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Visual simultaneous localization and mapping (SLAM) is a fundamental technology in robotics, augmented 

reality, computer vision, and self-driving. Visual SLAM mainly uses an onboard camera to perform camera 

ego-motion estimation and reconstruct the unstructured environment. There are two basic requirements for visual 

SLAM: robust tracking and real-time performance. Many visual SLAM algorithms use the rigid/static world 

assumption, limiting a wide deployment in the real world, such as populated scenes, as this strong assumption 

often results in poor tracking in dynamic environments. 

 

Many studies have tried using semantic information to help visual SLAM reduce the influence of dynamic 

objects. The challenge is to trade off the tracking with semantic information and real-time performance. For 

example, Mask R-CNN can achieve good segmentation results and help improve tracking accuracy. However, it 

usually consumes much time, around 200ms. The efficiency of tracking is significantly limited by waiting for the 

segmentation results. We call such a model a blocked model. To achieve robust tracking while keeping the 

real-time performance, we proposed a non-blocked model, in which the tracking process is no longer blocked by 

waiting for the semantic results. 

 

This thesis proposes four visual SLAM methods, which we explored better solutions to the problems mentioned 

above. The first two methods are developed based on the blocked model, while the others on the non-blocked 

model. 

 

First, we present RTS-vSLAM, which achieves robust tracking by detecting and removing outliers on the 

dynamic objects using PSPNet and SegNet, and builds a static semantic map by excluding dynamic objects. 

However, the efficiency of the performance is limited due to the blocked model. 

 

Second, to deal with dynamic non-pre-defined objects, in KMOP-vSLAM, we try to use k-means to segment all 

clusters or objects. We use OpenPose to judge which clusters belong to persons. However, k-means tend to 

over-segment, and the segmentation accuracy is worse than semantic segmentation methods. Time consumption 

is large due to the blocked model, too. 



 
 

Third, we present RDS-SLAM, a real-time visual SLAM for dynamic environments, developed based on 

semantic segmentation and the non-blocked model. RDS-SLAM runs in real-time by evaluating the tracking and 

the segmentation thread in parallel. According to the semantic segmentation results, the motion information of 

features, represented as moving probability, is updated in the global map. Then we classify the features in the 

map into dynamic, static, and unknown using the moving probability. We use as many static features as possible 

in the data association and the bundle adjustment process to obtain robust tracking. We tested two semantic 

segmentation methods, SegNet and Mask R-CNN, using the TUM dynamic sequences.  RDS-SLAM can run at 

30 Hz with SegNet, while only at 15 Hz with Mask R-CNN to trade off the tracking robustness and the real-time 

performance. 

 

Fourth, we present RDMO-SLAM, an extension of RDS-SLAM, which can run the Mask R-CNN version at 30 

HZ with the help of dense optical flow. Since optical flow estimation is faster than Mask R-CNN segmentation, 

to get more segmented frames, we predict the semantic labels using dense optical flow and the segmented frames 

of Mask R-CNN. To cope with unknown dynamic objects, we also estimate the velocity of landmarks and then 

use it as another constraint to lower the influence of dynamic objects. These improvements make RDMO-SLAM 

with Mask R-CNN run at 30 Hz while keeping the tracking performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Contents

1 Introduction 1

1.1 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Rigid Scene Assumption Problem . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 9

2.1 Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Visual SLAM under Dynamic Environments . . . . . . . . . . . . . . 11

2.3.1 Geometric-based Approaches . . . . . . . . . . . . . . . . . . . 11

2.3.2 Reconstruction-based Approaches . . . . . . . . . . . . . . . . 12

2.3.3 Semantic-based Approaches . . . . . . . . . . . . . . . . . . . 12

3 RTS-vSLAM 15

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Semantic Generator . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Feature Cluster Algorithm . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 20

i



3.3.3 Geometry Consistency Check Algorithm . . . . . . . . . . . . 21

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Evaluation on TMU Dataset . . . . . . . . . . . . . . . . . . . 23

3.4.2 Result of Mapping . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.3 Computation Time Analysis . . . . . . . . . . . . . . . . . . . 25

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 KMOP-vSLAM 27

4.1 Problem Description and Contributions . . . . . . . . . . . . . . . . . 27

4.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Unsupervised Learning Segmentation . . . . . . . . . . . . . . 30

4.2.3 Multi-view Geometry Algorithm . . . . . . . . . . . . . . . . . 30

4.2.4 Moving Object Detection . . . . . . . . . . . . . . . . . . . . . 36

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 TUM Dataset Evaluation . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Moving Object Detection . . . . . . . . . . . . . . . . . . . . . 41

4.3.3 Calculation Time . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 RDS-SLAM 43

5.1 Non-blocked Model and Contributions . . . . . . . . . . . . . . . . . 43

5.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Semantic Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Semantic Keyframe Selection Algorithm . . . . . . . . . . . . 49

5.3.2 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . 53

5.3.3 Semantic Mask Generation . . . . . . . . . . . . . . . . . . . . 53

5.3.4 Moving Probability Update . . . . . . . . . . . . . . . . . . . 53

5.4 Tracking Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Track Last Frame . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.2 Track Local Map . . . . . . . . . . . . . . . . . . . . . . . . . 60

ii



5.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.1 Semantic-based Optimization . . . . . . . . . . . . . . . . . . 61

5.5.2 Bundle Adjustment in Local Mapping Thread . . . . . . . . . 61

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6.2 Tracking Accuracy Evaluation . . . . . . . . . . . . . . . . . . 65

5.6.3 Real Environment Evaluation . . . . . . . . . . . . . . . . . . 69

5.6.4 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6.5 Semantic Delay Evaluation . . . . . . . . . . . . . . . . . . . . 71

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 RDMO-SLAM 73

6.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Optical Flow Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Semantic Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Semantic Keyframe Selection . . . . . . . . . . . . . . . . . . 79

6.3.2 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . 82

6.3.3 Semantic Label Prediction . . . . . . . . . . . . . . . . . . . . 82

6.3.4 Semantic Mask Generation . . . . . . . . . . . . . . . . . . . . 83

6.3.5 Moving Probability Update . . . . . . . . . . . . . . . . . . . 84

6.3.6 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . 85

6.4 Velocity Estimation Thread . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6.1 Tracking Accuracy Evaluation . . . . . . . . . . . . . . . . . . 91

6.6.2 Outlier Removal Using TUM Dataset . . . . . . . . . . . . . . 96

6.6.3 AR Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6.4 Velocity Constraint vs Semantic Information . . . . . . . . . . 97

6.6.5 Velocity Constraint Threshold . . . . . . . . . . . . . . . . . . 98

6.6.6 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 101

iii



6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Conclusions 103

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 107

iv



Chapter 1

Introduction

1.1 SLAM

The simultaneous localization and mapping (SLAM) [1] problem asks if it is possible

for a mobile robot to be placed at an unknown location in an unknown environment

and for the robot to incrementally build a consistent map of this environment while

simultaneously determining its location within this map. SLAM can be implemented

using different sensors, e.g., Camera, IMU, Lidar, and GPS. Generally, Lidar is much

expensive than camera sensors. Visual SLAM (vSLAM) mainly using onboard cam-

era sensors, such as mono, RGB-D, and stereo cameras. vSLAM has been a hot

research topic in computer vision, augmented reality (AR), unmanned autonomous

vehicles, and robotics. vSLAM [2] is a fundamental technology for estimating the

pose of sensors and reconstructing structures in an unknown environment using on-

board sensors, such as mono, RGB-D, and stereo cameras. vSLAM can be classified

into feature based approaches, such as ORB-SLAM [3] and RGB-D SLAM [4], and

direct approaches, such as LSD-SLAM [5] and DSO [6]. As we know, there is usually

a strong assumption in vSLAM, the rigid scene assumption. vSLAM assumes that

the camera is the only moving object. However, the camera is not the only moving

object in the real environment, and this assumption may result in unstable tracking

or even tracking failure. For instance, humans are dynamic objects in indoor envi-

ronments. The motion of features or points on the dynamic objects is unknown and
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Figure 1-1: Example of dynamic environments (TUM).

cannot be accurately estimated. Dynamic objects may influence feature matching

and BA (bundle adjustment) and eventually resulting in non-robust pose estimation

and map building.

As shown in Fig. 1-2, vSLAM by default cannot sense the motion of dynamic

objects or dynamic features, e.g., mj
t−1 moved to mj

t . Unfortunately, it still use

the old map point mj
t−1 and its observed features xt−1,j and xt,j to estimate the

pose using BA by minimizing the reprojection error for every selected features. The

problem is that the newly observed feature, xt,j, no longer matches mj
t−1 but matches

a new landmark mj
t that is unknown for vSLAM. This phenomenon can be somehow

detected and reduced using geometric algorithms such as RANSAC (random sample

consensus) [7] and BA if dynamic features move very fast. However, outliers cannot

be efficiently detected if they move slowly or occupy a major part of the scene. As

shown in Fig. 1-1, one person is walking slowly at the center of the image, and many

features are detected on his T-shirts. vSLAM may mistakenly trust these features

and result in non-robust pose estimation because these features are unstable.
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Figure 1-2: Rigid scene problem in vSLAM. The j-th map point mj
t−1 on a dynamic

object matched with the feature xt−1,j in the previous image. Assume that this map
point moved to a new position mj

t and is observed as xt,j in the current image. x′t,j is
the position if the feature is static. Ct−1 and Ct are the camera centers of previous
(It−1) and current (It) images.

1.2 Rigid Scene Assumption Problem

As shown in Fig. 1-2, given a 3D point in world coordinate mj
t−1 = (x, y, z)T ∈ R3 at

time t − 1, the reprojection error of the predicted and the observed pixels at time t

is defined as follows:

et,j(ξ) = xt,j − π(Tw
t (ξ),mj

t−1), (1.1)

where, xt,j ∈ R2 is the observed feature point; Tw
t (ξ) = exp(ξˆ) ∈ SE(3) is the pose

of camera t under the world coordinate with exp(.) as a mapping from se(3) to SE(3);

ξ ∈ R6 is a 6D vector (3 for position and 3 for rotation), which is the target variable

to be solved and optimized; π is a project function that projects a map point from

the 3D space to the 2D image plane. In a static scene, xt,j should be in the position

of x′t,j or very near position (influenced by the noise). vSLAM performs camera ego-
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motion estimation by minimizing the reprojection error using the matched feature

and landmark pairs. In practice, usually, BA is used to find an optimal solution using

the error term Eq. (1.1) and the following cost function:

C =
∑
t,j

ρh(et,j(ξ)
TΩ−1

t,j et,j(ξ)), (1.2)

where a robust Huber kernel ρh is used to reduce the influence of spurious matching.

For example, in ORB-SLAM3, g2o [8] is used to solve this BA problem. However, in

dynamic environments, the observed and predicted positions may be different due to

the movement of dynamic objects. For example, the old map point mj
t−1 moves to a

new position/point mj
t . By default, the traditional vSLAM cannot detect the motion

and still use the old map point mj
t−1 to estimate the camera motion. If the motion

of objects is considered, the error term should be defined as follows:

et,j(ξ) = xt,j − π(Tw
t (ξ),mj

t) (1.3)

= xt,j − π(Tw
t (ξ), H t

t−1m
j
t−1), (1.4)

where, H t
t−1 is the motion of the landmark mj

t−1 from the previous time t− 1 to the

current time. BA cannot optimize the camera pose correctly in dynamic environments

due to the unknown motion H t
t−1 of landmarks. Usually, this operation will cause a

non-robust camera pose estimation or tracking failure due to the large reprojection

error.

To the best of our knowledge, there are two kinds of solutions. One solution [9,10]

jointly optimizes the motion H of the object and the camera pose T (ξ) using multi-

object tracking by assuming the object is rigid and the points on it have the same or

consistent motion. It has been reported that this assumption works in outdoor where

the distances of objects are relatively large. However, this assumption does not hold

for non-rigid objects, e.g., people in indoor environments. Besides, such methods are

offline or not real-time because they use the blocked model.

Another solution is to detect outliers and remove them from tracking, which is
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widely employed in the geometric and semantic-based approaches. In this case, the

cost function is defined as follows:

C =
∑
t,j

Wjρh(et,j(ξ)
TΩ−1

t,j et,j(ξ)). (1.5)

In some studies, Wj is assigned to 0 and 1 for dynamic and static points, respectively.

1.3 Research Goal

Although tremendous progress has been made in vSLAM, the scene rigidity assump-

tion limits wide usage of visual SLAMs in the real-world environment of computer

vision, smart robotics and augmented reality. To make SLAMmore robust in dynamic

environments, outliers on the dynamic objects, including unknown objects, need to be

removed from tracking process. Our goal is to develop real-time and robust vSLAM

that can run in real environment, especially for the populated environment. In addi-

tion, apply the developed vSLAM engine to AR, semantic mapping, localization task

and some other applications. There are several requirements or subtasks: 1) real-time

performance, 2) robust tracking in real world, and 3) acquire semantic information.

1.4 Contributions

To deal with the problem caused by the rigid world assumption, four algorithms are

proposed as shown in Tab. 1.1. We first present a general system architecture in

RTS-vSLAM, which runs localization and landmark mapping in client side and run

semantic segmentation algorithms and semantic mapping in server side. However,

semantic segmentation models can only deal with predefined objects. We try to

segment all the clusters or objects using k-means in KMOP-SLAM together with

the geometric check and human detection. However, such methods can not run in

real-time due to waiting for the semantic result, such as semantic labels of semantic

segmentation, clusters from k-means, and the key points of a person. In addition,

5



Table 1.1: Comparison of proposed works. We show the semantic models used, the
average time consuming for tracking each frame, and the absolute tracking error
(ATE) of the w/xyz dynamic scene of the TUM dataset.

Contributions Pattern Recognition Real-time Performance
(ms)

Roboust Tracking
(ATE of TUM) Model

RTS-vSLAM SegNet 147.47 0.014 Blocked
ModelPSPNet 214.95 0.012

KMOP-vSLAM OpenPose
k-means 257.819 0.019

RDS-SLAM SegNet 22 - 30 (30HZ) 0.0571 Non-blocked
ModelMask R-CNN 50 - 65 (15HZ) 0.0213

RDMO-SLAM Optical flow
Mask R-CNN 22-35 (30HZ) 0.0226

the tracking accuracy of KMOP-SLAM is not better than semantic-based solutions.

To run vSLAM robustly while keeping the real-time nature, RDS-SLAM is proposed,

which runs in 30 HZ using SegNet and 15 HZ using Mask R-CNN. To run in 30 HZ

using Mask R-CNN and deal with the dynamic features in any object, RDMO-SLAM

is proposed that uses semantic label prediction and feature velocity estimation with

the aid of dense optical flow. We summarized the contributions as:

• RTS-vSLAM [11]: 1) improve tracking accuracy using PSPNet and SegNet using

blocked model 2) build point cloud map and semantic map;

• KMOP-SLAM [12]: improve tracking accuracy using the geometric check, k-

means, and OpenPose using blocked model;

• RDS-SLAM [13]: improve tracking accuracy using SegNet and Mask R-CNN

using the non-blocked model;

• RDMO-SLAM [14]: improve tracking accuracy using Mask R-CNN and optical

flow using the non-blocked model and semantic label prediction.

1.5 Thesis Organization

This thesis is organized as follows: We first investigated the related works in Chapter

2 and then describe the proposed methods in the following chapters, RTS-vSLAM

6



in Chapter 3, KMOP-vSLAM in Chapter 4, RDS-SLAM in Chapter 5, and RDMO-

SLAM in Chapter 6. Finally, we conclude the thesis and discuss the future research

works in Chapter 7.
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Chapter 2

Related Work

In this chapter, we explore related works on vSLAM and state-of-the-art solutions

to the rigid scene assumption in vSLAM under dynamic environments. We classify

the methods into purely geometric, reconstruction, and semantic-based approaches.

The semantic-based approaches leverage semantic information to detect and segment

objects and remove outliers from tracking. Notably, these approaches may share some

common ideas, such as the use of geometric checking.

2.1 Visual SLAM

vSLAM can be classified into feature based approaches, such as ORB-SLAM [3]

and RGB-D SLAM [4], and direct approaches, such as LSD-SLAM [5] and DSO

[6]. Feature-based methods rely on salient point matching and can only perform a

sparse reconstruction. Parallel tracking and mapping (PTAM) [15] that implements

a keyframe-based monocular SLAM system on a cell phone is a promising platform

for hand-held AR. ORB-SLAM [3], a monocular vSLAM that estimates camera ego-

motion by matching ORB [16] features extends the versatility of PTAM to environ-

ments that are intractable for PTAM. Based on ORB-SLAM, ORB-SLAM2 [17], a

complete SLAM system for monocular, stereo, and RGB-D camera was presented,

which can work in real-time in various environments. Carlos et al. proposed the

latest version of ORB-SLAM, ORB-SLAM3 [18], which tightly integrates visual and

9



inertial information and adds a multiple map system (ATLAS [19]).

Apart from feature-based methods, many direct vSLAM approaches [5, 6, 20, 21],

which can estimate, in principle, a completely dense reconstruction by the direct

minimizing of the photometric error, have also been proposed. For example, Kerl et

al. proposed a dense visual SLAM method, DVO (Dense Visual SLAM ) [21], using

an RGB-D camera, which minimizes both photometric and depth error over all pixels.

