) obtained from the environment. Subsequently, the
optimal policies are used in the policies combination training for obtaining the optimal meta policy.

neural networks which follow the Double DQN learning algorithm using experiences
stored inside a replay buffer D are shown in line 23 through 29.

5.2.2 Person-Following Task Training with Policies Integration
In this section, the implementation of our proposed method to perform the training
procedure for a person-following robot is presented. We first describe the details
of the person-following robot environment. Afterwards, we show the application of
the action smoothing strategy [74] for integrating actions which are generated from
different policies inside our RL agent.

5.2.2.1 Person-Following Robot Environment
We define the person-following robot environment as an environment which combines
the navigation environment and the attending environment. Here, we want the
robot able to perform the navigation task by approaching the target person and
then attending him within a safe close distance. Since the attending position of the
robot towards the target person is such an important aspect [25], we want the robot
able to attend the target person at his left side or at his right side [23,45]. Therefore,
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Table 5.1: Comparison of training and validation environments in our study. We use different state
space and action space since each environment has dissimilar objective.

Environment State Space Action Space

L vt−1 ωt−1 xtgt ytgt αtgt Range of v (m/s) Range of ω (rad/s)

Attending 3 3 3 3 3 3 [−0.75, 0.75] [−1.2, 1.2]
Navigation 3 3 3 3 3 7 [0.0, 0.75] [−1.2, 1.2]
Person-Foll. 3 3 3 3 3 3 [−0.75, 0.75] [−1.2, 1.2]

the person-following robot environment Efollow can be written as

Efollow = {Eleft, Enav, Eright}, (Eq. 5.5)

where Eleft, Enav, and Eright denote left attending environment, navigation
environment, and right attending environment respectively. The left attending
and the right attending environment share the same state space and action space.
Nevertheless, as listed in Table 5.1, the navigation environment has different state
space and action space from the attending environments since they have completely
different goals.

In the navigation environment, to make the robot able to navigate safely, we include
distance to obstacles data L around the robot in the state space which are obtained
from a laser sensor attached to it. Moreover, to make the robot able to approach
the target person’s position and move steadily, we include the relative coordinate
of the target person from the robot (xtgt, ytgt) and the previous velocity of the
robot (vt−1, ωt−1) as well. In this study, we assume that the robot can get the
accurate position of the target person and it can be controlled by publishing linear
velocity v and angular velocity ω within time step t. On the other hand, we add the
relative orientation of the target person from the robot αtgt in the state space for
the attending environment since the data is required by the robot in order to attend
the target person at correct positions. Thus, the state space for the person-following
robot environment s ∈ Sfollow can be defined as the union between state space of
those environments as follows

Sfollow = {L, vt−1, ωt−1, xtgt, ytgt, αtgt}. (Eq. 5.6)

We define the terminal episode ST for the agent whenever the robot collides with
obstacles or hits the target person. Additionally, we also define the same continuous
action space for the navigation environment and for the attending environment.
Therefore, the action space for the person-following robot training environment
a ∈ Afollow is defined as

Afollow = {v, ω}. (Eq. 5.7)

Here, we set the same range value of angular velocity ω for each environment but
different range value of the linear velocity v for the navigation environment.
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Furthermore, we use different reward functions for the navigation and for the
attending environment since all environments have dissimilar objectives. We employ a
reward function which is based on the artificial potential field (APF) for the navigation
environment so that the robot able to avoid obstacles and able to reach the target
person [77, 81, 82]. On the other hand, we apply U-Shaped reward function [45] for
the attending environment so that the robot able to attend the target person at his
left or at his right side. Since in the person-following environment we want the robot
able to switch between performing the attending task and performing the navigation
task based on the distance of the robot from the target person, we then formulate the
combined reward function for the person-following environment as follows

rfollow =

{
ratt dtgt < ξ

rnav otherwise,
(Eq. 5.8)

where ratt and rnav denote the U-Shaped attending reward function and the APF
navigation reward function respectively. Here, dtgt denotes the distance between the
target person and the robot while ξ denotes the distance threshold value which is set
to 2 meters in this study.

