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Abstract

A major achievement in artificial intelligence (AI), particularly in visual recognition,
is developing a machine capable of understanding a complex visual scene. Beyond
understanding the visual object, the other research sub field in AI, natural language
generation systems, attempt to develop machines capable of describing objects with
human language. Understanding dynamic visual scenes then describing them in
words is easy for humans, but this task is difficult for machines. Research work in
generating sentence descriptions from visual representations, e.g., image captioning,
is continuously improving as computing technology, social networking platforms, and
algorithms continue to evolve. In the real-life implementation, image to text system
helps a visually disabled person understand images and possibly needed by a computer
device with usability assistance. Although the image captioning algorithm has been
shown to achieve success, it is limited to describing only a single image with a literal
object description.

The current image captioning system cannot process a sequence of images directly
with the output of multiple cohesive sentences. Shifting from a single image, static
moment, and generating no-context-description toward a sequence of images that depict
the dynamic event with an output cohesive narrative is challenging. Visual storytelling
is an image-to-text task that comes with the more complicated scenario describing an
image sequence into story style sentences. It utilizes the advance of computer vision
capabilities in recognizing the complex visual object as a human-like inference ability in
terms of structure and subjectivity. Previous approaches in visual storytelling systems
generate less-than-accurate narrative sentences compared with the human-generated
story. Several drawbacks were accused of describing literal objects only, monotonous
sentences, and low-lexical variance so that the generated story suffers from being less
coherent. Furthermore, less-context stories led to inaccurate information delivery due
to the absence of the visual object validation mechanism and the minimum number of
learning resources for the language model. Based on the aforementioned problems and
limitations, we consider improving the output quality, i.e., generating a contextualized
narrative story.
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This dissertation develops techniques and models focusing on generating a narrative
text based on visual sequences close to a human-generated story. To accomplish the
achievements of the mentioned objectives, we break down the proposed approach into
three sub-works. First, we design the experiment to build the image-text feature
pair representation as a singular data point. This approach is named multimodal
instance-based transfer learning tested in an image captioning task. As an initial
part of the whole architecture, a simple setting is considered by representing the
non-sequential feature with no coherent output expectation objective. Second, the
absence of non-visual concept words in the generated sentence story, an important
component in composing a narrative, was discussed. A non-visual concept is a word
entity that accompanies the literal object that the visual object detection algorithm
cannot recognize. We investigate the correlation of image-text pairs to generate new
feature representation with the underlying concept of canonical correlation analysis in
figuring out the drawback. Third, the lack of context in the previous approach’s outputs
leads to delivering an erroneous message and unwanted context. Thus, we attempt to
improve the architecture with context-awareness by supplementing new features and
incorporating external language resources on the decoding language generation stage.

The question of how to represent image-text pairs into new data representation was
an early problem statement in this dissertation. To express a pair of image-text data
into a single data point, simple concatenation of image feature and word representation
vectors was not applicable due to the difference of data distribution between modalities.
A single data point in the form of a vector should represent both modalities within
a pair of image-text data. We employ a binary hashing mechanism that generates a
mapping between original space into a Hamming space structured as binary codes.
The new mapping representation was applied to transfer learning among the image
captioning datasets to confirm the effectiveness. This method is particularly effective
for single pair image-sentence comparison only; a new question was raised about how
if the pairs are sequences of images paired with multiple sentences.

We formulate the investigation by exploiting the multimodal pairs’ correlation to
map the sequential pattern feature of image and text pairs for the visual storytelling task.
To extract the sequential pattern from the array of images, we attempt to maximize the
cross-modal correlation by extending the canonical correlation analysis, thus suitable
for the sequential setting. The proposed end-to-end architecture particularly aims to
encode the non-visual concept from the visual representation. As its objective is only
to maximize the likelihood of input with the target sequence, it lacks the semantic
correlation and results in the low-context output.
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Considering the aforementioned limitation, we improve the architecture by extending
the encoding and language generation decoding process to generate a coherent, object-
focused, and contextualized sentence story. To overcome the inaccurate context, we
incorporate the visual object detection feature to validate the literal object during the
encoding process. From the language decoding, we utilize the pre-trained language
generation model to contextualize the sequence generated language. In this study, all
sequential pattern learning employs the self-attention mechanism that excels compared
with the other approach.

Experimental results on the VIST dataset demonstrate the effectiveness of our
proposed contextualized language generation and multimodal representation over the
baseline based on automatic metrics.
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Chapter 1

Introduction

1.1 Background
The advance of current internet technology, infrastructure, and application leads
people to share information using text-based content and other auxiliary modalities.
As an example, Social Networking Services (SNSs) deliver information composed of
multiple modalities, e.g., SNSs allow the user to upload the image(s) with a related
text description in a single post. Some websites facilitate their visitor in retrieving
articles based on image queries, or vice versa is another example of the image-to-text
problem domain in multimodal learning research. In this situation, an emerging new
requirement that machines can mimic humans’ intelligence responds to multimodal
data instead of a single modality. One of the open challenges in multimodal research
is the machine capable of generating text descriptions based on visual representation
understanding. It responds to real-world problems such as helping people with vision
disabilities experience SNSs [117], providing software accessibility support [87], image
indexing for image-text retrieval [60], etc. To this end, artificial intelligence (AI)-related
research, which combines algorithms in recognizing the complex visual scene and can
communicate with human language, is still ongoing.

Image-to-text research combines two sub fields of AI research, i.e., object recognition
from computer vision (CV) and language generation from natural language processing
(NLP). It is trivial for humans to tell a story based on visual representation, but it
is difficult for machines to do such a task. With the CV algorithm’s sophistication
in representing a complex visual scene, machines are expected to extract important
features such as objects, properties, and relationships. The encoded visual features are
then translated into a textual natural language that currently describes near-human
language by advancing NLP research. This condition can be viewed by the two main
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aspects of how the generated language quality depends on. Several downstream tasks
related to translation of visual representation into textual generation, such as image
captioning [115] [47] [75], visual storytelling [111] [48] [34], and video captioning [39]
[140], faced a shared problem related to the quality of the generated language.

As the image-to-text tasks are learning the model by including different data
modalities, i.e., visual and textual modality, it can be considered as multimodal learning.
Multimodal learning aims to build models that process information from multiple
modalities by several fusion strategy options. Based on the multimodal machine
learning survey in [4], the image-to-text is categorized as a multimodal translation
task that translates (map) data from one modality into the other. The challenges
come from the heterogeneity of the involved information and the subjectivity of the
modalities relationship. However, the image-to-text task’s challenge is not limited to
the modality translation; the other open problems of this task include representation,
alignment, and co-learning, will be discussed in the next section.

Shifting from image captioning, a simple generating description task from a single
image to a more complex scenario, called visual storytelling task, is an image-to-
text active research domain. Given sequentially ordered images as input, the visual
storytelling task attempts to build a model that can generate language stories. Language
stories generated by a visual storytelling system have different characteristics compared
to caption description from image captioning. The image captioning system describes
the literal objects visually visible from an image following its properties, while the
visual storytelling task aims to generate a plausible sentences story. The plausible
near-human story generated by machines has several goals: describing visual objects
and non-visual concepts accurately, coherent language, and in an appropriate context.
In this research we attempt to model the relation of image-text data in appropriate
context. It define that the generated language not only describe the object literally
but contain the meaning in deeply as close as natural human language. More general,
the challenging parts of this task focus on generating story language that meets the
criteria, but the other problem focuses on representing the multimodal data and how to
extract important features from the spatial-temporal data part of the story generation
task. We will discuss more detailed challenges in generating language stories based on
visual representation in the next segment from the upstream to the downstream.
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1.2 Research Challenges in Language Generation
from Visual Representation

To improve the quality of the generated language from the visual representation,
particularly in visual storytelling task, we need to address several challenges, including
the limited number of visual storytelling dataset, representing image-text pair as a
single data point, finding the correlation of image-text pair in time series setting,
generating plausible language for human, and language generation with context, and
so on. In this part, we will summarize the mentioned challenges above.

• Limited number of datasets. The only image-text pairs dataset for the
visual storytelling task is provided by [111] named visual storytelling dataset
(VIST). VIST, with the relatively small size data, compared with the other
natural language generation task, generating a language story based on visual
representation has several drawbacks in the language generation process. These
include low lexical diversity and low-quality output generation due to the limited
context in the text representation.

• Representing an image-text pair as a single data point. A pre-question
before building a model incorporating image and text modality for generating
natural language is investigating the singularity between multimodal data points.
In the image-to-text domain problem, image and text pairs’ relationship can be
considered an independent-dependent variable as in supervised learning. Joining
the image-text pairs into a single data point becomes essential for calculating
the distance of similarity when involving multiple data pairs.

• Finding the correlation of image-text pair in time series setting. As
the image-to-text task, visual storytelling has a structure of a sequence of pair
of image-text data. It is a more complex scenario of generating text from
visual representation due to the existing correlation between pairs of image-text
data. Hence, it is important to address how to extract the correlation between
multimodal pairs in the temporal aspect.

• Generating plausible language stories for humans. A plausible automatic
machine-generated language story is expected to generate coherently and com-
prises the visual objects that visually appear with the non-visual concept that
enriches a story’s character. Thus, generating a plausible text story from sequen-
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Fig. 1.1 Given a stream (set) of photos, visual storytelling aims to create narrative,
and imaginative story based on semantic visual understanding.

tial visual representation is challenging instead of generating literal descriptions
from a single image.

• Language generation with context from the visual representation. The
correctness of context in generated language output is crucial even though the
plausible language is already achieved. Context-aware language generation model
from the large-scale corpus for language-to-language tasks is currently provided,
whereas it is not directly suitable to improve the output from visual representation
cases. Therefore a strategy to enhance the language generation from a temporal
image sequence is a challenging open problem.

1.3 Research Questions and Focus
This thesis focuses on building a machine learning model that aims to translate the
visual representation into a plausible natural language in textual modality. This research
task is known as visual storytelling (Figure 1.1), with the specific input is a sequence
of images, and the output is a text story. To overcome the issues in language quality
output, we proposed two different architectures as follows: (1) canonical correlation in
cross-modality approach, (2) contextualized language generation approach.

The first approach, canonical correlation in cross-modality, is given a story that
comprises pairs of a sequence of images with narrative sentences; its objective is to
maximize the correlation between pairs (image-sentence) in a sequence manner. Several
previous works have proposed deep neural network architecture [110], [121], [24] with
the objective to gain higher standard evaluation metrics results of image-to-stories
task. A remaining unexplored problem is the absence of the non-visual concept word,
a group of words that do not literally appear as a visual object, which has not been
figured out yet in the previous study. Therefore, we attempt to exploit the latent
correlation between visual features and textual representation by utilizing canonical
correlation with utilizing temporal properties of visual sequence.
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The second approach is contextualized language generation strategy, which attempts
to improve the language quality by leveraging a pre-trained weight language generation
model and object detection features. The proposed architecture aims to build a model
for generating context-aware text stories from a sequence visual representation. It
focuses on overcoming the low-lexical diversity, monotonous sentences, and inaccurate
context by giving the vector representation’s context value for cross-modality. Previous
work on visual storytelling task generate text with story [48], [86] has a major drawback
in the mentioned problems. The current state of the art in natural language generation
task model such as GPT [89] and GPT-2 [90] which built from transformer [113] in
decoder-only architecture are designated for language generation task that trained
from large-scale text corpus will be considered. Hence, a strategy by incorporating
external knowledge and feature combination for resolving the aforementioned problem
is proposed in this dissertation.

In this part, we will present the list of research questions for both proposed
approaches that are intended to answer by this dissertation. Brief research question
related to the proposed approach of canonical correlation in cross-modality (first
approach) are summed up as follows:

Q1.1. How to represent image and text features in the same vector space, which
preserves the semantic meaning to define the distance between two data
points?

Q1.2. How to reveal the non-visual words that do not visually appear on the image
sequence?

Q1.3. How can we formulate correlation from two different modalities of data
(image and text)?

Q1.4. What is the strategy to figure out the correlation from multimodal data pairs
in a time-series manner as a feature combination?

Q1.5. How to involve feature combination learning result from multimodal time-
series into attention mechanism?

Q1.6. How successful is the proposed canonical correlation in the cross-modality
approach compared to baselines?

Brief research question related to the proposed approach of contextualized language
generation strategy (second approach) are summed up as follows:
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Q2.1. Are there any features potentially used as joint combinations to enhance the
visual representation required in visual storytelling?

Q2.2. How is the strategy to extract the multimodal time-series features in images-
sentences pairs as a new feature representation?

Q2.3. What does the context-aware decoder contribute to the plausible language
story generation?

Q2.4. One of the two strategies is the fusion for multimodal time-series to achieve
contextual attention in story generation. How is the strategy to optimize the
objectives?

Q2.5. How successful is the proposed contextualized language generation approach
compared to baselines?

1.4 Contributions
This dissertation focuses on generating a natural language story by translating a
sequence of images. We propose several novel approaches containing some contributions
to improve and optimize the output language story quality. This research’s key
contributions will be summarized and linked to the related research questions; thus,
it will help clarify the problem mapping to the contribution solution. We will also
mention the section parts where the discussion of the question and contribution occurs
to make it easy to point out. In this dissertation, two main contributions can be
categorized: (1) the contribution of extracting non-visual concept features in time-
series by canonical correlation in cross-modality; (2) the contribution of the proposed
strategy to contextualize language generation from sequential visual representation.