However, rigid scene assumption is a common problem for both the feature-based

and the direct methods. Detecting and handling outliers in real-time is challenging in

vSLAM. Although there are some strategies, such as selecting relative good features

and RANSAC-based checking, in some vSLAMs, e.g., ORB-SLAM3. However, they

are still not well suitable for dynamic environments.

2.2 Pattern Recognition

Many pattern recognition algorithms are proposed with the development of machine

learning and deep learning, e.g., semantic segmentation, object recognization, and un-

supervised segmentation. These methods can be used to help SLAM, e.g., to support

semantic information or help to improve tracking accuracy. Semantic segmentation

algorithms, e.g., SegNet [22], PSPNet [23], and Mask R-CNN [24] are widely used in

computer vision and robotics, which can segment each image at the pixel level. We

can judge which pixel belonging to which object in SLAM. The evaluating time of

these models varies and some models are very heavy. To evaluate semantic segmen-

tation algorithms in real-time is a big challenge when integrating them into SLAM

as the real-time nature of SLAM. As we know, semantic segmentation algorithms

only can identify pre-defined objects. Unsupervised segmentation algorithms, e.g.,

k-means [25] can segment any clusters or objects. However, k-means cannot segment

objects as accurately as semantic segmentation, and no semantic label is afforded by

k-means. Some object recognization algorithms can run in real-time or very fast, e.g.,

YOLO [26] and Yolact [27]. However, the output of them is only bonding boxes. The

label of each pixel cannot be judged only using the bounding box. Some algorithms

10



can detect the key points of the people, e.g., OpenPose [28]. It is difficult to know the

semantic label and region of objects only using them because they can only output

few key points.

2.3 Visual SLAM under Dynamic Environments

2.3.1 Geometric-based Approaches

Li et al. [29] proposed a depth edge-based RGB-D SLAM system for dynamic en-

vironments based on the frame-to-keyframe registration, which only uses weighted

depth edge points. Sun et al. [30] proposed a novel online RGB-D data-based mo-

tion removal approach that uses optical flow. It is integrated with the front end of

an RGB-D SLAM system, acting as a preprocessing stage to filter data associated

with dynamic objects. They also proposed a monocular vSLAM algorithm [31] that

uses optical flow to improve tracking performance with a monocular camera in dy-

namic environments. Also, they integrated their method into ORB-SLAM. However,

their methods have some limitations. For example, the threshold used to distinguish

dynamic points is set to a fixed value, which may not be an optimal value for some se-

quences. Kim et al. [32] proposed an IMU-based solution. They classified the features

into dynamic and static using the IMU rotation component between two consecutive

images. However, for many use cases, it is desirable to improve the accuracy of pose

tracking and map building using only a single camera. Besides, IMU has drift and

accumulated errors over time. Sun et al. [33] classified pixels using the segmentation

of quantized depth images and calculated the difference in intensity between consec-

utive RGB images. Tan et al. [34] proposed a novel online keyframe representation

and updating method to adaptively model the dynamic environments, where an ap-

pearance or a structure change could be effectively detected and handled. Although

geometric-based methods can eliminate outliers to some extent, there is room for

further optimization of tracking performance using semantic information.

11



2.3.2 Reconstruction-based Approaches

Visual odometry and scene flow (VO-SF) [35], an odometry-based method designed

for dynamic scenes proposed by Jaimez et al., combines visual odometry, k-means, and

scene flow and reconstructs a 3D model of the rigid scene. Co-Fusion [36] proposed

an approach to track and reconstruct multiple moving objects using SharpMask [37].

BaMVO [38] proposed a background model-based visual odometry. StaticFusion [39],

a method for dense RGB-D SLAM proposed by Raluca et al., tried to address the

rigid scene assumption by jointly estimating the motion of an RGB-D camera and

segmenting the scene into static and dynamic parts. StaticFusion is conceptually

related to BaMVO but uses a frame-model alignment instead of a multi-frame strat-

egy. Similar to ElasticFusion [40], camera tracking is performed by aligning incoming

frames with a dense surfel-based model of the environment. A background model

that fuses only the static elements by decoupling the static and dynamic parts is

built. K-means is used to segment geometric clusters in StaticFusion, and it is dif-

ficult to find the optimal K value for a specific scene. This problem also exists in

other k-means-based algorithms, such as KMOP-vSLAM [12]. Also, StaticFusion as-

sumes each cluster is a rigid body to reduce the overall computational complexity,

and then solves the static/dynamic segmentation problem cluster-wise as opposed to

pixel-wise. Moving people are not rigid bodies in many cases. We do not use such

an assumption because we focus on improving the tracking accuracy by eliminating

outliers both on rigid objects and dynamic objects in real-time rather than focusing

on building a conservative reconstruction of the static structures of the scene.

In this study, the camera pose is estimated using sparse ORB features because it

is usually more lightweight than the dense RGB-D SLAM, and we do not build the

dense surfel-based model.

2.3.3 Semantic-based Approaches

DynaSLAM [41], based on ORB-SLAM2 and Mask R-CNN has capabilities of dy-

namic object detection and background inpainting, which can detect dynamic objects
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either by multiview geometry, deep learning, or both and then reconstructs frame

backgrounds occluded by dynamic objects using a rigid scene map. DP-SLAM [42]

combines the results of geometry constraints and Mask R-CNN to track the dynamic

key points in a Bayesian probability estimation framework. DP-SLAM was integrated

into the front-end of the ORB-SLAM2 to inpaint frame background occluded by the

detected dynamic objects. KMOP-vSLAM [12], also implemented on ORB-SLAM2,

has capabilities of unsupervised learning segmentation (k-means [25]) and human

detection (OpenPose [28]) for robust tracking in dynamic environments. Outliers be-

longing to dynamic objects are detected and eliminated from tracking. One problem

is that the number of clusters of k-means is given manually and it may not be optimal

for the current environment. DS-SLAM [43], based on ORB-SLAM2 and SegNet [22],

uses a moving consistency check to reduce the impact of dynamic objects by assuming

that feature points on people are most likely to be outliers. Detect-SLAM [44], based

on ORB-SLAM2 and SSD [45], classifies keypoints into four states: low-confidence

static, high-confidence static, low-confidence dynamic, and high-confidence dynamic.

It only detects keyframes to save time and then insert the keyframes into the local

map and update the moving probability into the local map. DM-SLAM [46], also

based on ORB-SLAM2, employs Mask R-CNN, optical flow, and epipolar constraints

to judge outliers. It uses features in dynamic objects if they are not moving very

fast to reduce the feature-scarce cases that may happen by eliminating the features

on dynamic objects. Fan et al. [47] proposed a novel semantic SLAM system with a

more accurate point cloud map in dynamic environments by exploiting ORB-SLAM2

and BlizNet [48].

Most existing algorithms operating in complex dynamic environments simplify

problems by eliminating dynamic objects from tracking or tracking them separately.

However, VDO-SLAM [9] presented a novel formulation to model dynamic scenes in

a unified estimation framework over robot poses, static and dynamic 3D points, and

object motions. DynaSLAM II [10] is a similar work with VOD-SLAM that tracks

multiple rigid objects such as cars and bicycles. According to the data provided

in their papers, DynaSLAM II is a little faster and more robust than DVO-SLAM
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if not considering the time complexity of semantic segmentation. However, these

methods only work for rigid objects and neither of them is suitable for indoor dynamic

environments where people are the major dynamic objects. For example, In the

dynamic scene of the TUM [49] dataset, people change their shape sometimes by

standing or sitting. Besides, these methods are not real-time because the semantic

segmentation and optical flow information need to be prepared beforehand.

All the methods that use the blocked model wait for the semantic results of each

frame or keyframe before estimating the camera pose, thereby resulting in their pro-

cessing speed being limited by the segmentation method used. To further clarify this,

we compared the tracking performance and time complexity with state-of-the-art

works.
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Chapter 3

RTS-vSLAM

Real-time Visual Semantic Tracking and Mapping (RTS-vSLAM) is implemented

based on RGB-D-based ORB-SLAM2, which uses both semantic information and

geometric methods to detect moving objects and outlier features. RTS-vSLAM adopts

a novel generic system architecture that enables the use of many kinds of semantic

segmentation methods on the remote server and can be employed on embedded system

devices, head-mounted devices, and low-performance robots, where GPUs are not

mounted on, via requesting service from the server. It also generates many kinds

of maps to support navigation and more complex tasks in real-time. The proposed

system is evaluated using the TUM RGB-D dataset and compared tracking errors

with the state-of-the-art vSLAMmethods under dynamic environments. RTS-vSLAM

outperforms the others in tracking accuracy in a highly dynamic scenario and reduces

the time delays greatly.

Many solutions have been proposed for the above problems. Geometry-based

methods, e.g. IMU and RANSAC [7], are the main ones in the past. In recent years,

semantic segmentation based methods have also been tried. In 2018, DS-SLAM [43]

and DynaSLAM [41] were proposed. However, both of them use only one kind of

specific semantic segmentation method. Furthermore, Semantic segmentation is time-

consuming and needs a lot of computing resources, which limits the wide employment

on many embedded devices and mobile robots in real-world application.

RTS-vSLAM proposes a generic server-client architecture. The server has remote
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Figure 3-1: System overview of RTS-vSLAM

computing and monitoring ability where semantic segmentation and mapping mod-

ules are employed. Users can switch semantic segmentation methods according to a

specific environments and monitor the map remotely. The client-side devices only

need to do the tracking, where the state-of-the-art vSLAM systems can be employed.

The main contributions of RTS-vSLAM are: 1) A generic semantic SLAM system,

RTS-vSLAM, is proposed, which is implemented based on ORB-SLAM2 and robust to

the dynamic environment. It includes novel feature clustering and tracking algorithms

to reduce the influence of dynamic objects using object information.

2) Server and Client architecture. Mapping and semantic modules are deployed

on the server, which makes it possible to deploy the system on devices which lack

computing resources. In principle, many kinds of semantic segmentation methods can

be supported on the server and different kinds of maps built, where dynamic objects

are mostly removed.

3.1 System Overview

Fig. 3-1 shows an overview of the proposed system. There are two parts in the

architecture: server and client communicated with ROS(labeled with blue dot lines).

Server is designed to deal with computing complex tasks: semantic segmentation and

mapping. Client is only for tracking. Server-end can be employed in remote PCs
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(a) Semantic architecture (b) Mapping architecture

Figure 3-2: Architecture overview of server

that have higher computing capability. We built three kinds of maps on the server,

which are labeled by dark dot lines.

First, the RGB channels pass through the Semantic Generator, where object labels

are generated (server) and the Feature Extraction module(client) where ORB features

are extracted. Secondly, geometric moving consistent check is used to select good

features by removing the feature points that are not consistent with the main moving

trend. After that, the feature distribution is calculated by injecting semantic labels

into feature points, giving each feature an object name, which is useful to remove

dynamic features. Thirdly, these feature points are classified using prior knowledge.

Next, the outliers are removed in the outlier removal module. Finally, the camera

pose is estimated in the tracking module by matching feature points where dynamic

features are not included.

3.2 Server

3.2.1 Semantic Generator

Different semantic segmentation networks can be trained using different datasets. e.g.

PASCAL VOC [50], Cityscapes [51], SUN RGB-D [52], and ADE20K [53] datasets.

PSPNet [23] (trained with ADE20K) and SegNet (trained with PASCAL VOC) were

used, as shown in Fig. 3-2(a). The semantic module accepts the segmentation request

and responds to the client, the semantic mask. Segment results are shown in Fig. 3-

3(b), (e) and (h). Each person was segmented and a bounding box add to each

person using contour detection and labeling, as shown in (a), (d) and (g). A mask

was generated to remove dynamic features as shown in (c),(f) and (i).
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(a) RGB Image of Frame 2 (b) Label with Color of
Frame 2 (c) Mask Image of Frame 2

(d) RGB Image of Frame 36 (e) Label with Color of
Frame 36 (f) Mask Image of Frame 36

(g) RGB Image of Frame
342

(h) Label with Color of
Frame 342

(i) Mask Image of Frame
342

Figure 3-3: Segmentation result and mask of dynamic objects using PSPNet

3.2.2 Mapping

An attempt was made to establish a semantic map, point cloud map, and octomap [54]

in real-time on the server-end. The mapping architecture is shown in Fig. 3-2(b),

where maps were generated using Odom (TF) and the semantic label obtained from

the semantic generator. Finally, the ROS rviz1 tool was used to visualize the map.

Fig. 3-4 shows the semantic map result using PSPNet. The color is the same as the

color in Fig. 3-3 (b),(e), and (h).

3.3 Client

The main idea of the RTS-vSLAM client-end algorithm is shown in Alg.1. Firstly,

ORB features St were extracted in the latest frame Ft. Then, relatively good features

were selected using the geometry moving consistently check algorithm. However, the

distribution of these features was not known without the semantic label. Objects

1http://wiki.ros.org/rviz
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(a) Point Cloud Map
using Original ORB
SLAM2

(b) Point Cloud Map
using RTS-vSLAM
online

(c) Filtered Result of
Point Cloud Map us-
ing RTS-vSLAM

(d) Filtered Result of
Octomap using RTS-
vSLAM

(e) Semantic map on-
line result

(f) Octomap online
result

(g) Filtered semantic
map

(h) Filtered semantic
Octomap

Figure 3-4: Result of mapping using TUM f3_walk_xyz dataset and PSPNet

Algorithm 1 RTS-vSLAM Algorithm Overview
Require: Previous and Current Image: Ft−1, Ft

Previous Feature Set: St−1

Pixel-wise segmentation mask for Ft: Lt

Ensure: Inlier Feature Set of Ft: St

Camera pose (TF): (R, T )
1: St = FeatureExtract(Ft)
2: GeometryMovingCheck(Ft−1, Ft, St)
3: Cs

t , C
d
t , C

u
t = objectCluster(Dataset)

4: Sd
t , S

s
t , S

u
t = featureCluster(Ft, C

s
t , C

d
t , St)

5: RemovePrioriDynamicFeature(Sd
t , St)

6: (R, T, St) = Tracking(St−1, S
s
t , S

u
t )

7: return TF (R, T ), St

were placed into three classes: 1) static object set Cs
t (objects with high probability

to keep static), 2) dynamic object set Cd
t and 3) unknown object set Cu

t (e.g. objects

not trained and objects which cannot be clearly judged as static or dynamic), which is

done only in the initialize stage, not in the main loop. Then features were classified

into three sets according to their semantic label: 1) static feature set Ss
t , i.e. features

belong to the a static object, 2) dynamic feature set Sd
t and 3) unknown feature set

Su. Features in dynamic feature set Sd
t were removed because the features belonging

to highly dynamic objects (e.g. person) are outliers in high probability. Finally, these

features were matched to calculate the camera ego-motion using the object-based
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Algorithm 2 Feature Cluster Algorithm
Require: Current Frame: Ft;

Object Cluster: Cs
t , Cd

t ;
Feature points in Ft: St;

Ensure: (Dynamic, Static, Unknown) feature set in Ft:
(Sd

t , Ss
t , Su

t )
1: for pt ∈ Pt do
2: if semantic label lptt ∈ Cd

t then
3: Sd

t = Sd
t + pt

4: else if lptt ∈ Cs
t then

5: Ss
t = Ss

t + pt
6: else
7: Su

t = Su
t + pt

8: end if
9: end for
10: return (Sd

t , Ss
t , Su

t )

tracking algorithm we proposed.

3.3.1 Feature Cluster Algorithm

Feature cluster algorithm is shown in Alg.2, For each feature point pt in features St

of latest image Ft, Object names were checked as to where they belonged to. Features

were classified into a dynamic feature set Sd
t if their semantic label was a dynamic

object defined in advance. Similarly, static feature set Ss
t and unknown feature set

Su
t were classified.

3.3.2 Tracking Algorithm

The tracking algorithm is shown in Alg.3. The matching algorithm of original

ORB SLAM2 was customized so as to use rigid features as far as possible. Firstly,

static features set Ss
t in current frame Ft were matched with features St−1 in previous

frame. Ss
t + Su

t was matched with St−1 if the matched number in the previous step

was less than a given threshold τ (set to 20 in the experiment, the same as the original

ORB SLAM2). Finally, camera ego-motion is calculated using matched features M

with the help of pose graph optimization.
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Algorithm 3 Tracking Algorithm
Require: Feature set of previous image: St−1

Feature set of current image: Ss
t , Su

t

Ensure: Inlier feature points: St

Camera pose (TF): (R, T )
1: if FeatureMatch(St−1, S

s
t ,M) < τ then

2: if FeatureMatch(St−1, S
s
t + Su

t ,M) < τ then
3: return continue
4: end if
5: end if
6: (R, T, St) = CalculateCameraEgoMotion(M)
7: return TF (R, T ), St

Algorithm 4 Geometry Consistency Check Algorithm
Require: Feature Points of Current Frame: St

Previous and Current Image: Ft−1, Ft

Ensure: Feature Points: St

1: calcOpticalF lowPyrLK(Ft, Ft−1, St, S
′
t−1)

2: for pt ∈ St; p
′
t ∈ S ′t−1 do

3: Remove the feature pt if near to the image boarder
4: for ∀dx,∀dy ∈ {−1, 0, 1,−1, 0, 1,−1, 0, 1} do
5: sum+ = Ft[pt + [dx, dy]T ]− Ft−1[p

′
t + [dx, dy]T ]

6: end for
7: if sum > τ then
8: St = St − pt
9: end if
10: end for
11: return St

3.3.3 Geometry Consistency Check Algorithm

The geometry moving consistent moving check algorithm used is shown in Alg.4.