5.2.2.2 Policies Integration in the Person-Following Task
Fig. 5.2 depicts the application of our proposed DRL-based policies integration for
the person-following task in this study. Since weight-scheduled action smoothing was
applied to obtain both left attending policy πleft and right attending policy πright

but not for obtaining the navigation policy πnav, we then propose the implementation
of action smoothing mechanism to integrate actions which are generated from those
different policies. In our system, we develop an action generator module (represented
as the gray rounded rectangle) which has the main objective to produce final actions
to be performed. Inside our module, the current state of the person-following
environment st is converted into the appropriate state form for each policy using the
navigation-state conversion function σnav and the attending-state conversion function
σatt. Subsequently, all generated actions from each policy are fed into the action
adjustment function along with the selected policy idx from the Double DQN module.

We show the detailed procedure inside the action adjustment function in Fig. 5.3.
First, the Euclidean distance between the target person and the robot is computed
using the following formula:

dtgt =
√

(ptgt
x − prbt

x )2 + (ptgt
y − prbt

y )2, (Eq. 5.9)

where (ptgt
x , ptgt

y ) denotes the coordinate of the target person, and (prbt
x , prbt

y ) denotes
the coordinate of the robot. Afterwards, the current person-following action at is set
based on the given selected policy idx. In order to make the robot able to generate
smooth and safe actions, the adjusted action aadj is then computed based on the
action smoothing strategy [74] which follows the equation below:
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selected

Figure 5.2: The implementation of our proposed policies integration method for the
person-following environment. We apply the action smoothing mechanism inside the action generator
module in our system for generating actions to be performed in the environment.

aadj = K1 at + K2 at−1, (Eq. 5.10)

where at−1 denotes the previous person-following action which has been performed in
the environment. K1 and K2, respectively, denote the constant weights of the current
action and the previous action which are given in the following matrices:

K1 =
[
0.3 0.0
0.0 0.1

]
, K2 =

[
0.7 0.0
0.0 0.9

]
. (Eq. 5.11)

Since we applied the weight-scheduled action smoothing inside the attending
environment in the previous training, the action smoothing strategy will be used if the
selected action is generated from the left attending policy (idx = 0) or from the right
attending policy (idx = 2). Additionally, we also apply the smoothing mechanism so
that the robot will not hit the target person by considering a safe distance threshold
ξ which is set to 2 meters. Finally, the previous action is updated and the current
person-following action at is generated.

5.3 Experiment Results and Discussion
5.3.1 Experiment Setup
All experiments conducted in this study are performed inside the Gazebo simulator
[87] with a differential drive based Fetch robot [88] which can be controlled
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Figure 5.3: A flowchart which represents the detailed procedure inside the action adjustment
function of our proposed action generator module. The function generates the current person-
following action from four inputs which consist of all actions and the selected policy by the Double
DQN agent.

by publishing linear velocity v and angular velocity ω using ROS application
programming interface [89]. Fig. 5.4 depicts the simulated training and validation
environments for the attending task and the person-following task which are developed
in this study. In addition, all environments in this study are developed in Python
which follow the standardized OpenAI Gym framework [86] and the state transition
checking method [77].

We use PyTorch library [91] to implement all of the neural networks which represent
all of the agents. In addition, we set 1,000 episodes of 1,500 steps for the person-
following task training. Moreover, we set 100 episodes with maximum step of 1,500
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Figure 5.4: Simulated environments developed in this study. (a) The training and validation
environment for the person-following task. (b) The validation environment for the person-following
task with a moving target person. We use Gazebo simulator [87] and load a Fetch robot [88] along
with the ROS application programming interface [89] to implement all environments. The goal of
the person-following environment is to make the robot able to navigate towards the target person
and then attend the target person.

for the person-following validation process. In both training and validation, we only
end the episode whenever the robot collides with obstacles or hits the target person.

Furthermore, we also train other agents for the comparison purpose. We train
agents with the modification of action smoothing mechanism in our proposed method.
Moreover, we also train agents using the SAC algorithm from scratch and also with
transfer learning strategy. The followings are the details of the baselines which we
use for the comparison:

1. Proposed method with full action smoothing. In this method, no matter what
policy are selected, we always apply the action smoothing strategy for all actions
generated by the Double DQN agent.

2. Proposed method with half action smoothing. In contrast to our original
proposed method, we only apply the action smoothing strategy for all actions
generated by the Double DQN agent if the left attending policy or the right
attending policy are selected.

3. SAC from scratch with attending mode. We use the SAC learning algorithm
to train agents in the person-following environment from scratch by including
the relative target person’s orientation from the robot (αtgt) in the state space.