C.1. The contribution of extracting image-text semantic correlation in sequential mode
helps the language generation process be guided to generate the literal object’s
descriptions and the non-visual concept. The existence of non-visual concept
words in a sentence will be differentiating the text story compared with the
common object description. The more detailed contributions are listed below:

C1.1 Multi-modal binary hashing representation. Since images and text features
have different data distribution that does not operate interchangeably. It
required transforming the feature vector from image and text modalities to
perform various operations. This contribution transforms the image-text
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pair into the same vector space using binary hashing. Thus, an operation
through a different modality, e.g., calculating similarity distance, can be
performed. The investigation is limited to the non-sequential representation
that needs to be enhanced for further purposes. (Q1.1)

C1.2 Nonlinear canonical correlation analysis on multimodal learning. Deter-
mining the correlation from two different modalities is a challenging task
to investigate. In this case, if an image-to-text task extracts the feature
from each modality separately, it will lose the information related to the
correlation among them. This contribution focuses on discovering the new
feature representation that extracts semantic correlation to enhance the
generation process regarding non-visual concept words. Standard linear
canonical correlation analysis is not suitable due to the large size of the
feature vector size, hence the non-linear learning on a deep neural network
is performing to effectively optimizing the learning process. (Q1.3), (Q1.2)

C1.3 Time-series canonical correlation analysis. As the visual storytelling data is
arranged in a sequence of image-text pairs, traditional canonical correlation
analysis does not meet the requirement. This contribution focuses on
extending the standard canonical correlation analysis into a sequential model
to cope with this problem on extracting the correlation from multi pairs of
image-text arranged in sequence. The learning process of features fusion
is performed by combining the RNN-based visual and textual through the
canonical correlation analysis that results in the new features representation
that maximizes the correlation between modalities. (Q1.4), (Q1.5)

C1.4 Involving the correlation features in attention mechanism. The deep neural
network-based image-to-text task commonly is underlying by encoder-
decoder architecture. The standard encoder-decoder is performing well
in short-length sequences but has a deficiency in memorizing the longer
sequences. Hence, to cope with the problem, this contribution attempts to
utilize an attention mechanism that focuses on aligning the important part
of features and considering the multimodal feature’s combination.(Q1.5)

C.2. The contribution in contextualizing language generation is proposed in response to
the low-quality output of text story natural language generation. A context-aware
model architecture comprises various sub-strategies that focus on overcoming
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the lack of correct-context, low lexical diversity, and monotonous sentences. The
more detailed contributions related to the main contribution are listed below:

C2.1 Visual features combination. The previous approaches mostly utilized a
convolutional feature map as the visual feature extractor that needs to
be enhanced due to the bias interpretation of the object in the image
sequential arrangement. This contribution focuses on combining the region-
of-interest feature vector and its coordinates with the fix-length pre-trained
convolutional map. Visual fusion is expected to provide accurate encoding
results that improve the object-focused language generation. Q2.1

C2.2 Cross-modal sequence encoding strategy. The challenge in translating
images to text stories is how we extract pairs of sequence images and
sentence stories into a new feature representation. To deal with the latent
correlation from two modalities, this contribution proposes a solution, an
encoding mechanism, to obtain the optimal alignment between the visual
and textual based on the self-attention mechanism. Q2.2

C2.3 Generating contextualized text stories through the decoding strategies. In
the image-to-text task, the decoding phase transforms the encoded visual
features into the text modality. To achieve a plausible story, this contri-
bution utilizes the pre-trained weight on the natural language generation
model that trained on large-scale unsupervised documents. It will con-
tribute to giving context and lack of variation to the output language due
to the limited number of the VIST datasets. The pre-trained language
generation model is also intended to give the ability to generate word token
sequence variation. Q2.3

C2.4 The decoder strategy in combining encoder output with contextual embed-
ding. There are three-way modes of fusion on how the model attends the
two different modalities in a time-ordered sequence to obtain the context.
The three strategies are the following: feature concatenation, self-contained
attention, and stacking attention. Our contribution here is comparing these
strategies to optimize the objectives during the training phase. Q2.4

1.5 Thesis Organization
The remainder of this thesis is organized as follows:
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• In Chapter 2, we provide some relevant background theories and fundamental
concepts that were underlying this dissertation. The related background concept
includes multimodal machine learning, deep neural network, visual representation,
natural language generation, and applications of language generation from visual
representation.

• In Chapter 3, a preliminary stage of this research, we explain the proposed
approach’s details related to representing an image-text pair as a single data
point. It is applied to image-to-text task image captioning transfer learning to
confirm the effectiveness of our proposed approach.

• In Chapter 4, we focus on the proposed architecture of time-series canonical
correlation in cross-modality. It includes detailed problems, proposed solutions,
and experiment scenarios to explain the effectiveness compared to the other
related researches.

• In Chapter 5, we focus on comprehensively explaining our proposed architecture
on contextualizing language generation. It includes detailed problems, proposed
strategies, and experiment scenarios to explain the effectiveness compared to the
other related researches.

• In Chapter 6, we are summing up the overall results of this dissertation and
identifying the remaining challenges for future works.





Chapter 2

Background Concepts

2.1 Multimodal Machine Learning
Decades ago, computer technology was conceived as a machine that works by following
the instructions written in a program’s code. Until the idea to make the computer can
solve the problems that need human intelligence, artificial intelligence (AI) emergent
and changes how the program codes command the machine. In the early days of
research in AI, computer machines easily solving human tasks that are intellectually
difficult for the human being but trivial for a machine to solve [25]. A current challenge
in AI research is to model trivial tasks for humans, such as visual recognition and
natural language generation, but these are difficult to solve by computer machines due
to humans’ difficulties to describe formally.

A solution in AI research allows the machine to learn from data that describe the
previous experience, known as machine learning. Ref. [94] describes the concept of
machine learning as the ability of computers to understand and learn from experience
without being explicitly programmed. The availability of the recorded experiences
also triggers the development of the machine learning paradigm through internet
technology to acquire the data massively. Later, the general machine learning concept
is divided into two categories based on how to extract features from the input data, i.e.,
traditional machine learning and representation machine learning as shown in Figure
2.2. Given features or input made and engineered by experts, the traditional machine
learning process all structured features input, e.g., numerical data format to solve tasks
such as regression, classification, clustering, and dimensionality reduction. In contrast,
representation machine learning learns important features with no expert interaction
explicitly by process unstructured data such as photos and videos. As shown in Figure
2.1, the position of machine learning as a subset of AI.
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Fig. 2.1 A Venn diagram illustrating how deep learning is a subset of representation
learning, which is itself a subset of machine learning.

The majority of real-world human activities involve the combination of senses
as the input experiences required to perform intelligence tasks. The engaged senses
combination, formally known as multimodal, describes the environment representing
visual, auditory, and kinesthetic to perform intelligence tasks. Multimodal machine
learning is an emerging research sub-field that focuses on integrating multiple modalities
resulting from the combination of human senses, including linguistic, acoustic, and
visual, to model [74]. Ref. [4] defines modality that points to how something is
experienced, and research involving multiple such modalities is known as multimodal—
multimodal machine learning incorporating multi-channel of information from a different
source that is semantically correlated. It has the advantage of providing complementary
information and clears up the feature patterns when only a single modality is provided.
There are several categories of applications in multimodal machine learning research,
i.e., speech recognition and synthesis [104, 103, 41, 46], event detection [51, 125, 26],
emotion and affect [132, 23], media description [44, 45, 8, 140, 122, 109, 101, 139, 20],
and multimedia retrieval [21, 72, 42, 59].

This dissertation discusses an image-to-text task known as visual storytelling that
generates natural language stories from visual representation. Therefore, references to
the research survey in [4] there are four challenges related to the discussed task, i.e., mul-
timodal representation, multimodal translation, multimodal alignment, and multimodal
co-learning. The following segment will detail each challenge comprehensively.
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Fig. 2.2 Traditional machine learning compared to representational machine learning
(deep learning).

2.1.1 Multimodal Representation

After the data cleaning and normalization process, multimodal machine learning
early challenge is to strategy how to represent the raw input data suitable for the
learning model’s computation. Unlike a single modality machine learning task, a
multimodal machine learning system attempts to obtain the data’s aligned and joint
representation in the heterogeneity condition. Also, several unimodal machine learning
problems should be addressed in a more specific way for multimodal machine learning,
such as combining the data from different sources, handling the missing data, noise,
and abnormality from different modalities. A new good representation of the raw
data into a data-ready state affects further extraction of the important features. A
real-world problem incorporating two different modalities, i.e., image-text data pair,
is required to represent visual and textual modalities in pairs. Visual modality is
commonly represented by a feature vector presenting the value of RGB color in a
spatial setting, while textual modality is represented by the continuous vector value of
word embedding. There are many downstream tasks in visual-to-textual research, such
as image captioning, video captioning, visual storytelling, etc.

A multi-modal machine learning survey [4] categorizes the multimodal representation
into two: joint and coordinated. The differences between these two categories are
related to how the combination process is performed. Join representations combine the
different features for each modality into a single space representation, along with features
from all modalities present during the training and inference phases. Coordinated
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Fig. 2.3 Multimodal machine learning is combining multi-channel of information from
different sources.

representation learns separately for each modality to obtain the representations and
coordinate through a constraint. The coordinated representation approach finds the
similarity between modalities representation to build a new resulting space structure.
Tasks such as image captioning is an example of coordinated representations that
enforce additional multimodal feature representation constraints. A structured space
is used to enforce the representation that constructs a coordinated space that images
and text with similar meaning are close to each other.

2.1.2 Multimodal Translation

This dissertation builds a machine learning model that generates a text story based
on images input in sequence. In the training phase, the image sequence map with the
sentence story has the relationship that needs to be discovered during the learning
process. This segment will describe a multimodal learning challenge called multimodal
translation that describes how to map data from one modality into the other modality
from the same object or entity. An example from a popular machine learning translation
task is machine language translation that translates a speech or text from one language
into another. Machine language translation model maps from textual modality to the
other textual modality. A more complicated task, a multimodal translation attempt
to translate from one modality into the other, i.e., from image to text modality with
heterogeneous data distribution, is impossible to process with a traditional mapping
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Fig. 2.4 Encoder-decoder architecture for multimodal translation of image-to-text task.

algorithm. Other than that, the multimodal translation has a challenge related to
relationship extraction between modalities that is often subjective and open-ended.
Several existing early tasks related to this challenge are speech synthesis, visual speech
generation, video description, and cross-modal retrieval.

The multimodal translation challenge can be categorized into two types based on
the working mechanism, i.e., example-based and generative-based. The example-based
translation relies on a dictionary of the pre-defined maps between modalities that
map the same entity from different modalities to conduct multimodal translation.
This category learns a model to retrieve the query’s closest sample as the dictionary’s
translation result. On the other hand, the generative-based multimodal translation is
more challenging in generating signals into any modality, even in sequential structures.
The most popular end-to-end deep neural network for generative models that are
commonly used recently is the encoder-decoder mechanism. This mechanism first
encodes the vector latent representation of the source modality to generate the decoder’s
target modality in a single pipeline.

2.1.3 Multimodal Alignment

The next multimodal learning challenge is multimodal alignment. This challenge focuses
on identifying the direct relationship and correspondences between sub-element or
entity in a dataset from two different modalities. An example from a visual storytelling
task, given images in sequence paired with sentence story, multimodal alignment
attempts to find the components in images that directly correspond with the part of
sentence story. The alignment challenge in multimodal learning research is categorized
into two, i.e., implicit and explicit. The explicit alignment is directly aligning the
same sub-elements of the dataset from different modalities. Most approaches with



16 Background Concepts

this type of alignment have a component for measuring similarity in the architecture.
It relies on the similarities defined manually or obtained from learning the data. An
instance of the aligning algorithm is canonical correlation analysis (CCA) that maps
the two different modalities with different data distribution into a coordinated space.
Unlike the explicit alignment utilized directly for two or more corresponding modalities,
the implicit alignment is used as the intermediate relationship in which another task
needs to improve the performance. This type of alignment does not rely on the given
dataset’s alignment but learns to obtain latent alignment during the model training.

2.1.4 Multimodal Co-Learning

The last multimodal learning challenge presented in this segment is multimodal co-
learning. This challenge overcomes the problem of transfer knowledge from the source
to target from different modalities. Uni-modal transfer learning exploits knowledge
from a source domain with a larger data resource for learning and is transferred to the
target domain with more limited resources. This objective is to improve the model
performance that suffers from a lack of annotated data, noisy input, and unreliable
labels.

There are three types of multimodal learning challenge co-learning approach, i.e.,
parallel, non-parallel, and hybrid. The parallel data co-learning allows both modalities
to share features of the same sub-element of data by two different algorithms that
exploit features for a model. Unlike parallel data, non-parallel data only share the
categories or concepts without sharing the data instance from both modalities. This
challenge has the objective to share the semantic concept understanding without having
explicitly seen the data instance. For example, learning a model to classify images of
dogs without having the supervised data labeled. The last is the hybrid data composed
of two non-parallel modalities bridged by the same modality or datasets. An example
of a task that performs hybrid data setting is multilingual image captioning. An
image will always be at least paired with one caption from any language. It needs to
bridge to a machine translation system to allow the objective to describe an image in
multi-languages.

2.2 Deep Neural Network Fundamentals
Information technology applications are aimed to make human life efficient, easy, and
beyond humans’ previous borders abilities. With the idea to make computer technology
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perform a task that needs human intelligence, research in artificial intelligence is
massively conducted as active computer science research. Machine learning evolves
to be a powerful AI tool that solves human tasks such as visual object detection,
transcribing human speech to text, giving news recommendations to read, and user
profiling for community-based applications. Over the decades, conventional machine-
learning algorithms rely on features engineered by experts, which have a lack of
discovering important features with poor knowledge and understanding by a non-
expert. The aforementioned problem is already addressed by several researchers in the
representation learning mechanism. In this dissertation, we use the term representation
that is interchangeable with the term features.

Representation learning is a sub-field of machine learning research that focuses on
how machines automatically discover the data representation or features by only giving
raw data input. The representation learning results are then utilized for the other
tasks, such as classification and object detection. Deep learning methods emergent
in the AI community as a major advancement in representation learning methods. It
works with multi-level representation composed of simple non-linear modules which
represent certain abstraction levels [54]. Automatic feature learning procedure obtained
by machine is a key concept of deep learning, instead of manually human-engineered
features with several limitations and drawbacks.

The deep neural network or deep learning is a specific approach or tool in machine
learning that utilizes an artificial neural network (ANN) composed of more layers and
components to automatically learning representation. Different from deep learning,
the shallow ANN method is composed of fewer layers and components. This section
will cover some fundamental concepts of deep neural networks for unfamiliar readers
with some underlying background concepts such as supervised learning, optimization,
back propagation, and neural networks.