Sparse optical flow and cross-correlation were used to check moving consistency. The

window size of neighbor was set to 3 ∗ 3. τ is a hyper-parameter that was given

statistically.

3.4 Experimental Results

The proposed system was evaluated using a public dataset, TUM RGB-D [49], and

compared to the state-of-the-art vSLAM systems under dynamic environments, using,
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(a) ATE of ORB SLAM2 (b) Ground truth of ATE

(c) ATE of RTS-vSLAM (PSPNet) (d) ATE of RTS-vSLAM (SegNet)

Figure 3-5: Tracking error against to ORB SLAM2 using TUM f3/walk_xyz

when possible results, published in the original papers. To evaluate the semantic

generator module, the tracking performance was evaluated using both PSPNet and

SegNet. Furthermore, the system was compared against to the ORB-SLAM2 to

quantify the improvement offered by the proposal in highly dynamic scenarios.

The TUM RGB-D dataset contains color and depth images along the ground-truth

trajectory of the sensor. In the sequence named “fr3/walking_* ” (labeled as f3/w_*),

two people walk through an office. This is intended to evaluate the robustness of

vSLAM using quickly moving dynamic objects in large parts of a visible scene. Four

types of camera motion are included in walking data sequences 1) “xyz ”, the Asus

Xtion sensor is manually moved along three directions (xyz); 2) “static”, where the

camera is kept in place manually; 3) “halfsphere”, where camera is moved on a small

half sphere of approximately one meter diameter; 4) “rpy”, where camera is rotated

along the principal axes (roll-pitch-yaw).

The error in the estimated trajectory was calculated by comparing it with the

ground truth, using two prominent methods: Absolute Trajectory Error (ATE) and

Relative Pose Error (RPE) [49], which are well-suited for measuring the performance

of the vSLAM. The proposal was also evaluated against other vSLAMs under dynamic
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Table 3.1: Comparison of ATE [m] against the state-of-the-art vSLAMs

Sequences ORB SLAM2 DS-SLAM
(SegNet)

RTS-vSLAM
(SegNet)

RTS-vSLAM
(PSPNet)

RMSE Median RMSE Median Improve RMSE Median Improve RMSE Median Improve
f3/w_xyz 0.7521 0.5857 0.0247 0.0151 96.71% 0.019 0.013 97.47% 0.016 0.012 97.87%
f3/w_static 0.3900 0.3087 0.0081 0.0067 97.91% 0.01 0.007 97.44% 0.007 0.006 98.21%
f3/w_rpy 0.8705 0.7059 0.4442 0.2835 48.97% 0.198 0.036 77.25% 0.043 0.024 95.06%
f3/w_half 0.4863 0.3964 0.0303 0.0222 93.76% 0.039 0.032 91.98% 0.03 0.022 93.83%

Table 3.2: Comparison of the median value [m] of ATE(RMSE) against the state-of-
the-art vSLAMs in dynamic scenes

Sequences ORB SLAM2 Depth Edge
SLAM

Motion
Removal

DVO-SLAM

Motion
Segmentation

DSLAM

DS-SLAM
(SegNet)

DynaSLAM
(N+G+BI)

RTS-vSLAM
(SegNet)

RTS-vSLAM
(PSPNet)

f3/w_xyz 0.5857 0.060 0.093 0.040 0.0151 0.015 0.014 0.012
f3/w_static 0.3087 0.026 0.066 0.024 0.0067 0.007 0.007 0.006
f3/w_rpy 0.7059 0.179 0.133 0.076 0.2835 0.136 0.123 0.024
f3/w_half 0.3964 0.043 0.125 0.055 0.0222 0.029 0.027 0.022

environment by comparing the Root Mean Squared Error (RMSE), and median

values, defined in [49], and the improvement (defined as Eq.3.1) evaluated against

ORB SLAM2 using RMSE of ATE and RPE. Each sequence was ran at least five

times as dynamic objects are prone to increase the non-deterministic effect.

Improve =
RMSE(ORBSLAM2)−RMSE(Proposed)

RMSE(ORBSLAM2)
(3.1)

3.4.1 Evaluation on TMU Dataset

The proposed system was compared to ORB SLAM2 and DS-SLAM in detail as

shown in Tab. 3.1 and the tracking error visualized using f3/walk_xyz dataset as

an example, shown in Fig. 3-5. Fig. 3-5(a) shows the result of the original ORB

SLAM2. The tracking error (red line) is very large; (c) and (d) show the result of

RTS-vSLAM where error is largely reduced. RMSE of ATE (median error) was also

compared with other dynamic vSLAM algorithms, as shown in Tab. 3.2. RPE error

was also compared with other methods, as shown in Tab. 3.3 and Tab. 3.4. RTS-

vSLAM, achieved good performance in tracking against other vSLAMs in dynamic

environments. PSPNet version is a little better than SegNet in RTS-vSLAM because

its segmentation accuracy is a little better than SegNet.
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Table 3.3: Comparison of the result of metric translation (RPE) [m] against the
state-of-the-art vSLAMS in dynamic scenes

Sequences ORB SLAM2 DS-SLAM
(SegNet)

RTS-vSLAM
(SegNet)

RTS-vSLAM
(PSPNet)

RMSE Median RMSE Median Improve RMSE Median Improve RMSE Median Improve
f3/w_xyz 0.412 0.246 0.033 0.018 91.93% 0.025 0.017 93.94% 0.02 0.016 95.15%
f3/w_static 0.2162 0.0155 0.0102 0.0082 95.27% 0.012 0.009 94.45% 0.009 0.007 95.84%
f3/w_rpy 0.4249 0.1487 0.1503 0.0457 64.64% 0.141 0.053 65.88% 0.06 0.031 85.88%
f3/w_half 0.355 0.0774 0.0297 0.0226 91.62% 0.037 0.025 89.58% 0.028 0.022 92.11%

Table 3.4: Comparison of the result of metric rotation (RPE) [deg] against the state-
of-the-art SLAMS in dynamic scenes

Sequences ORB SLAM2 DS-SLAM
(SegNet)

RTS-vSLAM
(SegNet)

RTS-vSLAM
(PSPNet)

RMSE Median RMSE Median Improve RMSE Median Improve RMSE Median Improve
f3/w_xyz 7.7432 4.534 0.8266 0.4192 89.33% 0.691 0.425 91.08% 0.607 0.394 92.16%
f3/w_static 3.8958 0.3571 0.269 0.2259 93.09% 0.295 0.242 92.43% 0.25 0.208 93.58%
f3/w_rpy 8.0802 2.7828 3.0042 0.9902 62.82% 2.757 1.105 65.88% 1.316 0.704 83.71%
f3/w_half 7.3744 1.8143 0.8142 0.6217 88.96% 0.895 0.636 87.86% 0.775 0.61 89.49%

Table 3.5: Evaluation of time taken (ms)

Time Server Server Client Client Client Client Total Time

f3/w_rpy Semantic
Generator Mapping Low Cost

Tracking
Geometry
Check

ORB
Feature

Feature
Classify

Each
Frame

PSPNet 178.08 46.19 2.65 52.43 89.85 0.16 214.95
SegNet 27.77 18.71 2.37 35.34 73.76 0.12 147.47

3.4.2 Result of Mapping

Fig. 3-4(a) is the original point cloud map created by ORB SLAM2 using TUM

f3_walk_xyz dataset. The map is very dirty due to the influence of dynamic objects.

(b) is the point cloud map created in real-time use RTS-vSLAM where the walking

person is almost removed from the scene. However, we cannot perfectly remove all of

them due to the occasional wrongly semantic segmentation or inaccurately estimated

camera ego-motion. (c) is a filtered point cloud map where noise (e.g. the remaining

parts of person) is mostly removed. (d) is the octomap corresponding to (c). We

also created semantic map (e) and octomap (f) in Real-time. (g) is filtered results

of (e) after removing noise and (h) is the filtered octomap where a semantic label is

injected.
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3.4.3 Computation Time Analysis

To complete the evaluation of the system, Intel i7 CPU and GeForce GTX 1080 Ti

GPU (server-end only) were used to evaluate the average computational time for each

module as shown in Tab. 3.5. DynaSLAM reported their timing performance: Mask-

RCNN (195ms) on an Nvidia Tesla M40GPU, Low-Cost tracking (1.59ms), Multi-view

Geometry (235.98ms) and Background Inpainting (183.56 ms) in TUM f3/walk_rpy

dataset. The delay was caused by region growth algorithm in multi-view geometry

stage and background inpainting. In RTS-vSLAM, Semantic segmentation, mapping,

and tracking (ORB Feature extraction, descriptor computing and geometric check)

running in parallel in different thread or different machines reduced the delay.

3.5 Conclusions

A semantic SLAM system, RTS-vSLAM, is presented, which is implemented based

on ORB SLAM2 and robust to dynamic environments. Efficient tracking algorithms

have been developed using object information and geometric method to reduce the

tracking error caused by dynamic objects, and better results are achieved compared

to the state-of-the-art vSLAM methods using a dynamic environment dataset (TUM

dataset). In addition, the Server and Client architecture makes it possible to employ

this system on client-end devices by performing computation-heavy parts, semantic

segmentation, and mapping, at the server-end rather than mobile robots. This also

makes it possible for the ORB feature extraction and descriptor computation to run in

parallel with the semantic segmentation, thereby greatly reducing the delay caused by

semantic label prediction. At the same time, static maps are generated and visualized

on the server remotely in real-time.
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Chapter 4

KMOP-vSLAM

RTS-vSLAM use semantic segmentation algorithms to deal with the rigid world as-

sumption. However, it can only deal with the dynamic points on the predefined

objects. To address this challenge, we present a novel real-time visual SLAM system,

KMOP-vSLAM, which adds the capability of unsupervised learning segmentation and

human detection to reduce the drift error of tracking in indoor dynamic environments.

An efficient geometric outlier detection method is proposed, using dynamic informa-

tion of the previous frames as well as a novel probability model to judge moving

objects with the help of geometric constraints and human detection. Outlier features

belonging to moving objects are largely detected and removed from tracking. The

well-known dataset, TUM, is used to evaluate tracking errors in dynamic scenes where

people are walking around. Our approach yields a significantly lower trajectory error

compared to state-of-the-art visual SLAMs using an RGB-D camera.

4.1 Problem Description and Contributions

Geometric-based solutions [33,55,56] and semantic label-based methods [41,43,46,47]

that remove outliers using semantic labeling of all pixels are proposed. Seman-

tic segmentation-based methods achieved better tracking performance than purely

using geometric methods. However, SLAM techniques localize build a map of an

unknown environment and localize the sensor in the map with a strong focus on
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(a) RGB (b) Segmentation (c) Feature

Figure 4-1: Dynamic scene. (b) is the segmentation result of K-means, (c) the feature
distribution using geometric constraint where epipolar lines are shown. Red dots are
outliers and blue dots are other features.

real-time operation [17]. Pixel-level semantic segmentation only can segment known

objects that have been trained in advance, and it is time-consuming and computing

resource-consuming task. Unsupervised learning segmentation methods and geomet-

ric constraints are used in [57], which can segment the objects or regions (collectively

referred as objects in the following text) in unknown scene and detect moving objects

based on geometric errors. This basic idea is followed in this paper to segment the

objects that not trained in advance (e.g., Fig. 4-1(b)). This combination can make

SLAM suitable to unknown environments and operate in real-time. However, the

segmentation result is sometimes inaccurate (Fig. 4-1(b)) and it is hard to detect

moving people if they wear uniformly colored clothes because only a few features can

be detected on the edge of the body (Fig. 4-1 (c) (left person)).

We try to improve the accuracy of moving object detection using unsupervised

learning segmentation (e.g., K-means), human detection, and geometric constraint.

K-means can segment unknown environment into K objects, but it is difficult to

know where the people are, e.g., person in the left in Fig. 4-1 using only geometric

information. Human detection matched can locate people, but, it cannot detect other

movable objects such as the chair someone is pulling or pushing. The dynamic features

on these objects is detected and removed using K-means and geometric methods.

We proposed a novel dynamic visual SLAM using K-means and OpenPose (KMOP-

vSLAM), built on RGB-D based ORB SLAM2 [17], for dynamic indoor environments.

The main contributions are:
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Figure 4-2: System overview of KMOP-vSLAM. RGB images pass through Feature
Detection and Human Detection to extract ORB features and locate the person.
Depth images are used to segment objects. Ouliers are removed using segmentation
results, person position and geometric methods. The mask of dynamic objects is used
for the next iteration and pose estimation.

1) a novel moving object detection method that is based on a probability model

leveraging K-means, human detection and geometric methods;

2) an efficient geometric outliers detection method that uses moving object infor-

mation of previous frame and a good matched features selection algorithm;

3) an unsupervised learning segmentation method is used to segment the objects

including the unknown objects;

4) the integration of all of the above techniques to detect and remove dynamic

objects, including people, more accurately in dynamic indoor environments in real-

time.

4.2 System Implementation

Our system incorporates these parts: unsupervised learning segmentation, person

detection, multi-view geometric check, and probability-based moving object detection

algorithm.
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4.2.1 System Overview

Fig. 4-2 shows the whole architecture of the proposed system. Three modules run

in parallel: Feature Detection, Segmentation, and Human Detection. An RGB im-

age passes through the Human Detection module to locate the person and passes

through the Feature Detection module to extract ORB features which are used for

geometrically-based moving object detection and camera ego-motion estimation. The

depth image passes through segmentation and get the pixel label using K-means.

Next, the moving object is detected using the result of the Geometric Constraint and

Human Detection. Finally, camera ego-motion is estimated using rigid features after

removing outliers on the moving objects.

4.2.2 Unsupervised Learning Segmentation

K-means is used to segment depth images (e.g., Figs. 4-3(c) and (d)) to generate

objects. Morphology filter is used to fill invalid holes in the depth image. In our

experiment, in order to compare our proposal with existing similar work [57], 10

clusters (same as [57]) are used and the results are shown in Figs. 4-3(e) and (f).

4.2.3 Multi-view Geometry Algorithm

Geometric Error Function

Assume x and x′ are matched feature points. We define the error function as:

E = x
′TFx = x

′T l = x
′T [e]×π(x). (4.1)

where F is the fundamental matrix [58], e the epipole of current frame, l the epipo-

lar line, [∗]× the skew matrix, π(x) projects x from the previous frame to current

frame. The most import thing is to calculate the epipolar line. We detect outliers by

calculating the distance between the projected feature points and their epipolar line.
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(a) RGB (Frame 680) (b) RGB (Frame 681)

(c) depth (Frame 680) (d) depth (Frame 681)

(e) label (Frame 680) (f) label (Frame 681)

Figure 4-3: Segmentation result using the depth image. (b) is the current frame and
(a) the previous frame. (e) and (f) are the segmentation results using K-means with
10 clusters.
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(a) Frame 680 (b) Frame 680

(c) Frame 680 (d) Frame 681

(e) Match Frame 680 and 681

(f) Frame 680 (g) Frame 681

Figure 4-4: Calculating fundamental matrix and Epipolar Line. (a) is the features
(Ft−1) in previous image, (b) the mask of dynamic object in previous image, (c) the
features (F ′t−1) after removing outliers using mask, (d) the features (Ft) of current
image and (e) is the matching result using good matches of (a) and (b). (f, g) show
the epipolar lines and outliers. Outliers are marked in red color, blue dots the other
features and the purple line are epipolar lines.
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Algorithm 5 Geometric Constraint

Require: Features of previous image: Ft−1, F
′
t−1

Features in current image: Ft

Hyper-parameters: λ = 4, β = 30, ε = 5
Ensure: Outliers probability: PG
1: M = match(Ft, F

′
t−1)

2: GM = selectGoodMatches(M,λ, β)
3: F = CalculateFundamentalMatrix(GM)
4: M = match(Ft, Ft−1)
5: l

′
= calculateEpipolarLine(M,F )

6: E = calculateGeometricError(l
′
)

7: for ∀e ∈ E do
8: if e < ε then
9: featue ∈ inlier
10: else
11: feature ∈ outlier
12: end if
13: end for
14: PG = calculateOutlierProbability()
15: return PG

Calculating the Fundamental Matrix

Before calculating the epipolar line, we need to calculate the Fundamental Matrix F

using selected well-matched corresponding features GM , as shown in Alg. 5 (Lines 1-

3 ). First, we obtain the features in previous frame where all possible dynamic objects

are removed using its mask, as shown in Figs. 4-4 (a-c). Then, GM is selected by

matching current frame 4-4 (d) and synthetic previous frame 4-4 (c). Finally, F is

calculated using GM , as shown in Fig. 4-4 (e).