4. SAC from scratch with navigation mode. We also train other agents in the
person-following environment from scratch using the SAC learning algorithm
by excluding the relative orientation of the target person from the robot in the
state space.
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(a) (b) (c)

Figure 5.5: Plots of agents’ performances in the person-following task training across three trials.
(a) Average reward per episode. (b) Average collision rate per episode. (c) Average episode duration
per episode. A rolling average of 100 episodes is considered to depict each curve in this figure.

5. SAC with transfer learning. In this method, we transfer the weights of the
navigation policy to the SAC agent at the initial stage of the training so that
the agent only has to learn the attending policies.

5.3.2 Results and Discussion
Fig. 5.5 depicts performances of all agents during the person-following task training
across three trials. Overall, the proposed method shows better performance compared
to all baselines. We can obviously see from Fig. 5.5 (a) that all agents which are
trained using SAC algorithm from scratch can only obtain average rewards at around
-500, whilst the agents which are trained using the proposed method (depicted as the
blue line) can gain nearly 500 rewards in average. As also shown in Fig. 5.5 (b),
only agents which are trained using the proposed method (depicted as blue, orange,
and green lines) can learn to avoid obstacles and not to hit the target person during
training. Moreover, from Fig. 5.5 (c), we can clearly see that not only do agents
which are trained using the proposed method (depicted as the blue line) can attend
the target person longer, but they also can have very stable average episode duration
compared to other agents.

In more details, the summary of all agents’ performances during the training and
the validation process are listed in Table 5.2. As shown in the first row, agents which
are trained using our proposed method show the best results both in the training
and in the validation process. Moreover, as also listed in the first until the third
row, our proposed method and its variations show higher average of episode duration
compared to agents which are trained from scratch and agents which are trained
using transfer learning strategy. Therefore, the results show the effectiveness of the
action smoothing method which is employed while integrating generated actions from
different policies in the action generator module inside our proposed method.

If we compare the collision rate of the proposed method with its variations, we
can see that agents which are trained using half action smoothing show the highest
collision rate among others. The result is reasonable since there are possibilities
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Table 5.2: Summary of performances of all agents during the training and the validation process
for the person-following task across three trials. The best results in each column are highlighted in
bold font.

Method
Training Validation

Reward Collision Rate Episode Duration Collision Rate Episode Duration
(%) (s) (%) (s)

Proposed 462.49 ± 573.4 26.14 ± 5.26 40.29 ± 16.3 14.01 ± 6.0 30.78 ± 7.71

Proposed
with full
action
smoothing

127.42 ± 629.33 46.37 ± 11.52 29.45 ± 16.82 38.34 ± 8.39 21.41 ± 11.45

Proposed
with half
action
smoothing

-210.86 ± 345.23 85.54 ± 1.88 30.57 ± 24.5 78.0 ± 6.09 29.0 ± 16.98

SAC from
scratch with
attending
mode

-533.72 ± 294.69 99.7 ± 0.52 21.76 ± 34.63 85.34 ± 18.91 13.13 ± 9.86

SAC from
scratch with
navigation
mode

-523.45 ± 340.38 99.67 ± 0.58 20.45 ± 35.8 98.0 ± 3.47 12.88 ± 5.25

SAC with
transfer
learning

-509.45 ± 398.09 99.64 ± 0.56 20.9 ± 47.19 80.34 ± 23.03 16.27 ± 17.97

of changing policies from attending to navigation even when the robot is close to
the target person. Since there is no smoothing mechanism over changing policies
from the attending to navigation or vice versa, the robot tends to end up hitting
the target person after striving to maintain its position on the attending goals.
Accordingly, agents which are trained using full action smoothing show lower collision
rate and shorter episode duration compared to agents which are trained using half
action smoothing. This is due the fact that the robot is capable of smoothing
actions generated from both navigation and attending policies but unable to generate
responsive actions to avoid obstacles while its position is away from the target person.

The last three rows of Table 5.2 show the experiment results for agents which are
trained from scratch and trained using transfer learning with SAC learning algorithm.
Even though in the training process all agents seem to have similar poor performances,
they show quite different results in the validation process. As listed in the last row,
agents which are trained with transfer learning show the lowest collision rate and
the longest episode duration among two other agents. The result indicates that, in
general, the transfer learning strategy gives better results compared to training from
scratch approach. In addition, agents which are trained using SAC from scratch with
attending mode gives better performance than agents which are trained from scratch
with the navigation mode. The result is also reasonable since we include the relative
target person’s orientation αtgt in the state space as the input for the policy. As a
result, the agent can generate better actions while attending the target person.