2.2.1 Supervised Learning

Mapping the input space X into the output space Y is a mathematical way of for-
mulating several real-world problems for computational purposes. As an example,
the classification problem, given an array of inputs X as a result of the recorded
observation, a black box computation model should correctly determine the probability
class of Y as the output. The term black box refers to the function that is still unclear
and hard to write down the mathematical formulation as the function mapping solution
from input to output. Based on the learning experience process, the machine learning
algorithm can be divided into two, i.e., supervised and unsupervised learning. Both
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Fig. 2.5 Learning concept of training from labeled data in supervised learning framework.

supervised and unsupervised learning have observation data representation for the
learning model, but the distinction is in the target class category’s availability on each
observation data, unsupervised with no class label for training the model.

Supervised learning, also known as supervision machine learning, whether deep or
shallow, is the most common form of machine learning algorithm applied in real-life
problems. Before going into more detail about supervised learning, we will review the
dataset with its component. Dataset is a compilation of data points or records collected
from the real-world observations accessed during the training process. In general,
a data point is represented by one or more attributes which are commonly called
data features. For some cases, the dataset is supplemented with a special attribute
called target class which characterizes the supervised learning dataset. In particular, a
supervised learning algorithm has an objective to associate the input features X to
the defined target class Y . The target class or the desired output in the dataset is
also known as ground truth, which available from the observation. An example of the
dataset for supervised learning is an image dataset for classifying animals, e.g., cat
and dog. A data point is a pair of an image represented by the RGB value of matrices
M ×N , associate with the discrete class label, i.e., cat or dog.

In this dissertation, translating image sequence to natural language text generation
is an example of supervised learning that associates the input features in the visual
modality to the target output in textual modality. In the concept of supervised learning,
a model is trained to predict the correct target class that is controlled by an objective
function to calculate the distance between the machine prediction and the pre-defined
ground truth determined by the expert. This concept works by updating the trained
model’s internal parameters, also known as weight, to minimize the error rate and
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then measure the distance again until it meets the stopping criteria. The deep neural
network’s common classification model has hundreds of millions of weight needed
to update during the training. Several popular supervised learning algorithms, such
as probabilistic supervised learning (regression), support vector machines, k-nearest
neighbors, decision tree, etc.

2.2.2 Optimization

In training a supervised learning model in neural networks, the loss function calculates
the error as the gap between machine prediction results with the actual labels. That
gap value will be used as the reference to modify the model’s parameters to minimize
the error rate. A concept called optimizer, an algorithm that performs to update
the parameters to minimize the errors, is explained in this fragment. Many research
in deep neural networks uses gradient descent-based optimization as the optimizer
function. A gradient is represented as a vector that expresses the direction of the
steepest descent of the error function in the vector space or its perpendicular. In some
cases, the optimizer has a problem determining incorrect shallowest parts of the error
surface, whereas elsewhere, the shallowest surface might be the best parameter to
update. Such a problem is known as local minima.

Gradient descent is an approach to update the model parameters by the opposite
direction of the loss function gradient. There are three variants of the gradient descent
approach, such as batch gradient descent (vanilla gradient descent), stochastic gradient
descent (SGD), and mini-batch gradient descent. Batch gradient descent calculates
gradient for the entire dataset in a one-time update. As a result, if the dataset’s size is
large, this optimizer will perform slow and need extra resources to fit the parameter
can be processed. The SGD is an enhanced version of batch gradient descent that
performs parameter modification where it is not in a one-time-only update. It performs
frequent updates by a jump to the point with better local minima and shows similar
performance with the batch gradient descent in low learning rate. Learning rate is a
hyperparameter that represents how big or fast the movement from one area to another
is in finding the local minima and convergence to the desired weight. The SGD has a
major pitfall that is slow to converge the loss value.

Finally, the mini-batch gradient descent is an improvement from the two preceding
batch and stochastic gradient descent. It updates every mini-batch of N training
samples that efficiently reduce computation cost and perform well in finding the local
minima in every iteration. Mini-batch size is also a hyperparameter that combines the
advantage of balancing between batch gradient descent efficiency and the ability to
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avoid local minima from stochastic gradient descent. Furthermore, other than gradient
descent-based optimizers such as Momentum, AdaGrad, and Adam [49] that are used
in many research in the deep neural networks. Adam (adaptive moment estimation)
optimizer, used in this dissertation, performs computation adaptive learning rates for
every parameter. Fundamentally, Adam optimizer is a combination of RMSProp and
momentum. The basic idea is expecting to keep the exponential weighted moving
average of the gradient.

2.2.3 Backpropagation

In training an artificial neural network model, the mechanism of forward-propagation
is feed-forward an input x to produce the output y through the layers of networks. The
input x provides information to hidden units at each layer with weighted connections
to produce y. The other component in the learning process of artificial neural networks
that responds to measure the success of the output quality from a model called the
objective function. The objective function’s information needs to flow backward to
determine the gradient of the cost or error to update the weighted trainable parameters
and bias.

Back-propagation [93] algorithm, also known as the backprop, is an algorithm to
compute the gradient by flowing backward of information cost through the network. It
overcomes the problem of being computationally expensive and inefficient during the
calculation of the gradient of a function. In some references, there is a misunderstanding
of backprop as a whole algorithm for artificial neural networks. Backprop is a part of
the algorithm for computing the gradient of a function by chain rule with a specific
operation order in highly efficient. In the machine learning algorithm, the gradient
concept is mostly used for calculating the derivative of the objective function to update
the parameters.

2.2.4 Neural Networks

Feedforward Networks

In the previous part, we already know how learning from labeled data performed.
Update mechanism of trainable parameters through the optimization algorithm brings
the learning process’s objective to become obvious. A more basic algorithm for finding
the derivative of a function used by the optimizer, backpropagation, has been discussed
previously. Finally, in this segment, we will detail the function aforementioned in
previous parts.
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Starting from the neuron’s biological inspiration, a microscopic structure as the
basic unit of the human brain, perceptron is the simplest unit of an artificial neural
network. A perceptron has a structure composed of input, output, and three adjustable
parameters, i.e., weight (w), bias (b), and activation function (f). The three adjustable
parameters are defining the linking connection among the perceptrons. The weight and
bias are trained from labeled data, whereas the neural network architecture designer
defines the activation function. An activation function is a nonlinear function that
captures the complex relationship between input and output of fed data. Several
common-used activation functions in research learning neural networks are sigmoid,
tanh, ReLU, and softmax.

Feedforward neural networks can be categorized into two, i.e., multi layer perceptron
(MLP) and convolutional neural network (CNN). Some other references also refer that
feed-forward neural networks are the same as MLP. This segment will explain more
about MLP, whereas CNN is discussed in the next segment. MLP is an extended
version of simple perception by grouping some perceptions in a single layer and stacking
them into multi layers together. As the basic concept for the other neural network
architectures, MLP has an objective to define a mapping function from input to
output by learning the best parameters for approximation tasks. There is no feedback
connection link in MLP, which flows in a forward direction evaluating input x through
intermediate computation, known as a hidden layer, by defining the function f to
produce the output y. The hidden layers exist between input and output layers which
do not show the desired output. It is implemented as a vector-valued connecting
between the input to output layers. To combine all layers, the connection between
layers in MLP is connected by a nonlinear function.

Convolutional Networks

One of the popular types of neural networks typically utilized in computer vision
is explained in this segment. Convolutional networks (or convolutional neural net-
work/CNN/ConvNets) introduced by Ref. [55] is a special kind of feed-forward neural
network inspired by the mechanism of the windowed filter of the signal processing to
find specific patterns. In particular, the CNN handles data with spatial topology or
grid-shapes data, e.g., image data pixels. A grid-shapes data probably has the shape
1-D grid-like time-series data and the 2-D grid of pixels image representation. The
architecture of CNN is underlying a mathematical operation called convolution, which
learns the local pattern by operating two functions that produce the third function to
express how one function can modify the other.
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CNN is a type of deep-learning model almost used in computer vision applications
such as image classification problems. The other next level task related to the computer
vision problem is utilizing CNN architecture as a feature extractor from the pre-
trained model used in this dissertation. Modifying the available pre-trained CNN-based
model, i.e., removing the last fully connected layers, helps the other task automatically
extract features by fine-tuning the new task from the pre-trained one. Compared with
the traditional machine learning that engineered the features manually, deep CNN
architecture comes with learning to localize the important component from an image.
The key difference between the CNN and the fully connected layer (vanilla neural
network) is the special characteristic of CNN learning the local pattern instead of the
global pattern from the input space. Two keys characterize the ConvNets are (1) it is
efficient in learning spatial pattern that translation-invariant can "memorize" localized
pattern although applied in a different part of space, (2) it learn from hierarchical
attributes of spatial features that implemented in multi layers. The first layer handles
small local patterns or lower-level features in the hierarchy, followed by the higher-level
features layer that handles larger patterns. Each layer has different responsibilities for
different levels of feature complexity, such as lines, contours, shapes, and entire objects.

The modern architecture of ConvNets is built by stacking convolutional layers with
additional pooling layers to decrease the computational complexity of the model. In
this dissertation, the convolutional-based neural network is utilized for visual feature
extraction using existing state-of-the-art ConvNets architecture that was previously
trained or pre-trained to learn the parameters on large-scale dataset images. There are
several instances of the stable models such as AlexNet, VGG, ResNet, Inception, etc.

Sequence Modeling: Recurrent Networks

Previously introduced types of neural networks, i.e., feed-forward and convolutional,
receive a single-time data point. This dissertation also requires processing information
in temporal representation, e.g., sequence of images input and generating natural
language stories output. Recurrent neural networks (RNN), a special type of neural
network layer that enables learning from sequential data, were introduced by Ref. [92].
Compared to the ConvNets and fully-connected layers that allow only working on one
complete data point snapshot of a time, RNN designated to handles temporal input
structure x1...xt, e.g., text, speech, video, and time-series data by managing the weight
of sequence of connected networks through the hidden state [6]. This type of network
has a mechanism to update the past information with new incoming ones of a sequence
from a variable length of the input.
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Fig. 2.6 An RNN loop, with the input at the time step t, the hidden output state gets
fed back into the RNN for the next time step.

Sequential data handling mechanism can be explained as stacked neural networks
crossed with an internal loop. An input data from time step t will be processed to
obtain output from the hidden step ht. The output from ht will be fed back to the
next time step until the end of the loop, sequentially. The structure of RNN also is
viewed as a sequence of fully connected layers that share their parameters. The input
fed to the input layer is then processed in the fully connected layer, and the output
will be fed to the next layers as an input in a sequence pattern. Each fully connected
layer is connected to the other layers by nonlinearities functions such as ReLU, and the
error functions are backprop through the RNN. The gradient-based function calculated
for each step and combined all to update the shared parameters. Research in learning
from sequential data still evolved; further, a problem found in RNN related to the
quick gradient diminishes when the computation is repeated over the sequence’s length.
This issue in RNN is called vanishing gradient, leading the model to have limitations
to learn long-term sequence dependency.

To address the vanishing gradient problem, Ref. [29] was introducing the im-
provement of an RNN-based model variant called long short-term memory (LSTM).
This model’s principle is to preserve important memory and forget less important in
transmitting many time processes from past to future. The key concept of LSTM is
the memory cell to preserve important information differentiate from the concept of
RNN that remembers everything forever, which new incoming information becomes less
important. An LSTM layer has three kinds of gates: input, forget, output. The forget
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gate allows the neural network model to forget unimportant information. A variety of
LSTM networks proposed by Ref. [38] named bidirectional LSTM (BI-LSTM), which
not only looks back to the past learning but also sees the future sequence in learning
the sequence pattern. The BI-LSTM is constructed by two stacked LSTMs with the
forward direction input and reversed in two LSTMs. It has already been applied in
some real-world problems, such as in machine translation and writing recognition.

The last, a variant of recurrent neural network RNN, was introduced by Ref.
[9] named gated recurrent unit (GRU). It comes after the LSTM with the concept
of merging the forget gate with the output gate. This attempts to overcome the
inefficiencies of the LSTM by reducing the number of trained parameters and tends
to execute faster and uses fewer resources. Compared to the LSTM network, GRU
is less powerful in the learning sequence performance due to the reduced network as
information in the structures. The LSTM cell in Equation 2.1 has three kinds of input
[ct−1, ht−1, xt] for learning the sequence data representation. The explanation for each
input is as follows: ct−1 represents a cell state from the previous step, ht−1 represents
the output from the previous step, and xt is the input at the current time step. All of
these inputs then separately pass through upon the two sigmoids to obtain the input
gate it and forget gate ft.

ft = σ(Wf [ ct−1, ht−1, xt] + bf )
it = σ(Wi[ct−1, ht−1, xt] + bi)
gt = tanh(Wg[ht, xt] + bg)
ct = ft × ct−1 + it × gt

ot = σ(Wo[ct−1, ht−1, xt] + bo)
ht = ot × tanh(ct)

(2.1)

2.3 Visual Representation

2.3.1 Representing Images

An image as a visual modality has its own characteristic and handling strategies before
used as input in learning a model. Raw image data needs to transform into an expected
format to apply to the machine algorithm as an input, i.e., numerical format. In this
dissertation, we translate input images into a different modality, i.e., sentence story.
Basically, an image raw data has three dimensions matrix structure, i.e., height, width,
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Fig. 2.7 An LSTM diagram.

and color depth. The color depth dimension’s size might vary on the image; a color
image has three color channels, i.e., red, green, and blue (RGB), whereas a gray scale
image has one channel only. As we process image data in batch, we add a batch size as
a new dimension to use a convention order for interpreting image dimensions property,
i.e., batch size, height, width, and color channels as shown in Figure 2.8.