Selecting Good Matches

The relatively good matches are selected when calculating the fundamental matrix,

as shown in Alg. 6. Firstly, the minimum and maximum distance of ORB descriptors

of matched ORB features are calculated. λ is a threshold, used to control the range

of distance and β is also a threshold, which is used to decide the minimum number

of matches needed to calculate the fundamental matrix. The higher λ and β are, the

more matched features are reserved.
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Algorithm 6 Select Good Matches
Require: Matched feature set: M

Parameters: λ = 3 (λ >= 1), β = 30 (β > 8)
Ensure: Good matches: GM
1: min,max = MinMaxDistance(M)
2: for λ;λ ∗min <= max;λ+ + do
3: for i = 0; i < M.size(); i+ + do
4: if M [i].distance < λ ∗min then
5: GM.push_back(M [i])
6: end if
7: if GM.size() > β then
8: break
9: end if
10: end for
11: end for

Calculating Epipolar Line

The epipolar line is calculated (Alg. 5 (Lines 3-5 )) by matching original features in

the previous and current frames. The results of epipolar lines are shown in Fig. 4-4

(g) using the matched features. In order to calculate the mask image of dynamic

objects in the current frame, we need to match again using all the features, because

only part of features are used in the matching operation of the previous step (Fig.

4-4 (e)). Fig. 4-4(f) is calculated using its previous frame (Frame 679 ).

Outliers Detection

Each features in the current image will be judged as an outliers only if the error E

(Eq. 4.1) is larger than the threshold ε, which is decided using statistics, as shown in

Fig. 4-5 and Alg. 5 (Lines 6-13 ). The maximum error is sometimes larger than 200

according to Fig. 4-5 (b), and the average value is below 5 for most frames, as shown

in Fig. 4-5 (a). Therefore, ε is set to 5 in our experiment.
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(a) Average vs minimum

(b) Median vs maximum

Figure 4-5: Geometric error distribution of fr3/walk_xyz dataset
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(a) Frame 680 (b) Frame 681

Figure 4-6: Person detection

4.2.4 Moving Object Detection

Geometric Probability

The moving probability of each object using the geometric constraint is defined as:

PGi =
OUTi

OUTi + INi

(4.2)

where i (0 ≤ i < N) is the object segmented by K-means and N is the total number

of objects; PGi is the moving probability of each object based on the geometric

constraint; OUTi is the number of outliers in each object, and INi is the number of

inlier features in each object.

OpenPose Probability

OpenPose 1 is used to detect the person, as shown in Fig. 4-6. The features of

OpenPose are very sparse and very few features are detected for one person. However,

these sparse features can locate the person using pixel value of the image. The moving

probability using human detection is defined as:

PHi = min
{Hi

H
, 1
}

(4.3)

1https://github.com/firephinx/openpose_ros
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Algorithm 7 Moving Object Detection
Require: Geometric probability: PG[N ]

OpenPose probability: PH[N ]
Segmentation result: Ci, (0 < i < N)
Thresholds: ω = 0.8, θ = 0.25, γ = 0.5

Ensure: Mask image of dynamic objects
1: for ∀i ∈ N do
2: if PH[i] > θ, (0 < θ ≤ 1) then
3: Person exists
4: else
5: No person exists
6: end if
7: Pi = Moving_object_probability(PG[i], PH[i], ω)
8: if Pi > γ, (0 < γ ≤ 1) then
9: Object Ci ∈ dynamic object
10: Mask+ = Ci

11: end if
12: end for
13: return Mask

where PHi is the moving probability of each object based on human detection, Hi the

number of OpenPose features on each object, and H a constant value, total OpenPose

features on one person, which is set to 25 in the experiment.

Movable Object Probability

Moving objects are detected using both OpenPose and Geometric Constraint using:

Pi =

ωPHi + (1− ω)PGi, if person exists

PGi, otherwise
(4.4)

where Pi is the moving probability of each object, and ω (0 ≤ ω ≤ 1) is a weight

parameter indicating how much the result of human detection is trusted and is set

to 0.8 in the experiment because the result of OpenPose is more trusted than that of

Geometric Constraint.
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Figure 4-7: Moving object probability of Frame 681. C0 − C9 is the ten objects
segmented by K-means.

(a) Frame 680 (b) Frame 681

Figure 4-8: Mask for removing dynamic objects

Judging Moving Object

The moving object detection algorithm is shown in Alg. 7, which generates the mask

image of dynamic objects, which is used to remove outliers from the current frame. For

each object, we firstly judge whether a person exists using the moving probability of

PHi of each frame, as shown in Fig. 4-7 (blue line). Geometric Constraint probability

is shown in Fig. 4-7 (green line), which is inaccurate sometimes, but it can select the
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Table 4.1: ATE against state-of-the-art RGB-D SLAM systems in dynamic scenes

ORB SLAM2 (m) New RGB-D SLAM [57] (m) KMOP-vSLAM (m)
RMSE Mean Min Max RMSE Mean Min Max RMSE Mean Min Max

fr3/walk_xyz 0.89 0.757 0.131 2.174 0.3047 0.2768 0.043 0.8196 0.019 0.015 0.001 0.104
fr3/walk_rpy 0.770 0.683 0.130 1.555 0.4983 0.4637 0.0708 0.9351 0.049 0.039 0.004 0.253
fr3/walk_half 0.366 0.337 0.024 0.965 0.3116 0.2972 0.1088 0.6246 0.176 0.166 0.049 0.277
fr3/walk_static 0.34 0.311 0.024 0.58 0.3080 0.2691 0.0231 0.6161 0.032 0.023 0.001 0.205

Table 4.2: Comparison of the RMSE of the RPE against state-of-the-art SLAMs in
the dynamic scene

Translation (m) Rotation (deg)
ORB SLAM2 DVO New RGB-D SLAM [57] Ours ORB SLAM2 DVO New RGB-D SLAM [57] Ours

fr3/walk_xyz 0.363 0.436 0.2158 0.026 6.698 7.6669 3.6476 0.689
fr3/walk_rpy 0.361 0.4038 0.3270 0.065 7.070 7.0662 6.3398 1.105
fr3/walk_half 0.28 0.2628 0.1908 0.07 5.469 5.2179 4.2863 1.595
fr3/walk_static 0.204 0.3818 0.1881 0.033 3.645 6.3502 3.2101 0.627

moving objects candidates. The moving probability Pi is calculated from PHi and

PGi using Eq. (4.4). Finally, the object is judged as a dynamic object only if Pi is

larger than the threshold γ. The mask image generated using these objects as shown

in Fig. 4-8 and is used to remove outliers in tracking.

4.3 Experimental Results

4.3.1 TUM Dataset Evaluation

The TUMRGB-D dataset [49] contains indoor sequences from RGB-D sensors grouped

in several categories to evaluate SLAM and odometry methods under different tex-

ture, illumination and structural conditions. There are sequences called fr3/walk_*

specially for evaluating SLAM in dynamic environments. In these sequences, two

people walk through an office and there are four types of camera motions: halfsphere

(half), xyz, rpy and static. The proposed system was evaluated using ATE and RPE

metrics and compared with state-of-the-art SLAM systems using when possible the

results published in the original papers. Tab. 4.1 shows the comparison of ATE er-

ror metric and Tab. 4.2 shows the comparison using the (Root Mean Square Error)

RMSE of the RPE metric. The proposal outperformed [57], which is a similar work

to this paper, in tracking accuracy.
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(a) Frame 610 (b) Frame 611 (c) Frame 612

(d) Frame 610 (e) Frame 611 (f) Frame 612

(g) Frame 610 (h) Frame 611 (i) Frame 612

(j) Frame 610 (k) Frame 611 (l) Frame 612

(m) Frame 680 (n) Frame 681 (o) Frame 682

(p) Frame 610 (q) Frame 611 (r) Frame 612

Figure 4-9: Moving object detection result using f3/walk_xyz dataset. (a-c) depth
image; (d-h) segmentation result; (g-i) OpenPose results; (j-l) geometric moving
check; (m-o) mask of dynamic objects; (p-r) features after reducing outliers.
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Table 4.3: Evaluation of time taken (fr3/walk_xyz)

Module Person Detection Segmentation Tracking Total
Time (ms) 45.89 95.29 221.636 257.819

4.3.2 Moving Object Detection

In the TUM dataset, the people and the chair someone is moving are dynamic objects,

as shown in Fig. 4-9. In Fig. 4-9(m-r), the mask image of dynamic objects are

generated successfully using K-means, human detection and multi-view geometric

check and they can be used to improve the tracking accuracy of camera ego-motion.

4.3.3 Calculation Time

Intel i7 CPU and GeForce GTX 1080 Ti GPU are used in the experiment. GPU is

used only for Human Detection. The time taken is shown in Tab. 4.3. Total is the

average time cost for each frame and is similar to the time cost of Tracking, because

Tracking, Segmentation and Person Detection are run in parallel.

4.4 Conclusions

In order to reduce the drift error in tracking caused by dynamic objects, including

unknown objects, a novel approach is presented that combines geometric constraints,

unsupervised learning segmentation, and human detection to detect moving objects

and remove outliers. An efficient geometric outliers detection algorithm is also pre-

sented that utilizes the mask of dynamic objects of previous frames. In addition, a

novel probability model that using geometric moving checks and human detection is

proposed to judge dynamic objects. In the experiments, we evaluated our system

using the TUM dataset under dynamic environments and the drift error of ATE and

RPE are greatly reduced using the mask of dynamic objects. This work achieved

good tracking performance. One problem is that the cluster number of K-means is

given manually. But, K-means++ [59] proposed an algorithm for choosing the initial

values for K-means algorithm. We will consider K-means++ in our future work to
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apply the proposed method to cluttered environments.
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Chapter 5

RDS-SLAM

Many solutions are proposed that use different kinds of semantic segmentation meth-

ods to detect dynamic objects and remove outliers. However, as far as we know, such

kind of methods wait for the semantic results in the tracking thread in their archi-

tecture, and the processing time depends on the segmentation methods used. In this

chapter, we present RDS-SLAM [13], a real-time visual dynamic SLAM algorithm that

is built on ORB-SLAM3 and adds a semantic thread and a semantic-based optimiza-

tion thread for robust tracking and mapping in dynamic environments in real-time.

These novel threads run in parallel with the others, and therefore the tracking thread

does not need to wait for the semantic information any more. Besides, we propose an

algorithm to obtain as the latest semantic information as possible, thereby making it

possible to use segmentation methods with different speeds in a uniform way. We up-

date and propagate semantic information using the moving probability, which is saved

in the map and used to remove outliers from tracking using a data association algo-

rithm. Finally, we evaluate the tracking accuracy and real-time performance using

the public TUM RGB-D datasets and Kinect camera in dynamic indoor scenarios.

5.1 Non-blocked Model and Contributions

Dynamic objects will cause many bad or unstable data associations that accumulate

drifts during the SLAM process. In Fig. 5-1, for example, assume m1 is on a person
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Figure 5-1: Example of data association in vSLAM under dynamic scene. Ft, (t ≥ 0)
is the frame and KFt is the selected keyframe. mi, i ∈ {0, 1, ...} is the map point.
Assume m1 moved to new position m′1 because it belongs to a moving object. The
red line indicates the unstable or bad data association.

and its position changes in the scene. The bad or unstable data associations (the

red lines in Fig. 5-1) will lead to incorrect camera ego-motion estimation in dynamic

environments. Usually, there are two basic requirements for vSLAM: robustness in

tracking and real-time performance. Therefore, how to detect dynamic objects in

the populated scene and prevent the tracking algorithm from using data associations

related to such dynamic objects in real-time is the challenge to allow vSLAM to be

deployed in the real world.

We classify the solutions into two classes: pure geometric-based [29, 32–34, 56]

and semantic-based [41,43,44,46,47,60] methods. These geometric-based approaches

cannot remove all potential dynamic objects, e.g., people who are sitting. Features

on such objects are unreliable and also need to be removed from tracking and map-

ping. These semantic-based methods use semantic segmentation or object detection

approaches to obtain pixel-wise masks or bounding box of potential dynamic objects.

Sitting people can be detected and removed from tracking and mapping using the

semantic information and a map of static objects can be built. Usually, in semantic-
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(a) Blocked model.

(b) Non-blocked model.

Figure 5-2: Blocked model vs non-blocked model. The semantic model can use differ-
ent kinds of segmentation methods, e.g., Mask R-CNN and SegNet. Note that this is
not exactly the same as the semantic-based methods mentioned [41,43,44,46,47,60].
In the blocked model, the tracking process is blocked to wait for the results of the
semantic model.

based methods, geometric check, such as Random Sample Consensus (RANSAC) [7]

and multi-view geometry, are also used to remove outliers.

These semantic-based methods first detect or segment objects and then remove

outliers from tracking. The tracking thread has to wait for semantic information

before tracking (camera ego-motion estimation), which is called the blocked model

(as shown in Fig. 5-2 (a)). Their processing speed is limited by the time-consuming

of semantic segmentation methods used. For example, Mask R-CNN requires about

200ms [24] for segmenting one image and this will limit the real-time performance of

the entire system.

Our main challenge is how to execute vSLAM in real-time under dynamic scenes
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with various pixel-wise semantic segmentation methods that ran at a different speed,

such as SegNet and Mask R-CNN. We propose a semantic thread to wait for the

semantic information. It runs in parallel with the tracking thread and the tracking

thread does not need to wait for the segment result. Therefore, the tracking thread

can execute in real-time. We call it a non-blocked model, as shown in Fig. 5-2 (b).

Faster segmentation methods (e.g., SegNet) can update semantic information more

frequently than slower methods (e.g., Mask R-CNN). Although we cannot control the

segmentation speed, we can use a strategy to obtain as the latest semantic information

as possible to remove outliers from the current frame.

Because the semantic thread runs in parallel with the tracking thread, we use

the map points to save and share the semantic information. As shown in Fig. 5-

1, we update and propagate semantic information using the moving probability and

classify map points into three categories, static, dynamic, and unknown, according to

the moving probability threshold. These classified map points will be used to select

as stable data associations as possible in tracking.

The main contributions of RDS-SLAM are:

(1) we propose a novel semantic-based real-time dynamic vSLAM algorithm, RDS-

SLAM, which enables the tracking thread does not need to wait for the semantic

results anymore. This method efficiently and effectively uses semantic segmentation

results for dynamic object detection and outlier removal while keeping the algorithm’s

real-time nature.

(2) we propose a keyframe selection strategy that uses as the latest new semantic

information as possible for outliers removal with any semantic segmentation methods

with different speeds in a uniform way.

(3) We show the real-time performance of the proposed method is better than the

existing similar methods using the TUM dataset.
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Figure 5-3: System architecture. Models with orange color are modified blocks based
on ORB-SLAM3. Models with magenta color are newly added features. Blocks in
blue are important data structures.

5.2 System Overview

Each frame will first pass through the tracking thread. The initial camera pose is

estimated for the current frame after being tracked with the last frame and further

optimized by being tracked with the local map. Then, keyframes are selected and

they are useful in semantic tracking, semantic-based optimization, and local mapping

thread. We modify several models in the tracking and the local mapping threads to

remove outliers from camera ego-motion estimation using the semantic information.

In the tracking thread, we propose a data association algorithm to use as the features

on static objects as possible.

The semantic thread runs in parallel with the others, so as not to block the tracking

thread and saves the semantic information into the atlas. Semantic labels are used

to generate the mask image of the priori dynamic objects. The moving probability of

the map points matched with features in the keyframes is updated using the semantic

information. Finally, the camera pose is optimized using the semantic information in

the atlas.
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Figure 5-4: Semantic tracking example. Assume keyframes KFn is selected every two
frames Fn and inserted into keyframe list KF . We choose keyframes from KF to
request semantic labels Sn. Then we update the moving probability into the atlas
using the mask image of dynamic objects that reproduced from the semantic label.
Blue circles stand for the static map points and red circles for the dynamic map
points. Others marked in green are unknown.

We will introduce the new features and modified models in the following sections.

We skip the detailed explanations of the modules that are the same as those of ORB-

SLAM3.

5.3 Semantic Thread

The semantic thread is responsible for generating semantic information and updating

it into the atlas map. Before we introduce the detailed implementation of the semantic

thread, we use a simple example to explain the general flow, as shown in Fig. 5-4.

Assume the keyframes are selected every two frames. The keyframes are selected by

the ORB-SLAM3 and we inserted them into a keyframe listKF sequentially. Assume,

at time t = 12, KF2-KF6 are inside KF . The next step is to select keyframes from

KF to request semantic labels from the semantic server. We call this process as

semantic keyframe selection process. We take one keyframe from the head of KF

48



Algorithm 8 Semantic Tracking Thread
Require: KeyFrame list: KF
1: while not_request_finish() do
2: SK = semantic_keyframe_selection(KF)
3: SLs = request_segmentation(SK)
4: for i = 0; i < SLs.size(); i+ + do
5: KeyFrame kf = SR[i]
6: kf->mask = GenerateMaskImage(SLs[i])
7: kf->UpdatePrioriMovingProbability()
8: end for
9: end while

(KF2) and one from the back of KF (KF6) to request the semantic labels. Then,

we calculate the mask of the priori dynamic objects using semantic labels S2 and

S6. Next, we update the moving probability of map points stored in the atlas. The

moving probability will be used later to remove outliers from the tracking thread.