On the other hand, the validation results which show the effectiveness of our
proposed method for the person-following task are depicted in Fig. 5.6. From the first
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column of the figure, we can obviously see that the trained agent with our proposed
method is capable of making the robot to move approaching the target person and
also attending him at his left or at his right side. As shown in the second column
of the figure, the robot is able to reach the attending goal positions after 15 seconds
in average and also able to keep up its positions steadily after it reaches the correct
attending goals until the end of an episode. In addition, we also show the plots of
the selected policies by the agent in the last column of the figure. In general, we can
see that the agent will select the navigation policy (policy 1) whenever the robot’s
position is far from the target person until it is able to reach the correct attending
distance (1 meter). Subsequently, we can also see in general that the agent will select
the right attending policy (policy 2) whenever the robot is at the right side of the
target person and it will select the left attending policy (policy 0) whenever the robot
is at the left side of the target person.

Moreover, the last column of Fig. 5.6 also shows that the application of the action
smoothing strategy in our proposed method works well for the person-following robot
task training problem. If we take a look into more details, the agent does not always
completely choose policy 0 or policy 2 after the robot has reached the correct attending
distance towards the target person. As shown in Fig. 5.6 (c) and Fig. 5.6 (f), although
mainly the agent selects policy 2, it sometimes chooses policy 0 and at times selects
policy 1. However, the robot still can maintain its position and does not end up hitting
the target person when the agent switches the selected policy randomly. Accordingly,
similar condition also occurs as shown in the third and the fourth rows of the figure.
From Fig. 5.6 (i) and Fig. 5.6 (l), we can see that the agent does not produce smooth
selected policy plots compared to plots from the previous rows. This is due to the
fact that the robot is too close to the target person after 15 seconds as shown in Fig.
5.6 (h), and Fig. 5.6 (k). Therefore, the agent tries to correct the position of the
robot by selecting other policies. Even though the selected policy changes frequently,
the action smoothing strategy prevents the robot to hit the target person and makes
the robot able to keep its position while attending the target person.

Additionally, we also validate the learned Double DQN policy inside a new
environment in order to observe its generalization ability. Even though the robot
was trained inside a different environment, as shown in Fig. 5.7, it is able to navigate
approaching the target person in a completely new environment of a narrow corridor
filled up with dense obstacles and a moving target person. Furthermore, from the
first and the second row of Fig. 5.7, we can clearly see that the robot is able to attend
the target person both at his left or at his right side once it reaches the waiting point.
Moreover, we once again show that the proposed action smoothing can make the
robot generates smooth and safe trajectories around the target person.

5.4 Conclusion on Multiple Policies Integration
In this chapter, we proposed a method based on deep reinforcement learning to train
an agent capable of selecting the most suitable policy for the current state of the
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Corresponding Distances

Between the Robot and
the Target Person

Robot's Trajectories
over Several

I iti l P iti

Corresponding Policies
Selected By
the RL agent

Figure 5.6: Validation results of the proposed method in the person-following task. First column
depicts trajectories of the robot for several initial positions behind the target person. Second column
depicts the corresponding distance of the target person from the robot. Third column depicts the
corresponding policies which are selected by the agent which was trained using the proposed method.
In the first column, blue circles represent the target person, red circles represent the initial positions
of the robot, and green circles represent the left and the right attending goal positions toward the
target person. In the last column, policy 0 represents the left attending policy, policy 1 represents
the navigation policy, and policy 2 represents the right attending policy.
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Trajectory of the robot while
following the target person

Trajectory of the robot before
following the target person

Trajectory of the target person
after reaching the waiting point

Trajectory of the target person
before reaching the waiting point

Figure 5.7: Plot of validation trajectories when the robot is following a moving target person.
Initially, the target person’s position is set at x = 25 m and the robot’s position is set at x = 48 m.
Subsequently, the target person is moving to the waiting point (x = 16 m). After the the robot is
able to reach the target person, it starts attending the target person. First row depicts the trajectory
when the robot attends the target person at his left side, whilst second row depicts the trajectory
when the robot attends the target person at his right side.