The evolution of the feature extraction of image data brings to the advance of
the learning representation process by the deep neural network, compared with the
previous use of manual feature engineering. This segment will discuss how image
data is represented as a numerical vector for the learning process to build a model.
Representing an image into a fixed-length vector can be viewed as the encoding process
from one information into a defined form of data that later needs to be interpreted by
another process. Later, in this dissertation, we use the term encoding as interchangeable
with the feature extraction. The image encoding aimed to transform the raw RGB
image value into a fixed-length vector as a powerful representation to support the
backpropagation process in learning the deep neural networks. In practice, it is typical
to use CNN-based architecture [55] that actually designated for a classification task [52],
[27] on ImageNet [13] dataset. The current CNN-based neural network architecture
as an object classifier has already reached human-level performance in distinguishing
1000 different objects as presented from the ImageNet classification challenge.

The CNN-based object classification architecture can be viewed as a feature map
extractor with detached the last layer, i.e., fully-connected layer. The last fully-
connected layer performs a probability calculation to decide on what class an object is
included. A CNN-based architecture can be defined as a function, CNNθ(I), takes raw
image pixels input I that has parameters θ will have a result n−dimensional feature
vector. In AlexNet [52], one of the popular CNN-based architectures in ImageNet
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Fig. 2.8 A 4D image data tensor (channels-first convention

challenge is resulting in the output with size 4096-dimensional vector as a non-linearity
(e.g., ReLU) result feature that can be used for later learning step. In a formal definition,
the image encoding v using CNN-based architecture can be defined as:

v = W [CNNθ(I)] + b (2.2)

This defines the learning of parameters W and b is optimized to obtain the feature
map image v for further process. The optimization process for the CNN parameters
θ that is already pre-trained from the ImageNet dataset is called fine tuning. In this
dissertation we implement the ResNet-152 [27] to obtain the image fixed-length vector
feature.

2.3.2 Architectures of Convolutional Neural Networks

CNN-based architecture or ConvNet does not only consist of the convolutional layers
as a building block. In general, the ConvNet building block consists of the input
layer, convolutional layer, polling layer, and fully connected layer. It might vary in the
composition of the structures depending on the network designer and the objective. An
example from that used in the general architecture of a ConvNet has the layers structure
as follows: [INPUT, [CONV, CONV, POOL]× 3, FC, FC], with the INPUT denote
as the input layer, CONV denotes as the convolution layer, POOL denotes as the
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pooling layer, and FC denotes as a fully-connected layer. The input data is a tensor
(multidimensional array structure) in batch form, e.g., the input size is 64×255×255×3,
which each dimension represents the batch size, width, height, and color channels.

The CONV layer performs convolution operation with the defined filter or kernel
size, e.g., 3x3 with padding 1 and stride 1. Stride is an integer parameter of a kernel
that describes the distance kernel movement’s magnitude in pixels. The stride size
affects the encoded output size that is applied to the input. Another parameter that
works in conjunction with the stride is padding. The padding is an integer parameter
of convolutional operation that refers to the number of pixels added in an input image
when the convolutional operation is applied. It is applied like adding several pixels
as a border to an image. Various convolutional neural network architecture comes
with different complexities commonly used in computer vision research. Some popular
ConvNet model, e.g., AlexNet [52], Inception [107], VGG [100], and ResNet [27]. The
existing ConvNet building blocks are mainly composed of convolutional layers, and
some additional layers with a specific function such as pooling, dropout [102], and
batch normalization [40]. The convolutional layer itself is responsible for extracting
feature maps from images using different filter settings. The polling layer comes to
reduce the feature dimensions.

There are two kinds of reducing mechanisms, i.e., max-pooling [95] and average
pooling. Then, the other kind of layer that has a special function is a dropout. The
dropout is a regularization technique that is used to prevent the model from overfitting.
It applies after the convolutional layer that randomly switches some percentage of the
neuron in the networks. The last is the batch normalization or also known as batch
norm layer. It has the objective to allow the network to learn more independently by
normalizing the output from the previous layers. It is usually placed several times after
the convolutional and pooling layer. All of the additional layers are added to enhance
the learning model capability.

2.4 Natural Language Generation

2.4.1 Representing Words

This dissertation is expected to generate a sentence in textual modality as the output
of the model. Natural language, either in text or speech, is one of the most frequently
encountered types of sequence data in human life. A text document can be broken
down into various levels of representation depending on the requirement, i.e., sequence
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Fig. 2.9 An illustration of the comparison of one-hot word vectors (sparse, high-
dimensional, hard coded) and the word embeddings (dense, lower-dimensional, learned
from data).

of sentences, words, and characters, etc. The machine can only process numerical
forms of data so that the textual data have to transform into numeric vector or matrix
representation for the latter purpose. Several steps are required to transform raw text
data into a numerical tensor or known as vectorizing process. Before the fragment
of text being transformed into a numerical tensor, we first decide what unit of text
will be used, e.g., word, character, or n-gram. The smaller units of text fragments
are known as tokens, and the process of breaking down the text into a small unit is
known as tokenization. For each generated token will be mapped or associated with a
numerical vector. Raw text composed of a sequence of tokens then transformed into
a packed sequence of a numeric value and ready to feed into deep neural networks
models. There are innumerable ways to map or associate tokens with a numerical
vector, ranging from the simple heuristics approach to the requiring a complex learning
process. There are several popular heuristics of simple count-based representations such
as one-hot encoding, term frequency (TF), term frequency-inverse document frequency
(TF-IDF) representation. A more powerful and popular way to associate a token with
its numerical vector utilizes a dense word vector known as word embedding.

Compared to the one-hot encoding representation (Figure 2.9), the word embedding
has a lower-dimensional floating-point vector, whereas the one-hot encoding is binary,
sparse, and very high-dimensional. Word embedding is obtained by learning from a
sequence of tokens with a typical size variation of embedding dimensions such as 256, 512,
1024 dimensional. A vector size dimension from one-hot encoding representation usually
20,000-dimensional or greater, depending on the number of unique tokens in vocabulary.
Compared with the word embedding representation, one-hot encoding is extremely
larger, whereas word embedding packs information in compact fewer dimensions. In this
segment, we focus more on representing text using a word embedding representation.
In practice, there are two ways to obtain the word embedding, i.e., by learning a model
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from scratch for a task-specific using a particular dataset (e.g., document classification
and sentiment analysis), and by incorporating the pre-trained word embeddings weight
into our own model.

Learning word embedding has the objective to associate a dense vector with a
word token by randomly initiating. Learning word embedding in small-size datasets
has a drawback, resulting in a low structured language model due to insufficient
resources. It also has a limitation in capturing the semantic relationship between two
words with a geometric relationship between word vectors. Moving to the second way
of obtaining word embedding, utilizing pre-trained word embedding is a promising
approach. Loading a vector embedding from pre-computed embedding space with a
good structure and generalization that captures the common aspect of language is the
right choice for implementing natural language processing applications. Some famous
and successful pre-trained word embeddings are Word2vec [73], and GloVe [84] that
can capture the semantic properties of language.

2.4.2 Language Model

Language models are defined as a probability distribution of sequences of tokens [25]
utilized in a natural language task. It becomes the core component of a natural
language application. There are two ways in using a pre-trained language model, i.e.,
using the language embedding model directly, and fine-tuning the pre-trained model
weight with a specific-task dataset. Utilizing the language model embedding has the
merit in decreasing the parameter of learning model size. The use of a pre-trained
embedding model vector has its limitation because the word embedding relies on the
word concurrency, not the sequential context. To explain how the context in the
language model is important, we use a popular example of the word "apple". In the
first sentence, "I am eating an apple," compared to "I have an Apple iPhone." The
two words "apple" refer to the different objects, but if this token is inquired from the
pre-trained word embedding vector, it will return the same vector embedding value.

A survey on language model [43] mentions several improvement techniques in
language modeling that are trained based on the state of the art algorithm, i.e.,
attention mechanism [3]. An improvement approach of attention mechanism named
Transformer [113] was proposed to reduce the computational cost by a parallelism
mechanism. It consists of the entire aspect of sequence to sequence mechanism, i.e.,
the encoder and the decoder. Two famous language models proposed based on the
Transformer algorithm, i.e., BERT [18] and GPT [89]. There is the main difference
between BERT and GPT, and the BERT is proposed based on the Transformer’s
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encoder only, whereas the GPT is proposed based on the Transformer’s decoder. The
encoder-decoder structure focuses on language understanding tasks, and the decoder-
based structure focuses on language generation tasks. This dissertation will present
the specific language model that focuses on the natural language generation task.

2.5 Applications of Language Generation from Vi-
sual Representation

2.5.1 Image Captioning

The application of image-to-text is a combination of two sub-fields of research in artificial
intelligence, i.e., computer vision and the natural language processing research field.
One well-known research problem which focuses on generating language description
from visual representation is called image captioning [115] [47] [75]. A caption is a text
accompanying another object (e.g., image, video, and table), giving a brief description
to help the reader easily understand the message from an object. Given an image, the
image captioning system automatically generates a sentence description related to the
object contained in the image. Survey on deep learning image captioning system Ref.
[31] has listed several implementations of image captioning tasks, such as automatic
image indexing for some purposes and automatic captioning in social media platforms.
Understanding an image or visual scene is a trivial task for a human, but it is not
easy for a machine. The main purpose of the image captioning system is to help the
machine interpret the information contained in a visual scene for further purposes.

An image captioning system can be broken down into two sub tasks, the first is
the visual representation sub task, and the second is the language generation sub
task. Another survey on image captioning Ref. [98] defines the visual representation
as the objective in identifying objects with their action, relationship, and the latent
information. A research survey Ref. [31], divide the technique in obtaining the
image features into two categories, i.e., traditional machine learning and deep machine
learning techniques. Traditional machine learning obtains the feature by handcrafting
approach such as local binary pattern (LBP) [77], scale-invariant feature transform
(SIFT) [68], and histogram of oriented gradient (HOG) [12]. Obtaining visual features
by handcrafted approach is not feasible for large and diverse image datasets so that
the deep machine learning approach is more promising in this condition.

The CNN-based [55] deep neural network image feature extraction is widely used
for several large-scale deep learning applications. In generating a sentence description,
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Fig. 2.10 An example of image-text pair on image captioning. A caption describes the
objects, attributes with its relation from an image.

the image captioning system has the criteria for the text output, i.e., syntactically
and semantically correct [116]. This segment will focus on an architecture called
encoder-decoder, which underlies the other majority of image captioning systems.
Encoder-decoder architecture-based image captioning system is an end-to-end approach
inspired by the sequence-to-sequence-based approach for neural machine translation
[106]. Typical deep neural network-based image captioning systems in encoder-decoder
architecture use the CNN-based feature extractor followed by an RNN-based text
description generator. In this architecture, the output of the CNN-based encoder will
be the input for the RNN-based decoder. The image information is included in the
initial state of the RNN, while the next words are generated based on the previous
hidden state.

2.5.2 Visual Storytelling

Humans use storytelling for a variety of purposes, including education, entertainment,
and cultural preservation. Telling a story based on visual content such as photographs,
video, etc., enriching the story by describing the object contained in it, its properties,
and the relationship among them. Sub research in artificial intelligence, an image-to-
text task slightly more complex than an image captioning system, the visual storytelling
system comes to automatically generate a sentences story based on a sequence of images.
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Fig. 2.11 An example of visual storytelling data. Image sequences pair with the sentence
sequence story.

Like the image captioning system, visual storytelling relies on the recent advancement
of computer vision algorithms to understand visual representation and natural language
processing in generating human language as a story. The emergence of this task can be
viewed as the consequence of the abundance of photo albums available online, whereas
manually labeling machine understanding has become impractical due to the number
of available data.

It begins where the visual storytelling dataset was introduced in Ref. [111] as the
first sequential vision-to-language, the task visual storytelling required moving from
reasoning a single image with static moments and devoid of context into a sequence
of images that depict events with the dynamic situation. In this condition, several
modifications are required both on the visual and language side to comply with this
scenario. On the visual modality side, not only extract features contained in an image,
but the visual storytelling system requires understanding how the correlation and the
movement from the arrangement of sequence of images. The shift from generating
literal description into narrative story language has specific criteria such as coherency
and tones for the language side. According to the previous research, we divide the visual
storytelling approach into twofold based on its emphasis, i.e., visual representation
encoding and the story language generation decoding. Several research focuses more on
how representing sequence of visual features in particular temporal learning strategies
[24, 47, 81, 119, 136].

In general, the encoding process in visual storytelling can be divided into two-level
processes. First, the local encoding is a typical step in obtaining a single image feature
defined as feature mapping from the CNN-based architecture. Next, after features
from each image in sequence have been extracted, the global encoding step is required.
As the input images are arranged in sequence, various approaches are proposed to
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extract the temporal representation of the storyline. The majority of the RNN-based
algorithms are utilized for sequential learning of the global encoding that extracts the
relation between image features in a sequence. More advance, following the attention
mechanism to combine the local and global features, Ref. [48] focus on cascading the
local and global attention as an end-to-end strategy. There are many improvements in
line with the development of sequence-to-sequence research for the other tasks, i.e.,
language translation. Move to the next emphasis, there is some research that more
focus on the language output generation [33, 37, 58, 65, 124]. The obtained visual
features in sequence are used as input for the decoding process. Various approaches
attempt to overcome different problems related to the output quality of the story. This
focus tends to diverge due to the uncounted number of defining the good quality of
output story.





Chapter 3

Instance-based Multimodal
Representation

3.1 Introduction
Learning a model which involves data from multiple modalities remains a challenge.
It is different from learning a model with only a single modality that tends to be
simpler in transforming and extracting its features. Datasets composed of pairs of
images followed with its text description that refers to the same entity are examples
for multimodal learning problems. It comes from some tasks, such as image captioning
system, image-text retrieval, visual question answering system, visual storytelling, etc.
This chapter is focused on the early stage of the whole process in image-to-text tasks,
i.e., representing multimodal data for learning a model. Approaches that are used
to represent image or text datasets independently for each modality currently exist.
The two different modalities come with differences in data distribution, dimensionality,
and information components. A challenge comes when it is required to represent two
different data modalities that refer to the same entity into a single data point. The new
data representation should describe the intended entity correctly and accurately. The
multimodal representation strategy is proposed to overcome a problem called domain
shifting applied to cross-domain image captioning.