Alg. 8 shows the detailed implementation of the semantic thread. The first step

is to select semantic keyframes from keyframe list KF (Line 2). Next, we request

semantic labels from the semantic model and return the semantic labels SLs (Line

3). Lines 4-8 are to save and process the semantic results for each item returned. Line

6 is to generate the mask image of dynamic objects and Line 7 updates the moving

probability stored in the atlas. We will introduce each submodule of the semantic

thread sequentially (see Fig. 5-3).

5.3.1 Semantic Keyframe Selection Algorithm

The semantic keyframe selection algorithm is to select keyframes for requesting the

semantic labels later. We need to keep the real-time performance while using different

kinds of semantic segmentation methods. However, some of them, such as Mask R-

CNN, are time-consuming and the current frame in tracking may not obtain the new

semantic information if we segment every keyframe sequentially.

To evaluate the distance quantitatively, we define the semantic delay that is the

distance between the latest frame id which has the semantic label (St) that holds the
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Figure 5-5: Bi-direction model vs sequential model. Assume we use Mask R-CNN
(200ms) and ORB-SLAM3 (20ms), and the keyframe is selected every two frames.
About 200/20 = 10 frames delay while waiting for the semantic result.

latest semantic information and the current frame (Ft) id, as follows:

d = FrameID(Ft)− FrameID(St). (5.1)

Fig. 5-5 shows the semantic delay for several cases. The general idea is to segment
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Figure 5-6: Semantic delay of sequential model vs bi-direction model.

Figure 5-7: Semantic time line. The left side is the contents inside the keyframe list
KF and right side is the time line of requesting semantic label. Keyframe in green
color means this item has already obtained the semantic information in the previous
round.

each frame or keyframe sequentially, according to the time sequence as shown in Fig.

5-5 (a). We call this kind of model the sequential segmentation model. However, this

will monotonically increase the time delay when using time-consuming segmentation

methods as shown as the blue line in Fig. 5-6. For instance, at time t = 10 (F10),
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the semantic model completed the segmentation of KF0 (F0) and the semantic delay

is d = 10. Similarly, at time 40 (F40), the semantic delay becomes 34. That is, the

last frame that has semantic information is 34 frames behind the current frame. The

current frame cannot obtain the latest semantic information.

To shorten the distance, supposed that we segment two frames sequentially at the

same time (Fig. 5-5 (b)). Then, the delay becomes 12− 2 = 10 if KF0 and KF1 are

segmented at the same time. The delay still grows linearly as shown as the red line

in Fig. 5-6.

To further shorten the semantic delay, we use a bi-directional model. We do

not segment keyframes sequentially. Instead, we do semantic segmentation using

keyframes both from the front and back of the list to use as the latest semantic

information as possible, as shown in Fig. 5-5 (c) and as the yellow line in Fig.

5-6. The semantic delay becomes a constant value. In practice, the delay in the

bidirectional model is not always 10. The distance is influenced by the segmentation

method used, the frequency of keyframe selection, and the processing speed of the

related threads.

The left side of Fig. 5-7 indicates a semantic keyframe selection example and the

right side of Fig. 5-7 shows the timeline of requesting semantic information from

the semantic model/server. We take both keyframes from the head and back of KF

to request the semantic label. (Round 1) At time t = 2, two keyframes KF0 and

KF1 are selected. Segmentation finished at t = 12. By this time, new keyframes are

selected and then inserted into KF (see Round 2). Then we take two elements KF2

from the front and KF6 from this back to request the semantic label. At the time

t = 22, we received the semantic result and continue the next round (Round 3).

We can obtain relatively new information if we segment the keyframe at the tail

of the KF list. Then why do we also need to segment the keyframe that in front of

the list? Different from the blocked model, there is no semantic information for the

first few frames (about 10 frames if using Mask R-CNN) in our method. Since the

processing speed of the tracking thread is usually faster than the semantic thread,

vSLAM may have already accumulated large errors because of the dynamic objects.
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Therefore, we need to correct these drift errors using the semantic information by

popping out and feeding the keyframes in the front of the KF list sequentially to the

semantic-based optimization thread to correct/optimize the camera poses.

5.3.2 Semantic Segmentation

In our experiment, we use two models with different speeds, Mask R-CNN (slower)

and SegNet (faster), as shown in Fig. 5-8. Mask R-CNN [24] is trained with the MS

COCO [61], which has both pixel-wise semantic segmentation results and instance

labels. We implemented it based on the TensorFlow version of Matterport 1. SegNet

[22] implemented using Caffe 2, is trained with the PASCAL VOC [50] 2012 dataset,

where 20 classes are offered. We did not refine the network using the TUM dataset

because SLAM usually runs in an unknown environment.

5.3.3 Semantic Mask Generation

We merge all the binary mask images of instance segmentation results into one mask

image that is used to generate the mask image (Fig. 5-8) of people. Then we calculate

the priori moving probability of map points using the mask. In practice, since the

segmentation on object boundaries are sometimes unreliable, the features on the

boundaries cannot be detected if directly apply the mask image, as shown in Fig. 5-9

(a). Therefore, we dilate the mask using a morphological filter to include the edge of

dynamic objects, as shown in Fig. 5-9 (b).

5.3.4 Moving Probability Update

In order not to wait for the semantic information in the tracking thread, we isolate the

semantic segmentation from tracking. We use the moving probability to convey se-

mantic information from semantic thread to tracking thread. The moving probability

is used to detect and remove outliers from tracking.

1https://github.com/matterport/Mask_RCNN
2https://github.com/alexgkendall/SegNet-Tutorial
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(a) (M) Segmentation result (b) (M) Mask image

(c) (S) Segmentation result (d) (S) Mask image

(e) Detected outliers using mask image

Figure 5-8: Semantic information. "M" stands for Mask R-CNN and "S" for "Seg-
Net". (e) shows the outliers that marked in red color, which are detected using the
mask image.
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(a) Original (b) Enlarged

Figure 5-9: Mask dilation. Remove outliers on the edge of dynamic objects.

(a) Features (b) Segmentation (c) Mask of Person

Figure 5-10: Segmentation failure case. Some features on the body on the person (a)
cannot be identified as outliers using unsound mask (c) generated by semantic result
(b). Therefore, those features are wrongly labeled as static in this frame.

Figure 5-11: Moving probability. θs is the static threshold and θd is the dynamic
threshold value.

Definition of Moving Probability

As we know, vSLAM is usually running in an unknown environment, the semantic

result is not always robust if the CNN network is not well trained or refined according

to the current environment (Fig. 5-10). To detect outliers, it is more reasonable to

consider the spatio-temporal consistency of frames, rather than just use the semantic
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result of one frame. Therefore, we use the moving probability to leverage the semantic

information of successive keyframes.

We define the moving probability (p(mi
t),m

i
t ∈ M) of each map point i at the

current time as shown in Fig. 5-11. The status of the map point is more likely

dynamic if its moving probability is closer to one. The more static the map point is

if it is more closer to zero. To simplify, we abbreviate the moving probability of map

point i at time t (p(mi
t)) to p(mt). Each map point has two status (M), dynamic and

static, and the initial probability (initial belief) is set to 0.5 (bel(m0)).

M = {static(s), dynamic(d)},

bel(m0 = d) = bel(m0 = s) = 0.5.

Definition of Observed Moving Probability

Considering the fact that the semantic segmentation is not 100% accurate, we define

the observe moving probability as:

p(zt = d|mt = d) = α,

p(zt = s|mt = d) = 1− α,

p(zt = s|mt = s) = β, and

p(zt = d|mt = s) = 1− β.

The values α and β are manually given and it is related to the accuracy of semantic

segmentation. In the experiment, we set α and β to 0.9 by supping the semantic

segmentation is fairly reliable.

Moving Probability Update

The moving probability of the current time bel(mt) is predicted based on the obser-

vation z1:t (semantic segmentation) and initial status m0. We formulate the moving
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probability updating problem as a Bayesian filter [62] problem:

bel(mt) = p(mt|z1:t,m0) (5.2)

= ηp(zt|mt, z1:t−1,m0)p(mt|z1:t−1,m0)

= ηp(zt|mt)p(mt|z1:t−1,m0)

= ηp(zt|mt)bel(mt).

In Eq. 5.2 exploits Bayes rule and the conditional independence that the current

observation zt only relies on the current status mt. η is a constant. The prediction

bel(mt) is calculated by:

bel(mt) (5.3)

=

∫
p(mt|mt−1, z1:t−1)p(mt−1|z1:t−1)dmt−1

=

∫
p(mt|mt−1)bel(mt−1)dmt−1.

In Eq. (5.3), we exploit the assumption that our state is complete. This implies if we

know the previous state mt−1, past measurements convey no information regarding

the state mt. We assume the state transition probability p(mt = d|mt−1 = s) = 0 and

p(mt = d|mt−1 = d) = 1 because we cannot detect the suddenly change of objects.

η is calculated by (bel(mt = d) + bel(mt = s))/2. The probability of map points

belonging to dynamic is calculated by:

bel(mt = d) (5.4)

= p(mt = d|mt−1 = d)bel(mt−1 = d).
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Judgement of Static and Dynamic Points

Whether a point is dynamic or static is judged using predefined probability thresholds,

θd and θs (see Fig. 5-11). They are set to 0.6 and 0.4 respectively in the experiment.

Status(mi
t) =


dynamic p(mt) > θd

static p(mt) < θs

unknown others

. (5.5)

5.4 Tracking Thread

The tracking thread runs in real-time and tends to accumulate the drift error due

to the incorrect or unstable data associations of 3D map points and 2D features in

each frame caused by dynamic objects. We modify the Track Last Frame model and

Track Local Map model of ORB-SLAM3 tracking thread to remove outliers (see Fig.

5-3). We propose a data association algorithm that uses as good data associations as

possible using the moving probability stored in the atlas.

5.4.1 Track Last Frame

Alg. 9 shows the data association algorithm in tracking last frame model. For each

feature i in the last frame, we first get their matched map point m (Line 2). Next, we

find the matched feature in the current frame by comparing the descriptor distance of

ORB features (Line 3). After that, in order to remove the bad influence from dynamic

map points, we skip those map points that have higher moving probability (Lines 4-

6). Then, there are two kinds of map points left, static and unknown map points. We

want to use only the static map points as far as we can. Therefore, we classify the

remaining map points into two subsets: static subset and unknown subset, according

to their moving probability (Lines 7-12). Finally, we use the selected relative good

matches. We first use all the good data stored in static subset (Lines 14-16). If the

size of these data is not enough (less than the threshold τ = 20, the value used in

ORB-SLAM3), we also use the data in unknown subset (Lines 17-21).
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Algorithm 9 Robust data association algorithm
Require: Current Frame: Ft

Last Frame: Ft−1

Unknown subset: Unknown<FeatureId, MapPoint*>
Static subset: Static<FeatureId, MapPoint*>
Threshold: θd, θs, τ = 20

1: for i=0; i<Ft−1.Features.size(); i+ + do
2: MapPoint* m = Ft−1.MapPoints[i]
3: f = FindMatchedFeatures(Ft, m)
4: if p(m) > θd then
5: continue
6: end if
7: if p(m) < θs then
8: Static.insert(f , m)
9: end if
10: if θd ≤ p(m) ≤ θs then
11: Unknown.insert(f , m)
12: end if
13: end for
14: for it = Static.begin(); it!=Static.end();it++ do
15: Ft.MapPoints[it->first] = it->second;
16: end for
17: if Static.size()<τ then
18: for it = Unknown.begin(); it!=Unknown.end();it++ do
19: Ft.MapPoints[it->first] = it->second;
20: end for
21: end if

We try to exclude outliers from tracking using the moving probability stored in the

atlas. How well the outliers are removed will have a great influence on the tracking

accuracy. We show the results of a few frames in Fig. 5-12. All the features in the

first few frames are in green color because no semantic information can be used and

the moving probability of all map points is 0.5, the initial value. The features in

red belong to dynamic objects and they are hard to match with the last frame than

static features (blue features). The green features are almost disappeared because

the map points obtained the semantic information over time. We only use features

in the static subset if its size number is enough to estimate camera ego-motion.
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(a) (S) Frame 2 (b) (S) Frame 11 (c) (S) Frame 50 (d) (S) Frame 100

(e) (M) Frame 2 (f) (M) Frame 11 (g) (M) Frame 50 (h) (M) Frame 100

Figure 5-12: Results after tracking last frame. "M" stands for Mask R-CNN and "S"
for SegNet. The features in red color are not used in tracking. Blue features belong
to the static subset and green features belong to the unknown subset.

(a) (S) Frame 2 (b) (S) Frame 11 (c) (S) Frame 50 (d) (S) Frame 100

(e) (M) Frame 2 (f) (M) Frame 11 (g) (M) Frame 50 (h) (M) Frame 100

Figure 5-13: Results after tracking local map. "M" stands for Mask R-CNN and "S"
for SegNet.

5.4.2 Track Local Map

The basic idea of the data association algorithm in the Tracking Local Map model is

similar with Alg. 9. The difference is that here we use all the map points in the local

map to find good data association. The data association result after tracking local

map is shown in Fig. 5-13. More map points are used to match in this model than

the tracking last frame. The features on the people are almost successfully detected
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or not matched/used.

5.5 Optimization

5.5.1 Semantic-based Optimization

We optimize the camera pose using the keyframes given by the semantic keyframe

selection algorithm. Considering that the tracking thread runs very fast than the

semantic thread, drifts have already accumulated to some extent with the influence

of dynamic objects. Therefore, we try to correct the camera pose using semantic

information. We modify the error term used in ORB-SLAM3 by using the moving

probability of map points for weighting, as shown below. In the experience, we only

use the matched static map points for optimization.

Assume Xw
j ∈ R3 is the 3D pose of a map point j in the world coordinate system.

The i-th keyframe pose in the world coordinate is Tw
i ∈ SE(3). The camera pose Tw

i

is optimized by minimizing the reprojection error concerning the matched keypoint

xij ∈ R2 of the map point. The error term for the observation of a map point j in a

keyframe i is:

e(i, j) = (xij − πi(Tw
i , X

w
j ))(1− p(mj)), (5.6)

where πi is the projection function that projects a 3D map point into a 2D pixel point

in the keyframe i. The larger the moving probability is, the smaller contribution to

the error. The cost function to be optimized is:

C =
∑
i,j

ρ(eTi,jΩ
−1
i,j ei,j) (5.7)

where ρ is the Huber robust cost function and Ω−1
i,j is the covariance matrix.

5.5.2 Bundle Adjustment in Local Mapping Thread

We modify the local BA model to reduce the influence of dynamic map points using

semantic information. What we modified are: 1) the error term, in which the moving
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probability is used, as shown in Eq. 5.6; 2) only keyframes that already obtained

semantic information are used for BA.
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(a) ORB-SLAM3:
w/half

(b) ORB-SLAM3:
w/rpy

(c) ORB-SLAM3:
w/static

(d) ORB-SLAM3:
w/xyz

(e) DS-SLAM (S):
w/half

(f) DS-SLAM (S):
w/rpy

(g) DS-SLAM (S):
w/static

(h) DS-SLAM (S):
w/xyz

(i) RDS-SLAM (S):
w/half

(j) RDS-SLAM (S):
w/rpy

(k) RDS-SLAM (S):
w/static

(l) RDS-SLAM (S):
w/xyz

(m) DynaSLAM (M):
w/half

(n) DynaSLAM (M):
w/rpy

(o) DynaSLAM (M):
w/static

(p) DynaSLAM (M):
w/xyz

(q) RDS-SLAM (M):
w/half

(r) RDS-SLAM (M):
w/rpy

(s) RDS-SLAM (M):
w/static

(t) RDS-SLAM (M):
w/xyz

Figure 5-14: Trajectory comparing frame by brame. "M" stands for "Mask R-CNN"
and "S" for "SegNet".

63



Ta
bl
e
5.
1:

R
es
ul
ts

of
ab

so
lu
te

tr
aj
ec
to
ry

er
ro
r
of

T
U
M

(m
).

R
D
S-
SL

A
M

(1
)
an

d
(3
)
ar
e
ev
al
ua

te
d
re
su
lt
s
on

ly
us
in
g
ke
yf
ra
m
es
.

Se
q.