environment given a set of previously trained optimal policies for the person-following
robot training problem. Based on the results in this study, we conclude that
the proposed method is capable of reusing previously trained optimal policies and
integrating those policies to another new task. It also has been validated in a
simulated person-following task environment which confirms that our method gives
better performance compared to training from scratch and also training using transfer
learning strategy. Moreover, we also conclude that the application of the action
smoothing strategy in our proposed method is essential for the agent while integrating
different optimal policies to generate final actions to be performed in the environment.
Furthermore, the weight-scheduled action smoothing which is introduced in this paper
is able to make the agent generate more smooth actions. Most importantly, the
proposed method does not prevent exploration, which becomes one of crucial aspects
to make the agent can learn appropriately during the training process.
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Chapter 6

Policies Improvement Trials
In this chapter, we present our trials to improve the meta-policy and the attending
policies in the person-following task. We focus on the potentials to improve the
attending policies that can be obtained through utilizing symmetric nature in the
attending task training. Moreover, we also consider the utilization of a dynamic
environment for integrating all policies in the person-following task.

6.1 Utilization of Symmetric Nature in the Attending Task
Since the left and the right attending goals are set symmetrically around the target
person, there is a possibility that we can convert the left attending policy to the right
attending policy and vice versa. One way to do so is by inverting some data of the
input and output of the trained attending policy network.

Figure 6.1: The proposed method to invert the left attending policy to the right attending policy
and vice versa. We employ two inverse function for inverting the environment’s state as the input
and for inverting the robot’s action and the output.
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(a) Trajectories of the proposed method to invert the right attending policy

(b) Trajectories of inverting the target's pose and the robot's action

(c) Trajectories of the original right attending policy

Figure 6.2: The trajectories of our first experiment for inverting the right attending policy to the
left attending policy. Blue circles represent the target person, red circles represent the robot, and
green circles represent the left and right attending goals.

6.1.1 Proposed Method to Invert the Attending Policies
We show our proposed method to invert the attending polices in Fig. 6.1. In our
proposed method, we include two inverse functions for both the input and output of
the attending policies. For the input inverse function, we flip the laser scans, invert the
y-coordinate of the relative target person’s position and orientation and also invert the
angular velocity of the previous action. Moreover, for the output inverse function, we
invert the angular velocity of the robot’s action to be performed in the environment.
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(a) Trajectories of the proposed method to invert the left attending policy

(b) Trajectories of inverting the target's pose and the robot's action

(c) Trajectories of the original left attending policy

Figure 6.3: The trajectories of our second experiment for inverting the left attending policy to the
right attending policy. Blue circles represent the target person, red circles represent the robot, and
green circles represent the left and right attending goals.

6.1.2 Experiments on Inverting the Attending Policies
We conducted two experiments to invert the left and right attending policies. In the
first experiment as shown in Fig. 6.2, we tried to invert the right attending policy to
the left attending policy using our proposed method. As we can see from Fig. 6.2
(a), our proposed method is successfully able to invert the original right attending
policy which is shown in Fig. 6.2 (c). Moreover, we also perform an experiment using
the modification of our proposed method. As depicted in Fig. 6.2 (b), only inverting
the target person’s pose for the input of the attending task policy is not sufficient to
invert the policy since it will generate oscillating attending trajectories. Subsequently,
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we also show the result of our second experiment of inverting left attending policy
to the right attending policy in Fig. 6.3. However, in this experiment, the result of
inverting the target’s pose and the robot’s action of our proposed method gives less
oscillating trajectories compared to the previous experiment as depicted in Fig. 6.3,

6.2 Policies Integration in a Dynamic Environment
In this section, experiments for integrating all policies for the person-following task
are performed inside a dynamic environment. We think that this procedure is required
so that the obtained meta-policy can become more robust and able to perform better
obstacle avoidance while following the target person. We implement the dynamic
environment inside a Gazebo simulator by loading several human models which are
controlled using the Artificial Potential Field (APF) [82]. Three training scenarios are
prepared, namely: a) policy integration training from scratch, b) policy integration
training using transfer learning, and c) policy integration training using a hybrid
strategy, which is the combination of all policies from the previous training and the
APF method.

6.2.1 Dynamic Environment Implementation with APF
We show the design of the dynamic environment for the training procedure for
integrating the polices for the person-following task in Fig. 6.4. In order to make
the obtained policy becomes more robust, we prepare a simulated dynamic world
inside the Gazebo simulator and then load several human models that can be moved
dynamically. To control all those models, several Gazebo plugins are prepared for
all human models so that a single human model can be controlled by publishing the
given linear velocity v and the given angular velocity ω. Moreover, through the ROS
plugins, a ROS topic for publishing the velocities for each model is also prepared as
depicted in Fig. 6.5.