To explain the domain shifting problem, we will first illustrate using a simple image
classification task. Given a dataset of 2D car images, our mission is to learn a model
to categorize a car type from a new unseen image. This will probably give the accurate
result as expected if the test data also has 2D images. This condition will be different if
the test data come from 3D images of the car, which leads to the accuration score will
be lower. This problem is called domain shifting, a problem caused by the difference in
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probability distribution between two data sets. The above example is a domain shifting
problem on image classification, which has a single modality, i.e., visual modality.
This chapter will explain our comprehensive experiment on overcoming the problem of
domain shifting on image-text pair data for multimodal learning. The main objective is
to demonstrate the effectiveness of the multimodal representation strategy applied on
domain shifting issues. There are some available datasets for image-to-text tasks such
as Flickr8k [30], Flickr30k [135], MS COCO [63], Conceptual Caption [99], CUB-200
[127], Oxford-102 [76], and TGIF [61]. All of them have the same modalities, i.e.,
visual and textual, in pairs.

However, they have their own characteristics, such as the images containing general
or specific objects, the dataset size, and it also has a difference in the probability data
distribution. For example, if we train a model for image captioning using Flickr30k
(containing general objects) and test the model using CUB-200 (200 species of bird
images), it will lead to the domain shifting problem. Furthermore, in the image
captioning task, the differences between the source domain with the target domain
lead to the irrelevant generating caption due to the discrepancy of these two datasets.
To overcome the domain shifting problem, a sub-field of transfer learning research
called domain adaptation attempts to alleviate the suffering from domain shifting,
which allows the transfer of knowledge from source to target domain [79]. In this case,
the larger size dataset will transfer the knowledge to the smaller, e.g., transfer from
MS COCO (larger size, general object) to CUB-200 (smaller size, specific object). As
both the source and target domain are from the same task, i.e., image captioning, this
problem is also known as cross-domain image captioning.

A survey related to deep transfer learning Ref. [108] categorize the transfer learn-
ing into several categories, i.e., instance-based, mapping-based, network-based, and
adversarial-based deep transfer learning. Previous work from Ref. [7] propose an
adversarial learning approach for cross-domain caption generation deserved to min-
imize the shift between source and target domain. The framework applies a critics
network to guide the image-to-text system that works as an adversary from the caption
networks. The proposed framework optimizes the network hyper-parameter by the
policy gradient updates during the training process. However, this framework still
does not consider the relation of the semantic similarity between the source and target
domain that can be minimized the randomness of the critic’s process. Another work
attempting to overcome the domain shifting on image-to-text is Ref. [138] which
propose two-mechanism of dual learning, i.e., generating a text description of an image
and generating images from the text description. These two processes are closed-loop,
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Fig. 3.1 Image-text pairs multimodal representation.

where the objective is to optimize and guide each other by using reinforcement learning.
This approach does not consider the alignment of the source and target domain in the
early stage so that that transfer learning will be less efficient. In this research, the
aligning semantically of context for transfer learning will perform in the initial process.
The initial process is a process before the training step, which has less complexity than
the process afterward; hence, we decide to transfer learning representation in the early
step of the training process. Therefore, the instance-based transfer learning strategy is
chosen to perform instance selection to perform domain adaptation. This chapter will
explain multimodal representation strategy by utilizing cross-modal binary hashing to
generate a new representation of image-text pair. The new feature representations are
used for selecting the semantically nearest source domain data from the target domain.

The main contribution of this chapter is summarized as follows: 1) proposed a
model to generate a new multimodal representation by utilizing cross-modal binary
hashing. 2) to evaluate the effectiveness of our multimodal representation, we apply
the new multimodal representation to overcome the domain shifting problem on the
image-to-text task. The rest of this chapter is structured as follows: Section 3.2
includes a review from related works, Section 3.3 explains the details of the proposed
approach, Section 3.4 contain the details about the experiment and the evaluation,
and the last Section 3.6 summarize this chapter.
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3.2 Related Work

3.2.1 Cross-domain Image Captioning

Generating text captions from visual representation involving both text and images is
one of the multimodal learning problems. Training a model requires sufficient numbers
of data instances; even more, the deep neural network requires large-scale pairs of image
and text datasets. The available image-text pair datasets describe various objects from
general to specific, ranging from small to large-scale dataset numbers. Researchers
focus on transferring knowledge from target to source domain with one modality, e.g.,
images or text. The cross-domain image captioning performs transfer from the trained
source domain with paired data to the target domain with fewer data or no paired
image-text available.

Ref. [7] proposed an adversarial learning strategy for transferring from paired
image-text data to low number paired data. The adversarial network consists of an
image captioner network and two critics networks (i.e., domain critic and multimodal
critic), which the two critics network guide the captioner in adversarial manners. The
adversarial training works as an incremental evaluation of generating a caption by
identifying the output, categorized as the source domain, target domain, or generated.
This work can be categorized as model-based deep transfer learning, which has less
information about the data characteristic. This approach does not consider the image-
text modalities relationship and the relation between data point from source to the
target domain. Another cross-domain image captioning research Ref. [138] proposed a
dual learning mechanism by modeling the alignment between the neural representation
of images and the caption in the source domain. The dual learning mechanism
simultaneously optimizes the two objectives, such as generating text descriptions from
image representation and generating images from the text description.

This framework attempts to exploit the coupled relation besides improving the
captioning performance in the target domain. The proposed mechanism is categorized
as model-based and does not consider the data relation between source and target
domain, potentially inducing the negative knowledge transfer due to the low relation
between source and target domain. The model-based transfer learning for cross-modal
image captioning systems performs on the learning stages, requiring large computation
resources due to the complex interaction between models.
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3.2.2 Instance-based Transfer Learning

Intuitively, instance-based transfer learning refers to a technique for adjusting the
model weight of the target domain by selecting partial instances or data points from
the source domain as a supplement to the target domain dataset [108]. Ref. [123]
research which attempts to overcome the domain shifting problem using instance-based
deep transfer learning on image classification problems. This approach estimates the
influence of data in target domain samples by selecting the data point, which will
positively impact if acquired to the source domain. Afterward, the data point on the
target domain is optimized by removing the training samples that contribute to the
lower performance of the source domain model training. The remaining data for the
training dataset from the combination of source and target domain will build a new
model that is partially initialized based on the source model. Alternatively, fine-tuning
the pre-trained model with optimized training data in the target domain also can be
an option rather than build a new model.

Finding the data similarity for instance-based transfer learning is less suitable for
deep learning. For some reasons, i.e., data similarity calculation, it highly depends on
the method and experiment, the subjectivity and difficulties for determining appropriate
weight values, and the lack of flexibility and highly relies on fine-tuning skills. Ref. [10]
propose a multi source instance-based transfer learning to inductive learning transfer
of different dataset distribution. Inspired by the works of the human brain, a new
memory is consolidated slowly over time will result in efficient retrieval in the future.
To retrieve a similar instance, Ref. [10] use Local Sensitive Hashing (LSH) to augment
the learning by infusing a similar instance as latent representation. As deep learning
manners intend to process a large number of datasets, this approach employs cluster
analysis for reducing extensive process on the training phase. Still, this research is
expected to modify the need for multimodality training data. As far as our knowledge
is right, our proposed framework is the first instance-based deep transfer learning
applied on multimodal (image captioning task) datasets, which the previous research
is focused on a single modality.
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3.3 Proposed Multimodal Instance-based Represen-
tation

3.3.1 Images and Text Features Extraction

In this step, we will explain how the raw dataset, i.e., image and text pairs, are
processed before being used in learning for generating binary hash code representation.
The aggregate of preprocessing and transformation steps are applied independently
for both image and text. Raw image data is prepared by applying a sequence of
procedures, i.e., resizing, cropping, and normalization. All of the images are resized
into 256 pixels size, take random cropping on the center position in 224×224, normalize
by the mean and standard deviation of ImageNet dataset and transform the matrix
into tensors. For extracting the image into a vector feature, we utilized a CNN-based
pre-trained model ResNeXt [130] that already trained on a large-scale ImageNet dataset
by removing the last fully-connected layer. The last ResNeXt fully-connected layer has
the 2048-dimensions, representing the size of the output for the visual feature vector.

Several text processing procedures are applied for the raw text caption processing,
such as word tokenization and vectorization. Word tokenizing is performed by separating
each word based on the white space delimiter. Before the tokenizing procedure is applied,
the text cleaning is performed by removing numbers, punctuation, and stopwords. In
this case, we will not use all generated tokens rather than set a minimum threshold. The
threshold is used to determine whether a token can be included in the vocabulary or not.
Vocabulary is an array-like structure that associates the token with an integer of index
number. The text captions are then transformed into a sequence of vocabulary index for
further computation. To transform the sequence of the indices into a numerical vector
representation, we use an embedding layer to learn, and the output is word embedding.
We set the vector length for word embedding vectors to be 2048-dimensions, the same
as the feature vector output.

3.3.2 Cross-modal Hashing Representation

To avoid the loss of information from different modalities which point to the same entity,
this segment will provide detailed information to generate such a representation. This
chapter explains a strategy for learning how to generate a new feature representation
from multimodal sources into a single data point. The new representations are then used
for calculating the similarity of vector distance from multimodal feature representation.
Following the previous research, Ref. [42], we utilize the hashing mechanism to map
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the data point from the original space into a Hamming space on the deep cross-modal
hashing. The use of binary hash code has an advantage in reducing storage and
reducing resource complexity. The advantage of Hamming space is that the similarity
of the original space will be preserved in the new space so that we can still use the
new map of data like the original one. A pair of image-text in image captioning can
be considered a data point with a strong correlation, and a text caption describes the
object in the image. In a formal definition, denote n as the number of data point in the
set of data, define X = {xi}n

i=1 as a set of image for visual modality where xi is raw
image i. For the text modality, Y = {yi}n

i=1 represent a set of caption descriptions,
where yi denote the raw sequence of token as a description for image i. The feature
learning for image-text modalities is performed separately. For visual modality, the
function f(xi; θx) ∈ Rc denote the learned CNN-based visual feature for image i, while
the function g(yi; θy) ∈ Rc denote the learned word embedding sequence that fed to
fully-connected layer for representing text modality. The θx and θy both have the same
length as the desired hash-code length c, which points to the same entity. Generating
binary hash code by learning from image-text pairs, there is an objective function that
is defined from three sub-objectives as follows:

min
B,θx,θy

J = −
n∑

i,j=1
(Θij − log(1 + eΘij ))

+ γ(||B− F||2F + || B−G||2F )
+ η(||F1||2F + ||G1||2F )

s.t. B ∈ {−1, +1}c×n,

(3.1)

where F ∈ Rc×n for each F∗i = f(xi; θx), G ∈ Rc×n for each G∗j = g(yj; θy), Θij =
1
2FT

∗iG∗j. The hash code learning is proposed to generate binary hash code B(x)
∗i and

B(y)
∗j that represent the image vector feature xi and text vector features from caption

yj with γ and η as the hyperparameter. The first term of the objective function is the
negative log-likelihood of the cross-modal similarities, and the objective is to minimize
it. By optimizing this term, it can preserve the cross-modal similarity. The second term
parameterized by γ, we can preserve the value of the hash code from all modalities
that will have the sign value. Moreover, the third term parameterized by η has the
objective to balance all of the training points. The learning output from this part is
the generated binary hash point from all modalities.

Finally, to make a single representation, both binary hash code which i = j are
concatenated as B = B(x)

∗i ⊕B(y)
∗j into a single representation.
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3.3.3 Instance-based Multimodal Transfer Learning

Instance-based is an approach in transfer learning problem by identifying which data
points on the source domain set will potentially improve the training process on the
target domain dataset. Non-relevant data points on source domain and weak relations
data points between the source domain and target domain which give negative impact
supposed to be eliminated or modified. Ref. [123] proposed an instance-based method
for uni modal image classification tasks on a deep neural network approach. The
proposed approach on [123] is limited to a single modality that needs improvement
to overcome the transfer learning on image-text pairs data. To calculate which data
point on the target domain can be selected as an additional supporting data point,
this dissertation proposed cross-modal hashing representation, explained in previous
segments.

To calculate the similarity between two data points composed of multi-modal data,
i.e., image and text pair, can be more challenging than only a single modality. The
image-text binary hashing representation is then utilized to calculate the similarity
between two data points for determining the data point on the source domain dataset,
which can be used together with the target domain. In this research, we utilize pairwise
cluster similarity [85] by selecting the minimum distance between two data distributions.
To measure the similarity, it performs minimizing the distribution of data.

However, the pairwise cluster similarity has a drawback which only calculates based
on vector distance that lacks the semantic similarity. The cross-modal binary hashing
representation considers all information from the multimodal learning, which preserves
the semantic information between two data points. Afterward, the training data on
the source domain is optimized by removing training samples that contribute to the
lower performance of the pre-trained target model. Combining all target domain data
points and the remaining part of the source domain (after selection) will be used to
build a new model.

3.4 Experiment and Evaluation
In this segment, we will describe in detail how the experiment and evaluation are
conducted. The experiment and evaluation are conducted to verify the effectiveness
and the impact of the proposed framework. The proposed framework is shown in
Figure 3.2 composed of several parts, i.e., feature modality extraction, cross-modal
binary hashing, instance-based transfer learning, and image captioning system. This
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Fig. 3.2 The overall framework of cross-modal binary hashing strategy for instance-based
deep transfer learning on image captioning systems. There are several sub-components,
i.e., image modality, text modality, cross-modal binary hashing, instance-based transfer
learning, and image captioning system.

framework was implemented using a Python deep learning framework named PyTorch
that supports GPU hardware computation.

3.4.1 Dataset

The experiment conducted by using four image-text pairs datasets, i.e., MS COCO [63],
Flickr30K [135], CUB-200 [127], and Oxford-102 [76]. MS COCO (Microsoft Common
Objects in Context) is a large-scale dataset for several tasks, such as object detection,
segmentation, and captioning. This dataset consists of 328K images that contain
common objects and was released in the last version in 2017. The Flickr30k dataset
contains 31K images collected from Flickr, an online and sharing photo management,
paired with 5 reference sentences manually labeled by human annotators. The Caltech-
UCSD Bird-200-2011 (CUB-200) dataset contains 11,788 images of 200 categories of
birds. Each image has detailed annotations specific to the bird attributes. The Oxford
102 flower dataset contains 102 flower categories, which for each flower category consists
of 40 and 258 images.