O
R
B

SL
A
M
3

D
S-
SL

A
M

D
yn

aS
LA

M
)

SL
A
M
-P

C
D

D
M
-S
LA

M
D
et
ec
t-

SL
A
M

R
D
S-
SL

A
M

(1
)

K
ey
Fr
am

e
(M

as
k
R
-C

N
N
)

R
D
S-
SL

A
M

(2
)

A
ll

(M
as
k
R
-C

N
N
)

R
D
S-
SL

A
M

(3
)

K
ey
Fr
am

e
(S
eg
N
et
)

R
D
S-
SL

A
M

(4
)

A
ll

(S
eg
N
et
)

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

w
/h

al
f

0.
65

72
0.
31

24
0.
03

03
0.
01

59
0.
02

96
0.
01

57
0.
02

41
0.
01

22
0.
02

74
0.
01

37
0.
05

14
0.
03

06
0.
01

71
0.
02

59
0.
01

41
0.
02

91
0.
01

43
0.
08

07
0.
04

54
w
/r
py

1.
01

97
0.
51

22
0.
44

42
0.
23

50
0.
03

54
0.
01

9
0.
04

53
0.
03

16
0.
03

28
0.
01

94
0.
29

59
0.
05

87
0.
03

80
0.
14

68
0.
10

51
0.
01

28
0.
00

81
0.
16

04
0.
08

73
w
/s
ta
ti
c

0.
36

14
0.
15

22
0.
00

81
0.
00

33
0.
00

68
0.
00

32
0.
00

77
0.
00

39
0.
00

79
0.
00

40
-

0.
07

20
0.
03

43
0.
08

15
0.
02

24
0.
02

15
0.
01

04
0.
02

06
0.
01

2
w
/x

yz
0.
91

78
0.
48

59
0.
02

47
0.
01

61
0.
01

64
0.
00

86
0.
01

57
0.
00

84
0.
01

48
0.
00

72
0.
02

41
0.
02

40
0.
01

39
0.
02

13
0.
01

27
0.
05

65
0.
01

84
0.
05

71
0.
02

29
s/
st
at
ic

0.
00

90
0.
00

43
0.
00

65
0.
00

33
0.
01

08
0.
00

56
0.
00

80
0.
00

37
0.
00

63
0.
00

32
-

0.
00

84
0.
00

43
0.
00

88
0.
00

43
0.
00

39
0.
00

17
0.
00

84
0.
00

43

Ta
bl
e
5.
2:

R
es
ul
ts

of
tr
an

sl
at
io
na

l
re
la
ti
ve

po
se

er
ro
r
(R

P
E
)
(m

).
R
D
S-
SL

A
M

(1
)
an

d
(3
)
ar
e
ev
al
ua

te
d
re
su
lt
s
on

ly
us
in
g

ke
yf
ra
m
es
.

Se
q.

O
R
B

SL
A
M
3

D
S-
SL

A
M

D
yn

aS
LA

M
SL

A
M
-P

C
D

R
D
S-
SL

A
M

(1
)

K
ey
Fr
am

e
(M

as
k
R
-C

N
N
)

R
D
S-
SL

A
M

(2
)

A
ll

(M
as
k
R
-C

N
N
)

R
D
S-
SL

A
M

(3
)

K
ey
Fr
am

e
(S
eg
N
et
)

R
D
S-
SL

A
M

(4
)

A
ll

(S
eg
N
et
)

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

w
/h

al
f

0.
32

62
0.
26

25
0.
02

97
0.
01

52
0.
02

84
0.
01

49
0.
02

74
0.
01

40
0.
03

32
0.
02

08
0.
02

82
0.
01

55
0.
02

74
0.
01

40
0.
04

82
0.
03

6
w
/r
py

0.
43

68
0.
31

97
0.
15

03
0.
11

68
0.
04

48
0.
02

62
0.
06

16
0.
03

57
0.
07

00
0.
04

88
0.
11

14
0.
09

20
0.
02

45
0.
01

22
0.
13

20
0.
10

67
w
/s
ta
ti
c

0.
78

00
0.
75

63
0.
01

02
0.
00

38
0.
00

89
0.
00

44
0.
01

02
0.
00

49
0.
05

29
0.
04

44
0.
04

19
0.
03

48
0.
02

21
0.
01

49
0.
02

21
0.
01

49
w
/x

yz
0.
42

58
0.
30

63
0.
03

33
0.
02

29
0.
02

17
0.
01

19
0.
02

04
0.
01

07
0.
02

99
0.
49

43
0.
02

81
0.
01

67
0.
02

69
0.
01

63
0.
04

26
0.
03

17
s/
st
at
ic

0.
01

02
0.
00

49
0.
00

78
0.
00

38
0.
01

26
0.
00

67
0.
00

87
0.
00

38
0.
00

97
0.
00

52
0.
01

07
0.
00

50
0.
00

50
0.
00

26
0.
01

23
0.
00

70

Ta
bl
e
5.
3:

R
es
ul
ts

of
ro
ta
ti
on

al
re
la
ti
ve

po
se

er
ro
r
(R

P
E
)
(m

).
R
D
S-
SL

A
M

(1
)
an

d
(3
)
ar
e
ev
al
ua

te
d

re
su
lt
s
on

ly
us
in
g

ke
yf
ra
m
es
.

Se
q.

O
R
B

SL
A
M
3

D
S-
SL

A
M

D
yn

aS
LA

M
SL

A
M
-P

C
D

R
D
S-
SL

A
M

(1
)

K
ey
Fr
am

e
(M

as
k
R
-C

N
N
)

R
D
S-
SL

A
M

(2
)

A
ll

(M
as
k
R
-C

N
N
)

R
D
S-
SL

A
M

(3
)

K
ey
Fr
am

e
(S
eg
N
et
)

R
D
S-
SL

A
M

(4
)

A
ll

(S
eg
N
et
)

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

R
M
SE

S.
D
.

w
/h

al
f

7.
23
52

5.
94
87

0.
81
42

0.
41
01

0.
78
42

0.
40
12

0.
74
40

0.
34
59

0.
81
94

0.
48
58

0.
82
16

0.
43
47

0.
73

32
0.
37
12

1.
88
28

1.
52
50

w
/r
py

8.
76
83

6.
45
83

3.
00
42

2.
30
65

0.
98
94

0.
57
01

1.
38
31

0.
83
18

1.
47
36

1.
02
62

9.
31
92

8.
57
20

0.
49

73
0.
25
86

13
.1
69
3

12
.0
10
3

w
/s
ta
ti
c

6.
00
54

5.
59
95

0.
26
90

0.
12
15

0.
26

12
0.
12
59

0.
26
31

0.
11
19

1.
49
66

1.
28
39

1.
16
86

0.
99
17

0.
49
44

0.
31
12

0.
49
44

0.
31
12

w
/x

yz
7.
89
74

5.
59
17

0.
82
66

0.
28
26

0.
62
84

0.
38
48

0.
62

27
0.
38
07

0.
77
39

0.
49
43

0.
72
36

0.
44
35

0.
77
68

0.
48
86

0.
92
22

0.
65
09

s/
st
at
ic

0.
30
07

0.
13
00

0.
27
35

0.
12
15

0.
34
16

0.
16
42

0.
27
82

0.
12
10

0.
32
17

0.
15
22

0.
30
91

0.
13
25

0.
15

20
0.
08
21

0.
33
38

0.
17
06

64



5.6 Experimental Results

We evaluate the tracking accuracy using TUM [49] indoor dataset and demonstrate

the real-time performance by comparing with state-of-the-art vSLAMs methods using,

when possible, the results in the original papers.

5.6.1 System Setup

RDS-SLAM is evaluated using GeForce RTX 2080Ti GPU, Cuda 11.1, and docker
3. Docker is used to deploy different kinds of semantic segmentation methods on the

same machine. We also use Kinect v2 4 camera to evaluate in real environment.

5.6.2 Tracking Accuracy Evaluation

The proposed method was compared against the ORB-SLAM3 and similar semantic-

based algorithms to quantify the tracking performance of our proposal in dynamic

scenarios.

The TUM RGB-D dataset contains color and depth images along the ground-truth

trajectory of the sensor. In the sequence named “fr3/walking_* ” (labeled as f3/w/*),

two people walk through an office. This is intended to evaluate the robustness of

vSLAM in the case of quickly moving dynamic objects in large parts of a visible

scene. Four types of camera motion are included in walking data sequences: 1) “xyz ”,

the Asus Xtion camera is manually moved along three directions (xyz); 2) “static”,

where the camera is kept in place manually; 3) “halfsphere”, where the camera is

moved on a small half-sphere of approximately one-meter diameter; 4) “rpy”, where

the camera is rotated along the principal axes (roll-pitch-yaw). In the experiment,

the person is dealt with as the only priori dynamic object.

We compared the trajectory of camera with ORB-SLAM3 5, DS-SLAM 6, and

3https://docs.docker.com/
4https://github.com/code-iai/iai_kinect2
5https://github.com/UZ-SLAMLab/ORB_SLAM3
6https://github.com/ivipsourcecode/DS-SLAM
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DynaSLAM 7. Fig. 5-14 compares the obtained trajectories using their source codes

and therefore the trajectories are not exactly the same as the ones in their original

paper. We evaluated RDS-SLAM using both Mask R-CNN (M) and SegNet (S). The

trajectory of DynaSLAM that use Mask R-CNN is very similar with our Mask R-

CNN version as shown in Fig. 5-14 (m-p) and Fig. 5-14 (q-t). The performance of

our SegNet version (Fig. 5-14 (i and j)) is similar to the DS-SLAM (Fig. 5-14 (e and

f)).

The error in the estimated trajectory was calculated by comparing it with the

ground truth, using two prominent measurements: absolute trajectory error (ATE)

and relative pose error (RPE) [49], which are well-suited for measuring the perfor-

mance of the vSLAM. The root mean squared error (RMSE), and the standard de-

viation (S.D.) of ATE and RPE are compared. Each sequence was run at least

five times as dynamic objects are prone to increase the non-deterministic effect.

We compared our method with ORB-SLAM3 [18], DS-SLAM [43], DynaSLAM [41],

SLAM-PCD [47], DM-SLAM [46], and Detect-SLAM [44]. The comparison results

are summarized in Tables 5.1, 5.2, and 5.3. DynaSLAM reported they obtained the

best performance using the combination of Mask R-CNN and geometric model. We

mainly focus on the time cost problem caused by semantic segmentation. Contrary

to the very heavy geometric model that DynaSLAM used, we only use the very light

geometric check, such as RANSAC, photometric error to deal with the outliers that

not rely on the priori dynamic objects.

Our proposal outperforms the original ORB-SLAM3 (RGB-D mode only with-

out IMU) and obtains similar performance with DynaSLAM, SLAM-PCD, and DM-

SLAM, in which the tracking error is already very small. Different from them, we use

the non-blocked model. The first few frames do not have any semantic information.

The number of keyframes that have a semantic label is smaller than suing the blocked

model because the processing speed of the tracking thread is much faster than the

semantic segmentation (especially for the heavy model, Mask R-CNN). However, we

achieved a similar tracking performance using less semantic information.

7https://github.com/BertaBescos/DynaSLAM
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(a) Initial features

(b) After tracking last frame

(c) After tracking local map

Figure 5-15: Result of real environment. The green features are in initial status and
their moving probability is 0.5. The blue features are static features and the red are
outliers. (a) is the original detected ORB features. (b) is the output after tracking
last frame process and (c) is the result after tracking local map process.
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Table 5.5: Semantic Keyframe Number Comparison (Mask R-CNN).

Total
Frames

15HZ 30HZ

Total Time
(s)

Semantic
KeyFrame

Num.

Total Time
(s)

Semantic
KeyFrame

Num.
w/xyz 859 57.3 286 28.6 143
w/rpy 910 60.7 303 30.3 151
w/half 1067 71.1 355 35.6 178
w/sit 707 47.1 235 23.6 118

5.6.3 Real Environment Evaluation

We tested RDS-SLAM using Kinect2 RGB-D camera, as shown in Fig. 5-15. All the

features are in initial status when in the first few frames because they have not yet

obtained any semantic information. The static features will be increasingly detected

over time and used to estimate camera pose. The features on the person is detected

and excluded from tracking. The algorithm runs in around 30HZ, as shown in Table

5.4.

5.6.4 Execution Time

Tab. 5.4 compares the execution time of vSLAM algorithms. In the blocked model,

the tracking thread needs to wait for the semantic label. The speed of the other meth-

ods is related to the semantic segmentation methods used. The heavy the semantic

model used, the higher the total time consuming is. Although DynaSLAM achieved

good tracking performance, the processing time is long due to Mask R-CNN. As we

known, DynaSLAM is not a real-time algorithm. DS-SLAM is the second fastest algo-

rithm because it uses a lightweight semantic segmentation method, SegNet. However,

the architecture used is also a blocked model. The execution time will increase if a

more time-consuming method is used. Our method uses the non-blocked model and

runs almost at a constant speed regardless of the segmentation methods.

We evaluate the error metric of TUM dataset using 15HZ by manually adding

some time delay in the tracking thread because TUM dataset is very short. Very

small semantic information can be obtained in this short time. We compare the

time and the number of keyframes that obtained semantic label (Semantic keyframe
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Figure 5-16: Semantic Delay of TUM w/xyz Dataset. The average value of Mask
R-CNN case is 10 and SegNet is 5.

Number) in Tab. 5.5. We only compared the Mask R-CNN version because SegNet

is faster and it can segment almost all the keyframes in each dataset. We assume

the time cost of Mask R-CNN is 0.2s for segmenting each frame. The total time of

running the fr3/w/xyz dataset is about 57.3s for 15HZ, however, only 28.3s for 30HZ.

In this short time, the number of semantic keyframes in 30HZ (143) is two times

smaller than 15HZ (286). Usually, the more keyframes are segmented, the better

tracking accuracy can be achieved. This depends on the specific application and the

segmentation methods used.

In the bi-direction model, we selected two keyframes at the same time. We offered

two strategies to segment them: 1) infer images at the same time as a batch on the

same GPU, 2) infer images on the same GPU sequentially (one by one). We suggest

using (1) if the GPU can infer a batch of images at the same time. Our Mask R-CNN

version uses (1) because we found we need 0.3s-0.4s in case (1) and 0.2s in case (2).

Our SegNet version is evaluated using the strategy (2) because SegNet is very fast

and can be segmented sequentially.
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5.6.5 Semantic Delay Evaluation

We have analyzed the semantic delay by assuming the keyframe is selected every two

frames (see Fig. 5-6). In experiment, we follow the keyframe selection policy used in

ORB SLAM3 and we compared the semantic delay of Mask R-CNN case and SegNet

case using the TUM dataset, as shown in Fig. 5-16. The semantic delay is influenced

by these factors: 1) the segmentation speed, 2) the keyframe selection policy, 3) the

undetermined influence caused by the different running speed of multiple threads

(e.g., Loop Closing thread), 3) the hardware configures. In the fr3/w/xyz dataset,

the camera sometimes moves very slow and sometimes moves forward or backward.

As a result, this will change the keyframe selection frequency and cause the variance

of semantic delay.

5.7 Conclusions

A novel vSLAM system, semantic-based real-time visual SLAM (RDS-SLAM) for

the dynamic environment using an RGB-D camera is presented. We modify ORB-

SLAM3 and add a semantic tracking thread and a semantic-based optimization thread

to remove the influence of dynamic objects using semantic information. These new

threads run in parallel with the tracking thread and therefore, the tracking thread

is not blocked to wait for semantic information. We proposed a keyframe selection

strategy for semantic segmentation to obtain as the latest semantic information as

possible that can deal with segmentation methods with different speeds. We update

and propagate semantic information using the moving probability which is used to

detect and remove outliers from tracking using a data association algorithm. We

evaluated the tracking performance and the processing time using the TUM dataset.

The comparison against state-of-the-art vSLAMs shows that our method achieved

good tracking performance and can track each frame in real-time. The fastest speed

of the system is about 30HZ, which is similar to the tracking speed of ORB-SLAM3.
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Chapter 6

RDMO-SLAM

In the previous chapter, we introduced a real-time vSLAM based on the non-blocked

model, RDS-SLAM, which isolates tracking and semantic segmentation by adding a

semantic thread and moving probability estimation. However, Mask R-CNN, one of

the popular semantic segmentation methods, only supplies a small amount of semantic

information because only a few keyframes can be segmented within a short time. In

this chapter, we propose a novel vSLAM, RDMO-SLAM [14], which can leverage more

semantic information while ensuring the real-time nature by adding semantic label

prediction using dense optical flow. Besides, we also estimate the velocity of each

landmark and use them as constraints to reduce the influence of dynamic objects

in tracking. Demonstrations are presented, which compare the proposed method

to comparable state-of-the-art approaches using dynamic sequences. We improved

the real-time performance from 15 Hz (RDS-SLAM) to 30 Hz while keeping robust

tracking in dynamic scenes.

Many studies try to eliminate or reduce the influence of dynamic objects using

various segmentation methods. For example, Detect-SLAM [44] uses the object detec-

tion (SSD [45]) approach to improve tracking performance; similarly, DynaSLAM [41]

and DM-SLAM [46] use Mask R-CNN [24], DS-SLAM [43] uses SegNet [22], and

KMOP [12] uses Open-Pose [28] and k-means [25].

The execution speeds of these methods are limited by the semantic model used,

e.g., Mask R-CNN, SSD, and OpenPose, because these methods need to wait for the
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(a) Blocked model.

(b) Non-blocked model.

Figure 6-1: Blocked model vs non-blocked model. The optical flow model is optional.
The semantic model can be Mask R-CNN, SegNet, SSD or others. Segmentation
and optical flow can run in parallel for frames or keyframes. The feedback, motion
information, is optional for the blocked model.

semantic result/information, e.g., label, bounding box, before tracking. Such an ar-

chitecture is called a blocked model, as shown in Fig. 6-1 (a). In the previous chapter,

we proposed a novel real-time vSLAM architecture, RDS-SLAM [13], validated using

both Mask R-CNN and SegNet using non-blocked model, as shown in Fig. 6-1 (b).