To simulate the movement of all human models, we use the APF method [82] so
that they can navigate to some goals based on the attractive potential field which is
defined in the following equation:

Uattr(x) = 1
2

kp(x− xd)2, (Eq. 6.1)

where x denotes the current position of a human model, kp denotes the position gain,
and xd denotes the goal position. Moreover, in order to make the human model able
to avoid obstacles as well, the repulsive potential field is also computed using the
following formula:

Urep(x) =

 1
2 η
(

1
ρ −

1
ρ0

)2
, if ρ ≤ ρ0

0, if ρ > ρ0,
(Eq. 6.2)
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Figure 6.4: The design of the dynamic environment for the policies integration training for the
person-following task. Along with static obstacles, we also load several human models which are
controlled using the APF method.

Figure 6.5: All the human models inside the dynamic environment can be controlled by publishing
the linear velocity v and angular velocity ω through specific ROS topics.

where η denotes the constant gain, ρ denotes the shortest distance to the obstacle,
and ρ0 denotes the limit distance of the potential field influence. Finally, the final
actions which are generated by the human model inside the simulated environment
are computed based on the formula below

Uapf (x) = Uattr(x) + Urep(x). (Eq. 6.3)

For each human model, for each time step t, we first generate nine intermediate
goal candidates around it. Subsequently, the chosen one is the goal which has the
minimum value of Uapf among others. Fig. 6.6 shows the illustration of an annotated
local map of a human model inside the simulation which is used to generate the action.
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Figure 6.6: The annotated local map of a human model named ’Jeff’ for generating the current
action using the APF method. Inside the local map, the human model is placed at the center of the
map which is represented as a blue triangle. Moreover, the cyan line represents the direction towards
the current goal (represented as a red rectangle inside a red circle) and a small red dot represents
the intermediate goal which is calculated using the APF method.

6.2.2 Experiment Setup of the Policies Integration
We design two experiment scenarios inside the dynamic environment for training an
RL agent for the person-following task. The followings are details of each experiment:

1. Training from scratch. In this experiment, policy integration of the left
attending policy, the right attending policy and also the navigation policy
for the person-following task is performed from scratch inside the dynamic
environment.

2. Training using transfer learning strategy. In this scenario, at the beginning
of the training episode inside the dynamic environment, the meta-policy of
the person-following task from the static environment of the previous training
which is described in the previous chapter is loaded to the RL agent.

For all experiment scenarios, we perform 3,000 episodes of 1,500 steps of training
inside the simulator. We end the episode whenever the robot hits all obstacles and all
human models. We also end the episode if the maximum step is reached. In addition,
we perform three experiment runs for each scenario.
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(a) (b) (c)

Figure 6.7: The plot of all training scenarios’ performance over three trials in a dynamic
environment. (a) Average reward. (b) Average collision rate. (c) Average episode duration.

Table 6.1: Summary of performances of all RL agents during the training process for
the person-following task in a dynamic environment over three trials.

Experiment Scenario Reward Collision Rate Episode Duration
(%) (s)

Training from scratch -155.12 ± 264.7 71.39 ± 6.92 38.35 ± 22.4
Training using transfer learning strategy -179.2 ± 282.06 67.59 ± 3.87 40.07 ± 22.79

6.2.3 Results and Discussion of the Policies Integration
The plot of all RL agents performances over three trials is depicted in Fig. 6.7.
Moreover, the summary of performance of all RL agent is listed in Table 6.1. As
depicted in Fig. 6.7 (a) and Fig. 6.7 (c) the average reward and the average
episode duration for both experiment scenarios are quite similar. However, Fig. 6.7
(b) clearly shows that applying the transfer learning strategy during the training
process is definitely able to make the average collision rate lower. This means that
the RL agent successfully transfers the knowledge of avoiding obstacles from the
previous training inside the static environment to the new training inside the dynamic
environment. Nevertheless, compared to the performances of the RL agents inside
the static environment, experiment results inside the dynamic environment still give
disappointing results. As listed in Table 6.1, we still get a very high value of collision
rate even when the transfer learning strategy was applied during the training process.