To perform transfer knowledge from source to target domain, we group the dataset
into two categories, i.e., MS COCO as the source domain dataset, whereas Flickr30K,
CUB-200, and Oxford-102 are categorized as the target domain dataset. This ex-
periment can be categorized into two types, significant and slight shift, based on
the shifting level. A slight shift occurs between MS COCO with Flickr30k as they
have similar characteristics of image captions, such as both captions containing the
description of the object with the environment. MS COCO and Flickr30k also share
similar characteristics in sharing common objects that are not only to a specific object.
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A significant shift occurs between MS COCO with CUB-200 and Oxford-102 dataset,
in which both the target domain dataset describe the details of the specific object from
the images.

3.4.2 Experimental Setup

In this research, learning the model for image caption systems is performed using the
target domain dataset, which already has additional data supply from the selected data
points on the source domain dataset. We choose the MS COCO as the source domain
for all due to its size being the largest among the three others used in this experiment.
Other than that, MS COCO is considered the source domain for three other target
domain datasets due to its generalized and contains common objects images. There are
three other target domain datasets, i.e., Flickr30K, CUB-200, and Oxford-102. From
these three datasets, the Flickr30K has the most similarities to the MS COCO in the
contained object characteristics, whereas the two others, i.e., CUB-200 and Oxford-102,
have the specific object contained in the images.

This scenario intends to know how effective the cross-modal representation strategy
is for calculating the distance similarity on slightly and significant levels of domain
shifting. To investigate the effectiveness of our proposed representation strategy on
cross-modal transfer learning, we used several automatic metrics which commonly
used in language generation evaluation, i.e., BLEU 1-4 [80], Meteor [14], ROUGE
[62], CIDEr [114], and SPICE [1]. The proposed evaluation results are compared with
several baselines and scenarios, i.e., the pre-trained source domain, deep compositional
captioning (DCC) [28], adversarial domain adaptation [7], and fine-tuning. Detailed
evaluation will explain in the later segment.

3.4.3 Implementation

This framework consists of four sub-modules, including feature extraction modality,
cross-modal binary hashing, instance-based transfer learning, and learning process
for image captioning. The raw images and text data are processed to transform as
an initial in a separated module. As the image data from the various datasets used
in this research have different properties, initial preprocessing steps are performed
before feeding to the pre-trained model. The pre-processing is performed based on
the characteristics of the ImageNet dataset due to the pre-trained ResNeXt [130]
model being trained on the ImageNet [13] dataset. All images from the source and
target domain dataset were resized into 256 pixel size and random crop by the size
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224× 224 pixel. The normalization using mean and standard deviation value based
on ImageNet dataset [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225] respectively. The
text data is preprocessed by applying the tokenization and transforming it into word
embedding vectors with the length 256-dimensional.

After the raw datasets are represented as numerical vectors, it can be used to
learn the binary hash representation as shown in Figure 3.2 on the box labeled “cross-
modal binary hashing.” This process gets the inputs from “image modality” and “text
modality” boxes as the process of feature learning extraction from each modality. To
investigate the best length of hash code, the hash code representation of image-text
data is implemented with the three variations of length, i.e., 16-bits, 32-bits, and
64-bits. Joined representation of image-text represented by binary hash code has the
purpose of generating a single data point to compare among data points. After the
binary hashing code representation is generated, the representation is ready to use
in the instance-based transfer learning module. The ultimate goal of instance-based
transfer learning is to increase the number of target domain datasets to generalize the
learning process better. One of the transfer learning process objectives is overcoming
the overfitting due to the limited number of datasets available during the training
process. To select the source domain dataset, we first perform a grouping of the
generated binary hash representation for the source and target domain dataset. The
grouping strategy is using the cluster analysis K-Means algorithm by utilizing binary
pattern matching. After groups of clusters are formed, to perform elimination of the
data points from the source domain that has less contribution to the target domain,
we utilize pairwise cluster similarity proposed in [85].

Finally, to evaluate and quantify the effect of the cross-modal hashing representation,
this research implements a standard encoding-decoding model to learn image captioning.
In addition, the version of the dataset used in the image captioning learning phase is
the version that has already transferred supported data points from the source domain.
Learning the machine learning model for image captioning systems is conducted
inspired by the image captioning architecture proposed in [47]. This model combines the
convolutional neural network (CNN) on extracting visual features, and the bidirectional
recurrent neural network (RNN) focuses on generating caption descriptions. This
architecture is known as the encoder-decoded framework built on a deep neural network.
Following the experiment on [47], it is optimized by SGD with mini-batches optimization
function. In our proposed architecture, we utilize long short-term memory (LSTM)
[29] as defined in Equation 3.2 which has a memory cell component that preserves
the important information. It has a mechanism to forget unimportant information
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rather than remember everything forever. In our proposed architecture, we utilize long
short-term memory (LSTM) [29] as defined in Equation 3.2 which has a memory cell
component that preserves the important information. It has a mechanism to forget
unimportant information rather than remember everything forever.

ft = σ(Wf [ ct−1, ht−1, xt] + bf )
it = σ(Wi[ct−1, ht−1, xt] + bi)
gt = tanh(Wg[ht, xt] + bg)
ct = ft × ct−1 + it × gt

ot = σ(Wo[ct−1, ht−1, xt] + bo)
ht = ot × tanh(ct)

(3.2)

The LSTM cell requires the following input [ct−1, ht−1, xt] which annotates cell state
from the previous step, the output from the previous step, and the input at the current
time step respectively. These inputs pass through upon the two sigmoids to obtain
the input gate it and forget gate ft separately. The raw update as the new candidate,
gt, updates the cell state ct obtained from passing through the parameters into the
hyperbolic tangent function tanh. Raw output ot obtained from passing the input
parameters through the sigmoid. Finally, the output ht defined by the element-wise
multiplication of raw output ot with the cell state within tanh function. For more
detailed flow of the proposed framework, we present in pseudo-code Algorithm 1.

3.4.4 Evaluation

After implementing the proposed framework, the next step is to evaluate the effective-
ness and how the proposed framework performs compared with the other works. In
this section, we will explain the details of the evaluation for the proposed framework.
As this framework can obtain the best representation from multimodal image-text
pairs applied on image captioning problems, we follow a standard of how image cap-
tioning systems are evaluated. The previous segment has mentioned that we use
automatic metric evaluation commonly used in language generation tasks such as
BLEU-1, BLEU-2, BLEU-3, BLEU-4, Meteor, ROUGE, CIDEr, and SPICE. Meteor is
a standard evaluation metric originally for a natural language machine translation task
that quantifies the quality of the generated text. Meteor is proposed to overcome the
drawback of the BLEU score, which only considers the specific matches. The other
standard metrics evaluation are performed to make it possible to make comparisons.
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Algorithm 1: Learning architecture for multimodal instance-based transfer
learning

Input : (DS, DT ), sets of source data DS = {IS
m, Y S

m} and
target domain DT = {IT

n , Y T
n }, with IS

m are the
m-number images on source domain, Y S

m is the
caption of the m-th image; z-bits the length of the
binary hash representation; NC number of expected
generated clusters; t threshold instance selected from
cluster similarity

Training parameters : e the dimension of word embedding vector; h the
dimension of LSTM hidden states; l number of layers
in LSTM; e number of the epoch; b batch size; lr
learning rate.

Output : BDS
, BDT

∈ {0, 1}z sets of the binary code matrix
representation of image-text data both source and
target domain; sets of data points from DS that
similar to the DT ; generated caption from images of
test set from DT

Def Cross-modal Binary Learning:
{BDS

, BDT
} ∈ {0, 1}z = CrossHashing({IS

m, Y S
m}, {IT

n , Y T
n })

foreach {BDS
, BDT

} → binary hash do
CDS

= KMeans(BDS
)→ cluster of source domain

CDT
= KMeans(BDT

)→ cluster of target domain
CDS

→ {C1
DS

,C2
DS

,C3
DS

...,CNC
DS

}
CDT

→ {C1
DT

,C2
DT

,C3
DT

...,CNC
DT

}
end

Def Instance-based transfer learning:
foreach CDS

do
foreach CDT

do
CalculateDistance (Ci

DS
,Cj

DT
) → distance pair in CDS

and CDT

end
→ add all distance into sets of pair distance P
Sort (P ) → sorting distances of cluster pairs CDS

and CDT

Pmax → t−top pair clusters of P based on BDT

if ci
DS
̸∈ Pmax then

RemoveCluster (ci
DS

) → B
′
DS

end
B

′
DS

+ BDT
→ NewDataset

NewDataset = {I, Y }B
′
DS

+BDT

end
Def Learning Image Captioning Model:

xi = Encoder (i) → encoded image features vector xi

yi = Decoder (xi) → decoding the image feature xi into language caption yi
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The proposed approach is compared with several baselines and scenarios, i.e., “the
pre-trained source domain,” the deep compositional captioning, adversarial domain
adaptation, and the fine-tuning. Comparing the result of the proposed approach with
“the pre-trained source domain” means that there is a direct test of the target without
performing the transfer learning, or in other words, all of the data from the source
domain are used in the target domain without performing the selection process. The
fine-tuning comparison means that we perform training by migrating a pre-trained
model from a large-scale ImageNet dataset, excluding the last fully connected layer.
We train from scratch for the last fully connected layer by using the target dataset
itself (without performing instance-based transfer learning). Evaluation results and
analysis will be described in the later segment of this chapter.

3.4.5 Result & Analysis

In this segment, we will explain the evaluation result and analysis from the experiment
that has been performed. As explained in the previous segment, we set the MS COCO
as the source domain dataset for all others target domain datasets. This implicates
that MS COCO is expected to transfer knowledge to the target domain. Binary hash
code representation has the optimum with the length of 64-bits after testing on several
length options. The evaluation of the image captioning model was performed using
several automatic metric evaluations that are commonly used in language generation
tasks as shown in Table 3.1. The final captioning result reflects the effectiveness of the
transfer learning based on the cross-modal representation.

We present two additional experiment results from non-baselines research for the
evaluation, i.e., pre-trained source domain and fine-tuning transfer learning. The
pre-trained source domain learns the model using MS COCO dataset trained using
a pre-trained model on ImageNet dataset, which gives the lowest average compared
to the others. It can be analyzed that the domain shifting from this strategy is the
largest among the others. The fine-tune transfer learning strategy as the upper bound
result comparison learns the model by fine-tuning the pre-trained model and uses the
dataset itself as the learning set to obtain the last fully connected layer. From the
obtained automatic metric evaluation results, it can be analyzed into several parts.
Based on the target (test) domain dataset, the transfer knowledge from MS COCO to
Oxford-102 gives the best metrics evaluation result on average. It indicated that the
instance-based transfer learning effectively performs transfer for the significant domain
shift, whereas our proposed approach gives the lowest average score when applied on
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Flickr30K target domain. Comparing the upper bound performance based on the
target test also results from the previous analysis.

The fine-tuning strategy gives the performance impact to the result higher average
on the significant shift than the slight shift scenario. In contrast, the use of the
pre-trained source domain positively impacts the Flickr30k target due to its slight
difference characteristic of the dataset. Our proposed instance-based deep transfer
learning for image captioning outperforms some evaluation scores from the baseline
method for overall evaluation. It indicated that our implementation of multimodal
representation has a positive impact on the transfer learning process.

3.5 Discussion
This chapter presents our preliminary research on image-to-text language generation
from visual representation to obtain multimodal representation for transfer learning.
Representing raw data from multiple modalities into a single representation can
be viewed as the preliminary process before the learning model can be performed.
Transferring learning knowledge by selecting data points that give a positive impact
gives more challenge for data points that consist of more than one modality. Learning
representation from the large-scale dataset can be computationally expensive; moreover,
including transfer learning steps will be ineffective if the transfer learning process
performs burdensome. Our strategy in selecting potential data points from the source
domain that will be transferred to the target domain faces a challenge in finding the
similarity between two data points that consist of both image and text data. Afterward,
the transferred learning knowledge by instance-based transfer learning is applied to an
image captioning generation system.

In this discussion, we will elaborate on the evaluation, which can be considered
the result of the multimodal representation as to the preliminary steps on the transfer
learning mechanism. To evaluate the effectiveness of our proposed framework, we
compare the language caption using automatic metric evaluation to the baseline and
upper bound scenarios. The test result on Flickr30k is average outperform the “Fine-
tuning” as the Flickr30k, and the MS COCO have similar characters and distribution.
Otherwise, the CUB-200 and Oxford-102 as the significant shift, our proposed method
still has lower score evaluation due to the difference in distribution compared to
“Fine-tuning.”
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3.6 Summary
A learning strategy in handling domain shifting for multimodal image-to-text tasks is
proposed in this chapter. The instance-based is clean and straightforward for transfer
learning by selecting data points from the source domain that are potentially added
to improve the performance of the target domain. Perform instance-based transfer
learning on multimodal data pairs gives more challenge due to its complexity in finding
the data points that give positive transfer knowledge compared to performing it in a
single modality.

We propose a framework to obtain new data representation by generating binary
hash code for multimodal representation. It learns to combine an image feature with
its text description, which is considered a data point. To evaluate the effectiveness
of the proposed framework, we consider applying the image captioning task with the
cross-domain scenarios. Results on automatic evaluation metrics show this framework
effective for transfer learning strategies that perform on the initial state before training
the image captioning model. In addition, the binary hashing applied for combining the
image and text feature that enables the performance of semantic similarity measures
between data points. The proposed strategy in generating a multimodal hash binary
code is designed on one-to-one relation between an image and a text sentence description.
Consequently, it has a limitation in applying this framework for many-to-many relations,
such as the problem of many images paired with many sentences.

By considering the above limitation, in the next following chapter, we aim to explore
how to represent a pair of images sequence with the sentences in more advanced domain
problems, i.e., visual storytelling.