RDS-SLAM can guarantee the speed of tracking free from speed limitation of seman-

tic models using multi-thread and moving probability estimation of each map point.

However, it has some shortcomings: a) Mask R-CNN is slow and cannot segment

every keyframe to use more semantic information in a limited time. It cannot run

stably at 30 Hz using the TUM [49] dataset because insufficient semantic information

obtained at 30 Hz for some of the dynamic scenes of the TUM dataset, which are very
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short, only about half a minute; b) only predefined objects trained by Mask R-CNN

are handled. We try to ensure real-time performance (30 Hz) while keeping robust

tracking by exploiting optical flow.

One critical challenge of using semantic information is time complexity. Although

there are some lightweight semantic segmentation models, e.g., SegNet, the total

time of tracking one frame is still more than the original ORB-SLAM3. Besides,

sometimes a complex CNN architecture is required for robots to perform high-level

tasks, e.g., human-robot interaction and semantic mapping. To acquire more semantic

information in a limited time, we use dense optical flow for each pixel to predict the

semantic label of Mask R-CNN. Another challenge is that only predefined objects

trained by CNN are used to judged outliers. Optical flow can estimate the pattern of

motion for every feature, including features on the undefined objects. The velocity of

map points can be estimated by optical flow and used as a constraint to reduce the

influence of outliers from the tracking process.

We propose a semantic label prediction algorithm to generate more semantic infor-

mation for the keyframes that are not segmented. Real-time tracking under dynamic

environments is achieved while keeping robust tracking using a heavy CNN architec-

ture. Besides, the velocity of landmarks is estimated with the aid of scene flow and

Kalman filter. These two constraints (the semantic label and velocity) can reduce the

influence of dynamic objects in vSLAM.

The main contributions of RDMO-SLAM are as follows.

(1) We propose a novel semantic-based real-time vSLAM algorithm using Mask

R-CNN and PWC-Net for dynamic environments, RDMO-SLAM, an extension of

RDS-SLAM, which can achieve both good tracking performance and the real-time

nature.

(2) We predict the semantic result of Mask R-CNN using optical flow to obtain

more semantic information so that the tracking thread uses as much semantic infor-

mation as possible.

(3) We demonstrate the real-time performance (30 Hz) under dynamic environ-

ments using the TUM dataset and an AR demo in the case of using a heavy CNN
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Figure 6-2: System architecture. Models with orange color are the ones that are
modified from RDS-SLAM or new blocks. Models with magenta color are derived
from RDS-SLAM but different from ORB-SLAM3. Blocks in blue are important
data structures.

architecture, Mask R-CNN.

6.1 System Overview

Fig. 6-2 shows the architecture of RDMO-SLAM, which is implemented based on

ORB-SLAM3 and RDS-SLAM. There are four threads in ORB-SLAM3: tracking,

local mapping, loop closing, and full BA. In RDS-SLAM, we add a semantic thread

to request the semantic information and update the moving probability of map points

into ATLAS. We classify these landmarks into three subsets, unknown, static, and

dynamic according to their moving probability, and then use as many static ones as

possible in the tracking thread. We follow the basic idea of RDS-SLAM, add two new

threads, optical flow, and velocity estimation threads, and modify some modules of
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RDS-SLAM and ORB-SLAM3.

The tracking thread aims to estimate the initial camera pose via feature matching

and select keyframes used by the local mapping thread to update the map and further

optimize the pose estimation via BA. In the semantic thread, first, we request seman-

tic labels of selected keyframes, then generate mask images of predefined dynamic

objects, and finally calculate as well as update the moving probability of map points

in the global map using semantic information. Different from RDS-SLAM, we add

a new module called Label Prediction, which is designed to predict semantic labels

using optical flow while waiting for the semantic result. In the optical flow thread, we

estimate the dense optical flow for each keyframe and use the optical flow to predict

the semantic label and estimate the scene flow of landmarks. The velocity estimation

thread aims to calculate and update the velocity of map points using the scene flow

of map points. The velocity of landmarks is used as another constraint to filter bad

data associations from tracking. Finally, this semantic information expressed by the

moving probability and the velocity of landmarks is used to filter the outliers.

6.2 Optical Flow Thread

Optical flow estimation is a basic computer vision problem and has many applications,

such as autonomous driving, multi-object tracking, and vSLAM. PWC-Net [63] is a

compact but effective CNN model for optical flow estimations. It adopts a fast,

scalable, and end-to-end trainable CNN framework [64]. It is designed using well-

established principles, pyramidal processing, warping, and the use of a cost volume.

It warps the CNN features of the second image toward the first image. Then uses the

warped features and the features of the first image to construct a cost volume, which

is processed by a CNN to estimate the optical flow. PWC-Net is more lightweight

and easier to train than the recent FlowNet2 [65] model and can run at about 35

fps [63] on Sintel [66] resolution (1024 x 436).

Each pixel of optical flow result stores two float values F = (fx, fy) ∈ R2, which

indicate the displacement of each pixel between a previous and current image. For-
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(a) Previous RGB image (10) (b) Current RGB image (11)

(c) Optical flow pattern

Figure 6-3: Optical flow estimation example using the TUM dataset. (a) and (b) are
images from consecutive keyframes, and (c) is their optical flow visualized using HSV
color constructed by flow direction and flow magnitude.

mally, for each pixel (x1, y1) in the previous image, the corresponding pixel in the

current image is given by:

(x2, y2)T = (x1 + fx, y1 + fy)
T . (6.1)

A ROS version of PWC-Net1 (Caffe models2) is used to predict the optical flow for
1https://github.com/ActiveIntelligentSystemsLab/pwc_net_ros
2https://github.com/NVlabs/PWC-Net/blob/master/Caffe/model/pwc_net.caffemodel
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each pixel of consecutive keyframes. The input is the consecutive two RGB images,

and the output is the optical flow, as shown in Fig. 6-3. Optical flow can only detect

the motion part of the body, e.g., hand and leg. However, the unstable features on

the static parts of the body cannot be detected. This problem can be solved together

using semantic segmentation.

Later, we use the result of optical flow to predict the semantic label of keyframes

in the semantic thread to increase the speed of semantic information generation.

Besides, the result is also used by velocity thread to calculate the velocity of map

points.

6.3 Semantic Thread

This thread aims to provide semantic information and use them to update the moving

probability of map points. Fig. 6-2 (semantic modules) shows the general flow. First,

we select one keyframe to request a semantic label using Mask R-CNN. However, it

requires a very long time (about 200ms) to obtain the semantic result/label. To obtain

more semantic information, we propose an algorithm to predict the semantic label of

the keyframes using the previous obtained semantic label and optical flow patterns of

the reference keyframes, while waiting for the result of the current semantic request.

After obtaining the semantic label, we generate a mask of dynamic objects, which will

be used to update the moving probability. We will explain in detail in the following

sub-sections.

6.3.1 Semantic Keyframe Selection

The semantic delay [13] between the semantic and tracking threads will increase over

time if all keyframes are segmented sequentially. The tracking thread cannot obtain

the latest and enough semantic information in real-time. To decrease the semantic

delay, only the keyframes from the front and back of the keyframe queue KF are

selected to request semantic labels in RDS-SLAM. However, this will cause many

keyframes not able to obtain semantic results. In other words, not all the keyframes
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Figure 6-4: Semantic timeline. The left side is the contents inside the keyframe
queue KF , and the right side is the timeline of requesting semantic labels. S(.) is
the semantic label returned from the semantic server. The keyframes in yellow are
the ones that need to predict. The keyframes in pink are the ones that request the
semantic label from the semantic server, and those in green are the ones that have
obtained semantic results in the previous rounds.

Figure 6-5: Semantic segmentation result.
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(a) Keyframe (78) (b) Keyframe (79) (c) Keyframe (80) (d) Keyframe (81)

(e) Optical Flow (78) (f) Optical Flow (79) (g) Optical Flow (80) (h) Optical Flow (81)

(i) mask (78) (j) Predicted mask
(79)

(k) Predicted mask
(80)

(l) Predicted mask
(81)

(m) Dilated mask (78) (n) Dilated mask (79) (o) Dilated mask (80) (p) Dilated mask (81)

Figure 6-6: Predicted mask. (a) is the reference keyframe, and (b)-(d) are the
keyframes that need to predict.

can have the chance to get a semantic result. This may result in non-robust or

unstable tracking under complex environments. RDS-SLAM has been only evaluated

at 15 Hz rather than 30 Hz in TUM dataset because adequate semantic information

cannot be obtained within a short time using Mask R-CNN. To handle this drawback,

we try to ensure that almost all keyframes can obtain semantic labels. We always

select the latest keyframe from the back of the KF queue to request semantic results.

Fig. 6-4 shows an example of keyframe selection policy. In round 1, we select

the first keyframe KF0 to request a semantic label from a semantic server (Mask
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R-CNN). In round 2, we select the latest keyframe (KF3) in the queue to request

semantic labels. We predict the semantic label for others (KF1−KF2). Similarly, in

the next round, we take the element KF7 from the back of the queue to request and

predict the others sequentially (KF4 - KF6).

6.3.2 Semantic Segmentation

We use Mask R-CNN3 trained with the MS COCO [61] dataset as the semantic server.

Fig. 6-5 shows an example of a semantic segmentation result. However, the semantic

segmentation result is not always correct, and the edge of the object is difficult to

classify. Besides, only pretrained objects can be segmented. Therefore, we dilate the

mask to cover the features on the boundary and use the velocity of map points as

another constraint to remedy this insufficiency.

6.3.3 Semantic Label Prediction

To ensure that more keyframes can obtain the semantic label, we predict the semantic

labels for not-yet-segmented keyframes using optical flow. As shown in Fig. 6-4

(round 2), KF0 is the reference keyframe that has already been segmented, KF3 the

current request, and KF1−KF2 are the predicted ones using the reference keyframe.

Given a reference keyframe label Ir(xr, yr) and the corresponding optical flow vector

(fx, fy), the predicted label Ip(xp, yp) is calculated as follows:

Ip(xp, yp) = Ip(xr + fx, yr + fy) = Ir(xr, yr). (6.2)

Fig. 6-6 shows an example of semantic label prediction. From the label of the reference

keyframe (a) and the optical flow (f-h), we predict semantic labels of the subsequent

keyframes and generate their mask images, as shown in (j-l).

3https://github.com/matterport/Mask_RCNN
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(a) original mask (b) dilated mask

(c) before dilation

(d) after dilation

Figure 6-7: Dilation example. Features in red are outliers after dilation operation,
and in blue are the observed static features.

6.3.4 Semantic Mask Generation

We generate mask images of predefined dynamic objects such as persons and animals

by applying dilation operation to the predicted semantic labels to fill the holes and
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Figure 6-8: Moving probability. θs and θd are threshold values.

(a) (735) w/rpy (b) (766) w/rpy

Figure 6-9: Segmentation accuracy is not correct in the case of a large camera rotation.
(a) the right person is not segmented, and the head of the left person is wrongly
segmented. (b) the head of the left person is wrongly segmented.

expand object boundaries. As shown in Fig. 6-7, since the features around the

boundary of dynamic objects can also be the outliers, they will be covered after

dilating the mask. The noise or holes on the predicted labels can also be smoothened,

as shown in Figs. 6-6 (n-p).

6.3.5 Moving Probability Update

We define the moving probability p(mj
t),m

j
t ∈M whereM = {static (s), dynamic (d))},

for a map point j that matches with features in the keyframe, as shown in Fig. 6-

8 [13] . We omit the superscript j in the following derivation. We update the moving

probability in the semantic thread using Bayesian filter [62] as follows:

bel(mt) = p(mt|z1:t,m0) (6.3)

= ηp(zt|mt)

∫
p(mt|mt−1)bel(mt−1)dmt−1,
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where η = 1/(bel(mt = d)+bel(mt = s)) and p(m0) = 0.5 is the initial probability and

p(zt|mt) is the observation likelihood, which is set according to the semantic label. It

is reasonable to assume that the current observation is independent of the previous

ones. Thus, we define the observation model as follows:

p(zt = d|mt = d) = α, (6.4)

p(zt = s|mt = s) = β, (6.5)

where α is given a fixed value in RDS-SLAM. Usually, the segmentation accuracy is

influenced by the camera rotation around the optical axis, as shown in Fig. 6-9, if

CNN is not trained using enough data for such cases.

The rotation of the camera is presented as follows:

R(r) = rot(T (ξ)) = exp(rˆ), (6.6)

where, r is the Euler angle (roll, pitch, yaw) and rˆ ∈ so(3). We heuristically adjust

the reliability of semantic segmentation (α) according to the roll component and set α

to a small value when the rotation is huge. We set α according to the roll component

when it is greater than a threshold γ.

α =

max{min{0.9,
1

exp(||roll(r)||−2)}, 0.1} ||roll(r)|| > γ

0.9 others.

(6.7)

In our experiment, γ is set to 1.5 to omit the relatively small camera rotation and β

to 0.9 by assuming the observation is fairly robust for static objects.

6.3.6 Algorithm Implementation

Alg. 10 shows the detailed implementation of semantic thread. To maintain the

information exchange of optical flow and semantic segmentation threads, checking
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Figure 6-10: Semantic Prediction Algorithm. The workId is the current working
pointer that walks through every keyframe sequentially. The refId is the id of the
reference keyframe, and reqId is the id of the last semantic request. lstestId is the
id of the latest keyframe by now.

functions "IsOpticalFlowReady()" and "IsSemanticReady()" are used respectively to

sync the data flow. To handle each keyframe incrementally, we designed some in-

dicators/pointers to control the flow of the algorithm, as shown in Fig. 6-10. The

keyframes in yellow that need to predict are located between the reference keyframe

(refId) and the last semantic request keyframe (reqId). First, we take out the cur-

rent keyframe (line 5) and the latest keyframe (lines 6-7) from the back of the KF

queue. Then, we segment the first few keyframes (initNum), as shown in Alg. 10

(lines 8-17) considering some datasets are short. The tracking is blocked to wait for

the semantic results for these keyframes. Besides, it will consume more time (>300ms

in our experiment) to segment the first image due to the GPU initialization. There-

fore, we suggest waiting for the segmentation result of the first few keyframes. In the

experiment, initNum is set to 1 when evaluating the TUM dataset and 0 for a real

camera. Lines 21-25 are to select the latest keyframe to request the semantic label

non-blocked when 1) the last request reqKF has already obtained the semantic label

and 2) there are new elements in the KF queue waiting to segment. Lines 26-39 are

to predict the semantic labels using the selected reference keyframe that have already

obtained the semantic result (lines 26-28), and the keyframes that need to predict

have already got the optical flow (lines 31-33). The keyframe is predicted when the

semantic segmentation processing speed is slower than the new keyframe enqueuing

speed. This algorithm predicts semantic labels while waiting for the semantic label.
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Figure 6-11: Optical and scene flows. The blue vector is the original optical flow
vector, orange is the rigid flow, and red is the non-rigid flow. The purple vector is a
scene flow vector.

We wait for the segmentation result (lines 18-20) when 1) no new enqueued keyframe

exist, or 2) all the keyframes before the last request reqId are already handled.

We update the semantic information after the semantic label is obtained either by

semantic segmentation or prediction, as shown in Alg. 11. Similarly to RDS-SLAM,

we generate the mask images of dynamic objects and update the moving probability

of map points using the generated mask.

6.4 Velocity Estimation Thread

Semantic segmentation can only handle predefined dynamic objects, and the seg-

mentation is not always accurate. We add velocity constraints for objects to further

reduce the influence of outliers.

As shown in Fig. 6-11, given a pixel xt,j in the previous image, we can estimate

the corresponding pixel in the next image using

xt,j = xt−1,j + Fxt,j
, (6.8)
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where Fxt,j
is a optical flow vector shown in Fig. 6-11 (blue vector) and x′t,j is the

estimated point using the camera motion assuming the camera is the only moving

object. The motion of the camera needs to be subtracted from the optical flow. Then,

the sparse scene flow of landmarks is calculated by

s = mt −mt−1 (6.9)

= π−1(xt,j, D(xt,j), T
w
t (ξ)) (6.10)

− π−1(xt−1,j, D(xt−1,j), T
w
t−1(ξ)),

where π−1 is a function that back project one 2D point in the image to the 3D world

space using the camera pose and depth image.

The velocity of each map point is calculated by:

zt =
‖s‖
∆t

, (6.11)

where ∆t is the time difference between consecutive keyframes.

Some velocities are very large due to inaccurate camera pose estimation, inaccurate

depth data, and wrongly matched feature points. Besides, the features are extracted

from different pyramid layers of the image. This also results in inaccurate or wrong

velocity estimation. We update the velocity using Kalman Filter [62] by:

v̄t = vt−1, (6.12)

vt = v̄t +Kt(zt − v̄t), (6.13)

where Kt is the Kalman gain and zt is the newly calculated velocity. We assume

the map points move at a constant speed. The predicted velocity v̄t is equal to the

previous speed. Ideally, the speed of static map points should be nearly zero.

We use the velocity of map points as another constraint to further filter outliers.