We notice that the main reason why the performance of the RL agent in the
dynamic environment drops significantly is because the robot tends to keep its current
attending position when it is close to the target person. Our analysis is corroborated
from the case scenario which is depicted in Fig. 6.8, especially in Fig. 6.8 (c) which
shows the condition when there is another person around the target person. As shown
in Fig. 6.8 (d), the robot is indeed tries to avoid to hitting another person while also
strives to keep its position in the left attending goal.
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(b) step = 845 (c) step = 1067

(d) step = 1142 (e) step = 1231 (f) step = 1325

(a) step = 752

Figure 6.8: An episode when the robot attends the target person at the left side in the dynamic
environment from step 752 through step 1325.

6.3 Conclusion on Policies Improvement Trials
From the experiments that we conduct in the first part of this chapter, we can conclude
that our proposed method is able to take the advantage of utilizing the symmetric
nature in the attending task to convert the attending policies easily. Moreover, we
show that inverting all environment’s state along with the robot’s action is necessary
for obtaining appropriate converted attending policies for the person-following task.
By following the strategy to convert the attending task policies, we do not have to
spend a lot amount of time for training the attending policies.

Furthermore, from the experiments that we conduct in the second part of the
chapter, we can conclude that we still get poor performances of the person-following
task policy under dynamic environment. Based on our analysis, the main reason
for the substandard performance is that the robot is unable to switch the attending
position easily when it is close to the target person. Therefore, for future work, we
would like to propose another algorithm that can make the robot capable of switching
the attending position efficiently.
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Chapter 7

Conclusion and Future Works
7.1 Thesis Main Conclusion
In this thesis, we have described a method which is intended for obtaining an optimal
policy for a robot to perform the person-following task through several simulated
environments. Since we see that the person-following is a complex task for the
robot, the training process is then divided hierarchically into several sub tasks for
obtaining the optimal sub policy for each sub task, namely the navigation policy,
the left attending policy, and the right attending policy. Subsequently, we follow the
bottom up approach by integrating those optimal sub policies for obtaining the final
meta policy for the person-following task.

For the navigation task training, we showed that our proposed novel framework is
able to make the RL agent learn a specific policy which is able to produce fast but
safe navigation actions for the robot. Inside our proposed navigation framework,
we showed that our method which is called the state transition checking is able
to guarantee that the training environment will always follow the Markov decision
process appropriately. Moreover, we also showed that our method which is called
the velocity increment scheduling is able to make the robot learn the fast-but-safe
navigation strategy gradually during the training process.

For the attending task training, we showed that our proposed weight-scheduled
action smoothing method is able to make the robot capable of generating safe and
smooth actions while attending the target person at his left side or at his right side.
In our proposed method, we showed that, by employing the curriculum learning
strategy during the training process, the RL agent is able to explore the environment
sufficiently while also learn to generate smooth and safe actions around the target
person.

Finally, we also showed that our proposed method is able to integrate the previously
learned navigation and attending policies into one comprehensive optimal meta policy
for the person-following task. Furthermore, we also showed that the training results of
our proposed method can outperform the training results obtained from training the
RL agent for the person-following task from scratch or the training results obtained
using the transfer learning strategy.

7.2 Future Works
7.2.1 Plan to Improve All Policies
We consider to propose another method so that the robot is able to switch easily
between the left attending policy and the right attending policy when it is close to the
target person. We are planning to propose another method to minimize the collision
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rate inside the dynamic environment. Moreover, to obtain more robust policies, we
consider to train all RL agent for each sub task in the person-following task inside
dynamic environments. We also planning to propose another method so that the robot
always try not to lose the target person. In addition, we also consider to combine
our proposed method with other specific techniques such as the human sentiment
analysis [99] so that the robot can better understand the conditions of the target
person based on his biometric data and capable of generating more appropriate and
comfortable actions toward him.

7.2.2 Plan to Deploy The Learned Policies to Real Robots
Deploying the policies to real robots is indeed becomes our main goal in the future.
In order to do so, we are planning to include images obtained from camera which
is attached to the robot. We are planning to apply computer vision methods for
detecting the target person and estimating his relative coordinate and orientation
from the robot. Moreover, we are planning to track the target person and handle
the condition when he is occluded. Furthermore, to minimize the gap between the
simulator to real world, we are planning to handle all noises related to the input of
the policies including noise from sensors and the calculation of the target person’s
pose.
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