Chapter 4

Multimodal Sequential Correlation
Analysis

4.1 Introduction
After the one-to-one relation of image-text pairs representation framework has been
successfully built to effectively work on image captioning tasks, a more challenging
situation will be discussed in this chapter. With the enormous development in text
generation from visual representation (image captioning), a somewhat more complicated
situation known as visual storytelling [111] has emerged. The massive amount of images
posted to social network services (SNS) leads to creating photo albums, which motivates
the research and enhancement of visual storytelling. Instead of manually writing the
caption of photos in an album, such an application may theoretically help visually
disabled people grasp knowledge about them automatically. Aside from explaining the
literal object from pictures, the created story also contains non-visual concepts that
require interpretation through imagination and subjectivity. Figure 4.1 depicts how a
visual storytelling system automatically transforms a series of images into a cohesive
narrative story that unfolds over time.

Early research focused on developing deep neural network architecture to achieve
higher standard evaluation metrics for vision-to-stories generated language output
[110], [121], [24]. The majority of the prior works depend on the encoder-decoder
architecture with its variants. A visual storytelling architecture based on the attention
mechanism, a variant of encoder-decoder, inspired by a language machine translation
task, was introduced [48]. Attention mechanism also commonly applied on several
other translation applications such as image captioning [131], video captioning [22],
image paragraph captioning [70].
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In the image-to-text research domain, image(s) can be viewed as visual modality data
composed of literal objects and non-visual concepts. Literal objects are categorized into
components that can be recognized by the computer vision object detection algorithm,
whereas a non-visual concept is a word entity that accompanies the literal object
that the visual object detection algorithm cannot recognize. The main difference in
generating natural language text describing an image (image captioning) compared
to visual storytelling is the non-visual concept in visual storytelling, which is still
unexplored. As shown in Figure 4.1, the red printed word in Story Output such as
’beach’, ’Christmas’, ’picked’, and ’great time’ are the example of non-visual concept
words composed a story. The non-visual concept can be categorized into several word
entities, including events, actions, attributes, and other entities. A previous study in
Ref. [57] applied association rule mining to obtain the cross-modality rules by looking
at joint representation between visual features and an embedded vector of text as a
filter on the attention layer. To generate a text story that contains the non-visual
concept words, several works attempt to include the external knowledge instead of
using the available data on an end-to-end architecture. Ref. [133] utilizes external
resources to explore the imaginary concept by focusing on common-sense reasons in
addressing the lack of non-visual concept words. Another research Ref. [28] utilizes
the large-scale external text corpora to allow the model to generate descriptions of
novel objects by transfer of knowledge of semantically similar concepts. As it turns
out, they both have strong ties to an external knowledge base instead of end-to-end
deep architecture. Thus the story generated is dependent on the external sources that
cause a lack of flexibility and independence as learning representation from data.

In this chapter, we will explain the strategy in order to address the aforementioned
limitation. The cross-modal correlation will be considered in the proposed framework
as the semantic association factor instead of depending on external knowledge. Cross-
modal correlation learning is performed to map the two different modalities (sequence
of images paired with sentences story) of visual storytelling into a common space
that maximizes the correlation. Refers to the solution from Chapter 3, the related
problem has a difference in the relation among the modality. Chapter 3 defines the
pair image-text as only one-to-one, which is an image only corresponding to a sentence.
However, in this chapter, the n-ordered image sequence is corresponding to n-sentences
coherently. This chapter proposes a new vector feature correlation that works to guide
the decoding process for the attention layer in generating stories. Extracting the
semantic relation of images and text in Ref. [81] employs canonical-correlation analysis
(CCA) with its limitation in computational aspect for large-scale learning. Moreover,
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Fig. 4.1 Visual storytelling task translates visual input to text story output. There are
five pairs of images sequence with sentence stories each. (a) Maximize the correlation
for two exact matches of the image (triangle-shape) and the text (circle-shape) which
no correlation among them. (b) Not only maximize the correlation between image and
text, but the proposed model also maximizes the correlation between each pair in a
story (rectangle-shape). This will extract the non-visual concept as shown in the red
printed text of Story Output.

Ref. [119] proposed deep canonical-correlation analysis that includes the non-linearity
feature transformation through deep neural networks. This research introduces an
end-to-end framework by considering the order or time-series correlation not covered by
the previous studies. The main contribution of this chapter is summarized as follows:
1) an end-to-end framework of visual story generation by introducing an attention
mechanism with time-series correlation as the decoding process in order to compose
non-visual concept words, 2) introducing correlation learning on sequential data setting,
3) comprehensive experiment and evaluation to confirm of the outperform result of the
proposed approach.
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4.2 Related Work

4.2.1 Visual Storytelling

Given a sequence input of images, a visual storytelling model will generate a textual
language story output. This chapter focuses on obtaining the sequential time-series
correlation on multimodal image-text pairs. In this segment, we will mention some
previous works on visual storytelling research topics. We first divide the visual
storytelling research topic into two groups; the first is the approaches focused on
content understanding from visual representation that attempts to discover the latent
context of the sequence of images [24, 48, 81, 119, 136]. Most of them focused on
extracting important features on the sequential images and decoding them into a text
story. The second group approaches focus on sentence story generation procedure and
emphasize the quality of the story generation process that is different from standard
object description text [33, 124, 37, 58, 65]. Based on the two aforementioned groups,
our approach focused on extracting the latent representation of multimodal data
(sequential images and text story) or can be grouped as the first category.

4.2.2 Attention Mechanism

A problem from the sequence-to-sequence model from RNN-based encoder-decoder
architecture is that it encodes the entire input sequence into a single vector to generate
the sequence output. It might work well for short input sequences, but the sequence-
to-sequence fails to capture the information from long sequence input. Based on
this limitation, as we utilize the time-series feature correlation considered to guide
the decoding language generation, the attention mechanism [3] is considered to be
the underlying architecture instead of the standard encoder-decoder mechanism. In
understanding sequential data, the term “attention” has the meaning in a model
needing to focus only on a specific part of the sequence instead of remembering entire
information from the input. In generating sequence output, the model uses the final
summary of the entire output and incorporates attention to different parts of each
sequence input.

The attention mechanism proposed in Ref. [3] is originally applied for the neural
machine translation. Since then, several kinds of attention mechanism modifications
are proposed for the other tasks. The attention mechanism has proven to improve
the performance of deep neural network models with complex inputs and outputs.
As attention mechanism is a general model that is possible to work on text sequence
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modality, we utilize the attention model in the automatic visual storytelling model.
Instead of considering only the final hidden state from the encoder parts, the attention
mechanism incorporates the hidden state from each of the intermediate steps in sequence
to obtain the attention from the input sequence.

In the attention mechanism, there are three basic terminologies ,i.e., keys, values,
and queries where values is the encoder’s hidden state, queries is the previous hidden
state of the decoder. In some situations the keys refers to the same thing as values.
Attention is represented by a vector with the same dimension size with the input it
attends to that known as attention vector, or attention weight, or alignment. Attention
mechanism can be divided into two groups based on the attention weight value, i.e.,
soft attention which typically has the floating-point value between 0 and 1, whereas
hard attention has the value of binary 0 or 1. Instead of using the entire encoder output
hidden state as the input for the decoder, the attention mechanism uses context vector
as the decoder input. The context vector is generated by combining the attention
vector with the encoder state values.

4.2.3 Canonical Correlation Analysis (CCA)

The canonical correlation analysis (CCA) is utilized as the underlying mechanism in this
chapter to obtain the latent representation from multimodal data. As the multivariate
statistical method, CCA was first introduced in Ref [32] attempts to discover the
relation of two different feature modalities. Let X ∈ Rn1×m and Y ∈ Rn2×m are two
sets of vectors with the same number of vectors m. CCA attempts to learn new vectors
representation A ∈ Rn1×r and B ∈ Rn2×r as linear transformation that satisfying an
objective to maximize the correlation between AT X and BT Y . Given X and Y are
the two sets vectors, the covariances are S11 and S22 with the cross-covariance as S12.
The CCA is to learn to optimize the objective as follows:

A∗, B∗ = arg max
A,B

corr(AT X, BT Y )

= arg max
A,B

AT S12B√
AT S11A

√
BT S22B

.
(4.1)

Another way to find the canonical correlation is by using singular value decomposi-
tion as suggested in Ref. [71]. Define U, S, V T , as the singular value decomposition of
matrix Z = S

− 1
2

11 S12S
− 1

2
22 where S11, S22 is the covariance of of two vector set X and Y ,

while S12 is the cross-covariance. By these definition, we can state the total maximum
canonical, A∗, and B∗ as follows:
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A∗ = S
− 1

2
11 U

B∗ = S
− 1

2
22 V

corr(A∗T X, B∗T Y ) =
√

trace(ZT Z).

(4.2)

CCA process by addressing the linear transformation, which is not suitable for
large-scale dataset model learning. The non-linear canonical correlation analysis will
be discussed in the next segment.

4.2.4 Non-linear Canonical Correlation Analysis

Canonical correlation analysis is limited to address the linear transformation instead
of the non-linear computation. The current improvement from the CCA is deep
canonical correlation analysis (DCCA) proposed in Ref. [2] which learn complex non-
linear transformations of two data representations and resulting in new highly linearly
correlated data representation. An example of the implementation of the DCCA
is for recognizing emotion from multimodal data [64]. It transforms each modality
separately and combines different modalities into hyperspace by using specified canonical
correlation analysis.

DCCA attempts to learn non-linear transformations between two independent
neural networks. The two separate neural networks denoted as p and q; DCCA has
the objective to optimize θp and θq as the parameters of these networks. The canonical
correlation of the two networks p and q with the two random variable input X and Y

is denoted as FX = p(X; θ1) and FY = q(Y ; θ2) can be maximized by generating the
two linear transformations M∗, N∗. The DCCA is to learn to optimize the objective
as follows:

θ∗
p, θ∗

q = arg max
θp,θq

CCA(FX , FY )

= arg max
θp,θq

corr(M∗T FX , N∗T FY ).
(4.3)

The network parameters in calculating the canonical correlation need to be updated
based on the loss function in a back-propagating manner. Defined FX and FY as the
result of the two canonical correlation from two random variables, R11 and R22 are the
covariances with the cross-covariance R12. Refers to the suggestion in Equation 4.2, for



4.3 Proposed Canonical Correlation Attention Mechanism 59

non-linear CCA can be restated as U, R, V T , which are the single value decomposition
of the matrix E so that the value of θ∗

p, θ∗
q stated as follows:

E = R12R
− 1

2
11 R

− 1
2

22

θ∗
p = R

− 1
2

11 U

θ∗
q = R

− 1
2

22 V

(4.4)

The loss function of the DCCA for updating the weight FX and FY can be defined
as follows:

CCA Loss = −
√

trace(ET , E). (4.5)

The negative sign added for the loss function to inverse the objective, i.e., maximizing
the correlation. Both of the two network parameters θp and θq from networks p(X; θp)
and q(Y ; θq) are optimized to minimize the loss value or maximizing the total of
canonical correlation. This chapter will explain our strategy in utilizing the non-linear
canonical correlation analysis for sequential data.

4.3 Proposed Canonical Correlation Attention Mech-
anism

Automatic visual storytelling model builds to learn sequence input image DV and
translate the array of ordered visual representation into a coherent text story output
DS. In a generated text story, it contains literal object descriptions and non-visual
concept words. The model trained by process set of image sequence input DV , where
DVi

= {v1, . . . , vt} is an instance of image sequence with the length t. The DVi

represents the time-line of an events i as the ordered photos that correspond to the
sequence of sentences output DSi

= {s1, . . . , st}. The sentences s might have a different
number of words w for each sentence in a story output DSi

. The VIST dataset [111]
consists of a set of paired sequences of images with sequences of text sentences. A story
consists of 5 sequences of ordered images and 5 sequences of ordered human-generated
text stories. This segment will describe our proposed model as the first attempt to
build a new feature representation based on canonical correlation analysis on sequential
data models between two modalities, including images and text.
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4.3.1 Visual-Textual Modality Correlation

Previous studies were conducted exploring the relationship between two or more
modalities by maximizing the correlation in a new vector space. In this segment, we
describe the general process of the modality correlation. Automatic visual storytelling
consists of two modalities, i.e., images and text, which are arranged in sequential or
time-series settings. The previous approach, deep canonical correlation analysis, is
not designed to find the correlation for multimodal sequential data. Thus, such an
approach might not be suitable to handle time-series multimodal visual storytelling.
Other studies Ref. [11, 118] conducted in exploring the correlation of the time-series
data for single modality also not suitable to find the correlation of pairs of sequence
image-text data.

To address the previous work limitation in handling multimodal sequential data
correlation, we propose to apply a combination of recurrent neural network-based
deep neural network and canonical correlation analysis as shown in Figure 4.2. In this
research, we utilize LSTM for handling the sequential learning of word embedding story
independently, whereas to extract the images features, we employ the pre-trained CNN-
based model ResNet. The detailed works of the LSTM network are already explained
in Equation 3.2. In addition, to learn the sequential features for both modalities, we
utilize bidirectional LSTM (Bi-LSTM). Two independent LSTMs are composed in
forward and reverse direction in reading the sequence known as bidirectional LSTM
(Bi-LSTM). Bi-LSTM was introduced by [96] to improve the efficiency and capacity in
learning the sequences of data. The learning process of Bi-LSTM networks as shown
in Equation 4.6 optimize the LSTMf and LSTMb are the forward and backward of
LSTMs respectively.

hf
t = LSTMf (xt, hf

t−1)
hb

t = LSTMb(xt, hb
t−1)

ht = Wfhf
t−1 + Wbh

b
t−1 + b

(4.6)

The next segment will describe how sequential learning is applied to canonical
correlation analysis.