As we knew, it is difficult to find an optimal threshold to judge outliers. Not enough

features may be left if the threshold is set too small. In our view, there is no close
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form to decide the optimal value for all the frames or scenes. In our experiment, we

set a large value to remove only obvious outliers with very large velocity.

6.5 Tracking

To let vSLAM run in real-time, we separated the semantic thread and the velocity

estimation thread from the tracking thread, so as not to block the tracking. The

moving probability and the velocity of landmarks are stored in the map. We use

them as constraints to filter outliers from camera ego-motion estimation.

As shown in Fig. 6-8, we judge the status of objects using

Status(mt) =


dynamic bel(mt) > θd

static bel(mt) < θs

unknown others

. (6.14)

This is used as a constraint to select relatively good data associations (see robust data

association algorithm in [13]) and reduce the influence of dynamic objects in tracking

for every frame. In the experiment, θd is set to 0.6 and θs to 0.4.

This module is to estimate the initial camera pose by matching the features be-

tween the previous frame and the current frame. Similar to RDS-SLAM, we use the

moving probability as the constraint as defined in Eq. (6.14). First, we use features in

the static subset. If the matched feature pairs are not enough, we use the features in

the unknown subset. If they are still not enough, the features in the dynamic feature

subset can also be used such as the ones of a person who is sitting. In the experi-

ment, the dynamic feature subset was not used when evaluating the TUM dataset.

The estimated initial pose may not be very reliable; however, it is further optimized

via tracking local map and BA.

BA is used in the local mapping thread (local BA), the loop closing thread, and the

full BA thread. We use moving probability and velocity constraints to filter outliers

from them.
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(a) ORB-SLAM3:
w/half

(b) ORB-SLAM3:
w/rpy

(c) ORB-SLAM3:
w/static

(d) ORB-SLAM3:
w/xyz

(e) DS-SLAM
(S): w/half

(f) DS-SLAM
(S): w/rpy

(g) DS-SLAM
(S): w/static

(h) DS-SLAM
(S): w/xyz

(i) KMOP-vSLAM:
w/half

(j) KMOP-vSLAM:
w/rpy

(k) KMOP-vSLAM:
w/static

(l) KMOP-vSLAM:
w/xyz

(m) DynaSLAM
(M): w/half

(n) DynaSLAM
(M): w/rpy

(o) DynaSLAM
(M): w/static

(p) DynaSLAM
(M): w/xyz

(q) RDS-SLAM
(M): w/half

(r) RDS-SLAM
(M): w/rpy

(s) RDS-SLAM
(M): w/static

(t) RDS-SLAM
(M): w/xyz

(u) RDMO-SLAM
(M): w/half

(v) RDMO-SLAM
(M): w/rpy

(w) RDMO-SLAM
(M): w/static

(x) RDMO-SLAM
(M): w/xyz

Figure 6-12: Trajectory comparing frame by brame. "M" stands for "Mask R-CNN"
and "S" for "SegNet". RDS-SLAM is executed in 15 Hz and RDMO-SLAM in 30 Hz.
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6.6 Experimental results

We demonstrated the real-time performance and the tracking accuracy by comparing

with state-of-the-art vSLAMs using the indoor dynamic scenes of the TUM dataset.

Our system was evaluated using GeForce RTX 2080Ti GPU, Cuda 11.1, and an

RGB-D camera (Kinect V2). We also showed a demo of AR using a Kinect v2 camera

in the real environment.

6.6.1 Tracking Accuracy Evaluation

We compared the trajectories of our proposal with state-of-the-art vSLAM algorithms,

as shown in Fig. 6-12, using their source codes when possible, ORB-SLAM34, DS-

SLAM5, Dyna-SLAM6, KMOP-vSLAM [12], and RDS-SLAM7 using only an RGB-D

camera (no IMU).

We evaluated the tracking performance using absolute trajectory error (ATE)

and relative pose error (RPE) [49]. The root means squared error (RMSE) and stan-

dard deviation (S.D) are used as the error metrics. Given the estimated trajectory:

P1, ..., Pn ∈ SE(3), ground truth trajectory Q1, ..., Qn ∈ SE(3), and a fixed time

interval ∆. The RPE at time i is defined as follows:

Ri = (Q−1Qi+∆)−1(P−1
i Pi+∆). (6.15)

The RMSE of RPE over all time is defined as follows:

RMSE(R1:n) =
1

n

n∑
∆=1

(
1

m

m∑
i=1

‖trans(Ri)‖2)
1
2 . (6.16)

The ATE error is defined as follows:

Ai = Q−1
i SPi, (6.17)

4https://github.com/UZ-SLAMLab/ORB_SLAM3.git
5https://github.com/ivipsourcecode/DS-SLAM.git
6https://github.com/BertaBescos/DynaSLAM
7https://github.com/yubaoliu/RDS-SLAM
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where S ∈ Sim(3), which corresponds to the least squares solution that maps the

estimated trajectory onto the ground truth trajectory. The RMSE of ATE over all

time indices is defined as follows:

RMSE(Ai:n,∆) = (
1

n

n∑
i=1

‖trans(Ai)‖2)
1
2 . (6.18)

We compared the tracing performance with counterpart state-of-the-art vSLAMs:

ORB-SLAM3 [18], KMOP [12], Detect-SLAM [44], VO-SF [35], Elastic Fusion [40],

CO-Fusion [36], Static Fusion [39], DP-SLAM [42], DynaSLAM [41], SLAM-PCD [47],

DM-SLAM [46], and RDS-SLAM [13], using, when possible, results published in the

original papers, as shown in Tab. 6.1, Tab. 6.2 and Tab. 6.3. We achieved a sim-

ilar tracking performance with state-of-the-art semantic-based methods in dynamic

environments using a heavy segmentation method, Mask R-CNN.
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Algorithm 10 Semantic Thread
Require: vector<Keyframe*> KF

Keyframe *requestKF, *workKF, *latestKF
int workId, latestId, refId, reqId = 0
int initNum = 1
thread* segmentThread

1: while notRequestFinish() do
2: if KF.size() < 1 + workId then
3: continue
4: end if
5: workKF = KF[workId]
6: latestKF = KF.back()
7: latestId = latestKF->id
8: if workId < initNum then
9: reqKF = workKF
10: reqId = workId
11: segment(reqKF)
12: updateSemantic(reqKF)
13: refKF = reqKF
14: refId = reqId
15: workId++
16: continue
17: end if
18: if (refId >= reqId) || (latestId == reqId) || (workId>=reqId) then
19: segmentThread->join()
20: end if
21: if reqKF->isSemanticReady() && (workId > reqId) && (latestId > reqId)

then
22: reqKF = latestKF
23: reqId = latestId
24: segmentThread = new thread(&segment, reqKF)
25: end if
26: if workKF->isSemanticReady() then
27: refKF = workKF
28: refId = workId
29: else
30: if (refId<reqId) && (workId>refId) && (workId-refId==1) then
31: while !workKF->IsOpticalFlowReady() do
32: sleep(1)
33: end while
34: end if
35: workKF->label = predictLabel(refKF)
36: updateSemantic(workKF)
37: refKF = workKF
38: refId = workId
39: end if
40: workId++
41: end while
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Algorithm 11 Update Semantic
Require: Keyframe* pKF
1: pKF->mask = generateMask(pKF->label)
2: pKF->informSemanticReady()
3: pKF->updateMovingProbability()
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(a) Frame 2 (b) Frame 50 (c) Frame 100 (d) Frame 205

Figure 6-13: Classify objects according to the moving probability (w/half). Green
features are unknown and red ones are dynamic, and blue ones are static.

(a) Frame 2 (b) Frame 50 (c) Frame 100 (d) Frame 205

Figure 6-14: Use robust features in tracking (w/half).

We achieved similar tracking performance compared with the methods that use the

blocked model. However, these methods cannot achieve good real-time performance.

The proposed method can run the Mask R-CNN version vSLAM in real-time while

keeping the robust tracking. We will demonstrate the real-time performance later.

6.6.2 Outlier Removal Using TUM Dataset

We qualitatively checked the feature classification performance by evaluating the

TUM dataset. The features can be classified into three subsets according to the

moving probability (Eq. (6.14)), as shown in Fig. 6-13. The static features are

mostly distributed on static objects, and the unstable features (green and red) are

mostly on the moving people. In the tracking thread, we try to use as static features

as we can. An example is shown in Fig. 6-14, wherein only selected good static

features are used in the initial camera pose estimation stage in the tracking.
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(a) Put a virtual cube (b) Before sitting
down

(c) After sitting down (d) After sitting down

(e) Person left (f) Move the keyboard
(g) Disturb the cube
(far)

(h) Disturb the cube
(near)

Figure 6-15: AR demo

6.6.3 AR Demo

We qualitatively evaluated our system using an AR demo, as shown in Fig. 6-15,

where a virtual cube is put on the desk. One person is sometimes sitting down and

standing up, and sometimes the person occupies half of the camera view. The tracking

is very unstable or even tracking lost in the situation such as Figs. 6-15 (b-d) when

using the original ORB-SLAM. In this demo, the position of the virtual object is

somehow influenced by the person due to the occlusion (e.g., Figs. 6-15 (b) and (d));

however, it recovers to its original position after the person leaves (Fig. 6-15 (e)). We

also try to disturb the tracking by moving the keyboard (Fig. 6-15 (f)) and moving

the hand (Figs. 6-15 (g) and (h)). Tracking in Figs. 17 (f-h) is not influenced by the

hands because features on the hands are detected and removed using semantic and

motion information.

6.6.4 Velocity Constraint vs Semantic Information

We have evaluated the ATE of TUM only using velocity constraint or semantic infor-

mation, as shown in Tab. 6.4. The tracking performance is much better than that of

ORB-SLAM3 with the velocity constraint. This constraint can filter the landmarks

(matched with features) that have large velocities on the objects, and it is a little

faster than Mask R-CNN segmentation. We also evaluated the tracking performance
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Table 6.4: Evaluation of absolute trajectory error (ATE) of TUM (m) with or without
velocity and semantic mask. "V" means only use velocity and "M" only use the
semantic mask.

Seq. ORB-SLAM3 RDMO-SLAM
(V)

RDMO-SLAM
(M)

RDMO-SLAM
(V+M)

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
w/half 7.2352 5.9487 0.6314 0.3518 0.1204 0.0952 0.0304 0.0141
w/rpy 8.7683 6.4583 1.0978 0.5768 0.2708 0.2039 0.1283 0.1047
w/static 6.0054 5.5995 0.3867 0.1756 0.0124 0.0077 0.0126 0.0071
w/xyz 7.8974 5.5917 0.6479 0.3363 0.0164 0.0085 0.0226 0.0137
s/static 0.3007 0.1300 0.0089 0.004 0.0064 0.003 0.0066 0.0033

that only uses segmentation. The performance may be not good if the camera ro-

tates and translates rapidly because it does not have enough time to obtain semantic

information. That is why the tracking performance is a little lower in w/rpy and

w/half. This problem can be solved by combining velocity constraints and semantic

information. The tracking performances for other scenarios are very similar in the

case of only using semantic and using both, especially in the standard deviation.

(a) Keyframe 3 (b) Keyframe 20

Figure 6-16: Landmark distribution according to the velocity range (w/xyz).

6.6.5 Velocity Constraint Threshold

It is challenging to decide the threshold of the velocity to support robust tracking.

We analyzed the landmark distribution that matched with features on the keyframes

in the terms of the velocity. As shown in Fig. 6-16, the velocity of about a half

of landmarks is less than 2.0 in TUM w/xyz. We use the landmarks that have a
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Figure 6-17: The number of landmarks in the different velocity ranges (w/xyz).

relatively small velocity to optimize the camera pose in BA. A very small number of

landmarks will be left when setting the threshold too small, and too much noise data

are used when setting it too large. We suggest setting the velocity threshold to 1.0-

2.0 (see Fig. 6-17 (orange, red, and green lines)) because the number of landmarks

used is reasonable in the optimization. To avoid the tracking loss due to the few

landmarks, we do not use this constraint in the "track last frame" and "track local

map" models in the tracking thread. We only use this constraint in the local BA

where many landmarks are used together for optimization.
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6.6.6 Timing Analysis

Tab. 6.5 shows the comparison result of the real-time performance. We compared

the time required for the original ORB-SLAM3 (RGB-D camera only), blocked model-

based solutions (e.g., DP-SLAM, Detect-SLAM, DS-SLAM, DynaSLAM, DM-SLAM),

and non-blocked model-based solutions (e.g., RDS-SLAM). The time required for the

blocked model is limited by the time-consuming semantic segmentation, which sig-

nificantly lowers their real-time performance. Our previous study, RDS-SLAM only

can evaluate the TUM dataset at 15 Hz because the TUM dataset is usually short

(about half a minute) and Mask R-CNN only can segment very few keyframes, which

results in inadequate semantic information when running at 30 Hz. We mitigate this

limitation via predicting the semantic label, which enables almost all the keyframes

to obtain semantic results even when executing at 30 Hz.

The tracking performance may be influenced by the hardware configuration be-

cause the speed of Mask R-CNN and PWC-Net rely on the GPU. However, the time

required for tracking each frame is not influenced due to the non-blocked architecture.

6.7 Conclusions

We proposed RDMO-SLAM, a novel real-time vSLAM for the real environment ex-

ploiting RDS-SLAM, Mask R-CNN, and dense optical flow. To overcome the problem

of inadequate semantic information obtained within a short time due to the slow speed

of Mask R-CNN segmentation, we predict semantic labels using optical flow so that

almost all the keyframes can acquire the semantic information. To reduce the in-

fluence of dynamic objects untrained by semantic segmentation models, we add a

velocity constraint by estimating the velocity of landmarks using optical flow. The

tracking and real-time performances are evaluated using the dynamic scenes of the

TUM RGB-D dataset and compared with counterpart state-of-the-art vSLAMs with

similar motivation. As a result, our proposal that uses a non-blocked model can

maintain real-time nature (30 Hz) even with a very heavy segmentation method. In

future works, we will 1) consider the outdoor environment and 2) build a static dense
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map without dynamic objects.
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Chapter 7

Conclusions

7.1 Summary

Visual simultaneous localization and mapping (vSLAM) is considered a fundamental

technology for augmented reality and intelligent mobile robots. However, rigid scene

assumption is common in vSLAM, which limits the wide usage in populated real-world

environments. To deal with the challenge, geometric-based, reconstruction-based, and

semantic-based solutions are proposed. It is a great challenge to balance tracking per-

formance and real-time performance. The state-of-the-art proposals cannot trade off

them properly. Pure geometric-based solutions usually cannot achieve good tracking

performance without the aid of semantic information. Some reconstruction-based al-

gorithms need a 3D model, which is not suitable for real-time performance and wide

deployment in the real environment. To our best knowledge, the semantic-based

algorithms use the blocked model that limits the real-time performance.

To apply the system in a robot where GPU may not be deployed and compatible

with many semantic segmentation methods, we proposed RTS-vSLAM. The track-

ing accuracy is greatly improved comparing to the original ORB-SLAM2. Semantic

segmentation can only deal with pre-defined objects. Therefore, in KMOP-vSLAM,

we try to use k-means to segments all the objects and use OpenPose to detect peo-

ple. The tracking accuracy is not better than the semantic-based algorithms and it

is difficult to decide the optimal k value of k-means. Both RTS-vSLAM and KMOP-
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vSLAM cannot achieve good real-time tracking performance because they use the

blocked model, that is, they need to wait for the semantic result before tracking.

To keep the real-time nature while maintaining the robust tracking, we proposed

RDS-SALAM that uses the non-blocked model, that is, the tracking process is not

blocked by waiting for the semantic result. In RDS-SAM, the semantic thread that

uses SegNet and Mask R-CNN runs in parallel with the tracking thread. The SegNet

version can run in 30HZ with robust tracking accuracy, however, the Mask R-CNN

version needs to run in 15HZ to maintain the robust tracking accuracy because Mask

R-CNN is slow, and not enough semantic information can be obtained in a short time.

To obtain the semantic information more quickly and evaluate vSLAM in 30HZ even

using a heavy segmentation method like Mask R-CNN, we proposed RDMO-SLAM

that uses a novel semantic label prediction algorithm with the aid of dense optical flow.

Considering the semantic segmentation can only deal with the pre-defined objects, we

estimate the velocity of each features using the optical flow as an additional constraint

to reduce the influence of the undefined objects.

7.2 Future work

There are some remaining problems. First, the semantic segmentation methods (e.g.,

Mask R-CNN) usually are time-consuming. It is better to customize the neural net-

work to faster the prediction. Second, we need to obtain some information using

semantic methods, such as the bounding box, semantic label, optical flow, the depth

information of the image, and the key points of objects. This information is benefi-

cial to improve localization accuracy and build static semantic maps. It is better to

generate them using a unified neural network or a multi-task neural network. Third,

the RGB-D camera is not suitable for outdoor environments. It is better to extend

our algorithms to outdoor scenarios using a mono camera or stereo camera. Fourth,

multiple sensors can be fused to get more robust tracking accuracy using Lidar, IMU,

and GPS.

In future work, we will try to 1) deploy our system on a real robot, 2) extend
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our system to the stereo camera and mono camera systems, and 3) merge neural

networks, e.g., semantic segmentation and optical flow into one unified framework.
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