4.3.2 Time-series Canonical Correlation Analysis

Inspired from the previous research on multimodal learning Ref. [137, 67], the use
of the outer-product different modality can learn the combination effectively. The
outer-product between visual and textual modalities are applied in the implementation
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Fig. 4.2 The training architecture overview of feature fusion based on non-linear
canonical correlation analysis. This phase involve both visual and textual modalities.

of time-series canonical correlation analysis. As shown in Figure 4.3, the proposed
framework of time-series canonical correlation analysis, let Dv ∈ Rdv×lv×N be the
visual inputs from image sequence, and Ds ∈ Rds×ls×N as the textual inputs from text
embedding sequence with N number of data. Both Dv and Ds are the input for the
network with the same length of sequence lv = ls = 5 for each data in VIST dataset
as stated in Equation 4.7. A pre-trained networks ResNet, stack of convolutional
neural network layers ConvNet, used to extract the spatial feature of an image with
the output denoted as Dv1 ∈ Rdv1×lv×N . In order to obtain the temporal features from
an image sequence, the BiLSTM network applied in five sequences of extracted spatial
features, with the output a final hidden state denoted as Dv2 ∈ Rdv2 .

Dv1 = ConvNet({v1, v2, ..., vlv}N
i=1), Dv1 ∈ Rdv×lv×N

s = Embedding({s1, s2, ..., sls}N
i=1), s ∈ Rds×ls×N , si = {w1, ...wt}, w ∈ V

Ds1 = LSTM(s), Ds1 ∈ Rds×ls×N

Ds2 = BiLSTM(Ds1), Ds2 ∈ Rds2×N

Dv2 = BiLSTM(Dv1), Dv2 ∈ Rdv2×N

(4.7)
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In visual storytelling, a sequence of image data is paired with a sequence of sentences
composed of sequences of words for each sentence. Thus, textual modality consists
of two-level sequential learning representation. First, a story-level representation is
consisting of five sentences each {s1, s2, ..., sls} where ls = 5. Before the language text
data processed in the proposed model, it represented as numerical word embedding
representation on Embedding layer as shown in Equation 4.7. A sentence si is composed
of t number of words w, where it is the member of vocabulary set V. For each sentence
si, the embedding representation of a sentence-level s fed into the LSTM network, then
the final output of the LSTM Ds1 ∈ Rds1×ls×N will fed into the Bi-LSTM network to
obtain the story-level representation. The output of story-level representation learning
Ds2 ∈ Rds2×N obtained from the final output of the Bi-LSTM layers. Both visual
sequence and textual story features then fed to the Bi-LSTM network to obtain the
final output of Bi-LSTM Dv2 ∈ Rdv2×N for visual modality and Ds2 ∈ Rds2×N for
textual modality as shown in Equation 4.7.

The obtained learning features from both visual and textual modality were then
forwarded to learn the fully connected layers f1 and f2 (as shown in Equation 4.8) that
optimized the network parameters by the objective function of canonical correlation
analysis loss function as stated in Equation 4.5. f1(Dv2) is a fully connected layer
which process visual modality features hv with parameters W 1

d and b1
d, while f2(Ds2) is

a fully connected layer which process textual modality features hs with parameters W 2
d

and b2
d. To obtain the maximum correlation, the learning process finding the optimum

value of parameters θp and θq which maximizing the visual and textual correlation
respectively. The final representation from the combination of both visual and textual
modality Dvs ∈ Rdv2×ds2×N is the outer-product of the final output vectors of fully
connected layers as shown in Equation 4.9. Furthermore, the final combination will be
used as the context vector in the attention mechanism in the next stage.

f1(Dv2) = s(W 1
d hv + b1

d)
f2(Ds2) = s(W 2

d hs + b2
d)

θ∗
p, θ∗

q = arg max
θp,θq

corr(f1(Dv2; θp), f2(Ds2; θq))
(4.8)

Dvs = f1(Dv2; θ∗
p)⊗ f2(Ds2; θ∗

q), Dvs ∈ Rdv2×ds2×N (4.9)
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4.3.3 Correlation for Attention Mechanism

After the final feature combination of the time-series multimodal learning is obtained,
we will describe the proposed architecture of learning the automatic visual storytelling
model. We utilize the attention mechanism for sequence learning in this chapter to
train the natural language generation model based on visual sequence input. Instead
of overcoming the problem of standard encoder-decoder in memorizing the long data
sequence, the attention mechanism enables to take advantage of the feature combi-
nation result from the time-series CCA. In common sequence-to-sequence tasks, a
standard encoder-decoder architecture encodes the input into a single fixed-length
vector representation. From this vector representation, it is expected to extract the
information contained by the input sequence. The fixed-length vector representation is
then fed to the decoder to transform it into the sequence of output.

The encoder-decoder architecture might well perform on short-length sequences
but will decrease the performance in longer sequences due to the vanishing gradient
problem. Thus, the attention mechanism is utilized in this research which not only
takes the final hidden state of the encoder rather than finds out the context vector
from each step of the input as the guide for the decoder. In more detail, to take
advantage of the feature combination result from the time-series CCA, the decoder
involves the vector feature combination that includes the semantic correlation between
visual and textual modality. It expected the text story generated by the decoder to
contain non-visual concept words as the result of the semantic correlation.

Encoding The Input

The encoder-decoder architecture is a common concept that is utilized in some use cases
of sequence-to-sequence models. The initial step that transforms the input sequence
with length variation into a fixed-length vector representation is known as encoding.
Visual storytelling task can be categorized as a sequence-to-sequence model due to its
input being a sequence of images Dv ∈ Rdv×lv and the output being the sequence of
sentences. The two-level encoding is performed for the image sequence input, i.e., the
local encoding and the overall encoding. The local encoding transforms each image
into fixed-length vector visual features. In this case, we utilize the ResNet-152 [27]
a CNN-based pre-trained model. The overall encoding considers the encoded local
features as a sequence of vectors. In this research, the overall encoding was performed
using a RNN based network. To fit in the attention mechanism, all hidden state output
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Dv1 ∈ Rdv1×lv generated from each visual input sequence encoding process will used
instead of only the final hidden state output.

Alignment Score

After all hidden states from each sequence input have already been encoded, the next
step is to calculate the alignment score. The alignment score is calculated at each
time of the decoder step by incorporating each encoder output for the decoder input
and hidden state at that time step. Calculating the alignment score can be regarded
as the core of the attention mechanism, as it measures the amount of attention by
the decoder to each encoder outputs for generating the next output. This research
proposed to add an extra component in calculating the alignment score by considering a
matrix Dvs ∈ Rdv2×ds2 as the multimodal features combination which highly correlated.
Including the combination of the multimodal features in calculating the alignment
score aimed to guide the decoder to the latent semantic correlation between time-series
visual and textual modality. Inherited from the original attention mechanism [3], the
alignment score scorei quantify the degree of attention between the previous decoder
hidden state Hd to each step of encoder hidden state Dv1. The Hd is the hidden
state of the sequential learning from LSTM which considered for language generation
as shown in Equation 4.13. Hd is the decoder hidden state. In this research, the
sequence-to-sequence model is composed of encoder and decoder parts. The decoder
receives the encoder’s last hidden state output which is considered as the first decoder
input. The Hd is the hidden state of the decoder from each cell of LSTM which is
used to generate language stories. The decoder actually is composed of a sequential
learning algorithm, in this case is LSTM We modify the alignment score by adding the
three parts: feature combination matrix Dvs, the decoder hidden state Hd, and the
encoder hidden state Dv1. The learning process performed by optimizing the weights
of the trainable parameter of the alignment score Wd, WDv1 , WDvs , Wc that represents
decoder weight, encoder weight, feature combination matrix weight, and the combined
weight consecutively.

enci = fc(WDv1 ·Dv1i
), i = 0...lv

decj = fc(Wd ·Hdj
), j = 0...lv

cmb = fc(WDvs ·Dvs)
scoreij = Wc · tanh(enci + decj + cmb)

(4.10)
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In the training process, encoder output from each step, decoder hidden state, and
feature combination matrix are feeds through the fully connected layer individually
with the output enci, dec, cmb as shown in Equation 4.10. The three training weights
will be joined together by additive operators before passing through a hyperbolic
tangent activation function. In particular, each encoder output will be added with the
decoder hidden state. The last, to obtain the alignment score, the output combination
from the hyperbolic tangent is multiplied by the combination vector weight Wc.

Attention Weight

After the previous step, we already obtain the alignment score by involving the
combination of the multimodal features. In this segment, we will calculate the attention
weight αij. As we know, the attention weight or also known as attention vector or
alignment, is obtained by applying a softmax on this vector. For each encoder, vector
output will have the degree of attention ranging between 0 to 1. This procedure applies
the softmax function for all encoder vectors so that the sum up of all weights is 1.

αij = exp(scoreij)∑lv
i=0 exp(scoreij)

(4.11)

Context Vector

Combining the attention weight with the encoder states will generate a context vector
ci. The context vector will be the input for the decoder, which contains the “attention”
instead of the full input encoding. It is produced by element-wise multiplication
between all encoder outputs Dv1j

with the attention weight αij. The input element
with a value close to 1 means the element has strong attention rather than the input
element close to 0.

ci =
lv∑

j=1
αijDv1j

(4.12)

Decoding The Output

After the context vector has already been calculated, the decoding process can be
executed by concatenating the previous decoder output xt−1 with the generated context
vector ci. A concatenated vector as input then passes through the decoder LSTM
networks and the previously hidden state ht−1 to obtain a new hidden state ht. The
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iteration will be repeated from the 4.3.3 until facing the conditions of the decoder
generates a stop token or exceeds the maximum length. At the final process, to obtain
the next word prediction, the new hidden state ht passes through a linear layer as the
classifier to get the probability score st.

ht = LSTM(ci + xt−1, ht−1)
st = softmax(fc(Ws · ht))

(4.13)

4.4 Experiment and Evaluation

4.4.1 Dataset

In this research, we conducted experiments comprehensively on the visual storytelling
dataset (VIST) [111]. VIST is the only dataset on automatic visual storytelling tasks
known as sequential image narrative dataset (SIND) v.2. We use images-in-sequence
(SIS) stories for automatic visual storytelling tasks, a version of the VIST dataset,
instead of descriptions of images-in-isolation (DII). SIS and DII have different text
annotation characteristics when describing the photos. A story in VIST’s dataset
consisted of five images in a sequence and paired with five ordered sentences. The total
images contained in the VIST dataset are 209,651 that split into threefold, i.e., 167,528
for training, 21,048 for validation, and 21,075 for testing purposes. The number of
stories in this dataset is 50,200 stories in total and splits up as 40,155 stories, 4,990
stories, and 5,055 stories for training, validation, and testing, respectively.

4.4.2 Experimental Setup

The training phase involves the training and validation set to conduct the experiment,
whereas the evaluation phase is using the testing set. Other than training the pro-
posed automatic visual storytelling model, several initial segments and sub-experiment
processes were conducted. For the text modality, a set of procedures is arranged to
prepare the text story from raw into a ready version to train the model. Like the text
modality, the visual modality is also prepared by a set of processes that allow the raw
image to be fed to the neural network training model. Additional investigations were
arranged to analyze the word token distribution and visualize the multimodal features.
These investigations aimed to give a glimpse of insight for evaluation purposes. The
detailed configuration of the hyperparameter and the neural network layers will be
explained in the implementation segment of this chapter.
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4.4.3 Implementation

Overall configuration. As shown in Figure 4.4, the overall proposed framework can
be divided into two main parts. The first block of architecture is associated with the
time-series canonical correlation analysis, which focuses on generating new feature
combinations between visual and textual modality. The second block of architecture
is related to generating a story based on an attention mechanism that involves the
result obtained by the first block. Several parts are shared for both architecture
blocks, such as the visual feature extractor and the textual embedding layers with the
same configurations to simplify the architecture. The visual feature vector has the
1024-dimensional length, whereas the textual modality word embedding vector has
the 256-dimensional used in learning both time-series canonical correlation and the
learning for generating story phases.

Hyperparameter configuration. In the automatic visual storytelling model
training, the experiment uses the mini-batch with the size 64 data instances. We
applied the reshuffling mechanism on mini-batch to help the model convergence find the
complex relationship between input and output. Regarding the two different objectives,
we applied two different loss functions and two different optimizers for each particular
purpose. For the time-series canonical correlation analysis, we follow the CCA loss
function as stated from Equation 4.5, while for the story generation part, we utilize
standard cross-entropy loss function. Adam optimizer [49] applied to optimize the
parameters of story generation networks parts. It updates and optimizes the trainable
weight parameter with the initial learning rate set at 1e− 3 while weight decay is set
at 1e− 5. Inspired from the previous study [64] on non-linear canonical correlation
analysis, we applied the RMSprop optimizer with the initial learning rate parameter set
at 1e− 3 and weight decay set to 1e-5 as the regularization parameter of the network.
The proposed framework is implemented in PyTorch [82], an open-source Python deep
learning library, in GPU [78] computer that optimizes for tensor computation to learn
the model architecture.

Data Preprocessing. In this implementation, standard steps before processing
the raw data through the neural network model for visual and textual modality are
performed independently. We perform resizing, cropping, extracting features based on
the pre-trained model, and normalizing visual modality. The entire image file from all
datasets was resized into 256-pixel squares to reduce the computational cost in tensor
processing. The resizing procedure was performed by random crop to 224 pixels. After
that, the raw image data is transformed into a tensor representation and normalized
by the average and standard deviation value of the ImageNet dataset. Finally, the



4.4 Experiment and Evaluation 69

feature extraction is performed by utilizing the pre-trained model ResNet-152, which
has the advantage in computational and time efficiency compared to hand-crafted
feature engineering manually with a limited number dataset. Next, we follow several
standard transformations and pre-processing procedures such as tokenization, building
the vocabulary, and vectorization for the textual modality. Standard word-level
tokenization is performed to transform the sentences into words or tokens. Each word
token that is eligible based on the minimum threshold word occurrences from all text
stories will be added to the vocabulary. Otherwise, it will be eliminated. Reducing
low occurrence tokens can reduce the learning complexity due to the high variance
of the infrequent tokens. We add some extra tag-like tokens with a special purpose,
i.e., < pad >, < start >, < end >, < unk > that appended to the raw text story. The
entire token words will be assigned a numerical index value so that now for a text story,
it is represented by a sequence of numerical indexes.

Fig. 4.4 The overall architecture design. (a) Images feature extraction and story
embedding representation. (b) Time Series Canonical correlation analysis to calculate
new feature fusion representation. (c) Image feature sequence story extraction. (d)
Attention mechanism based on new feature fusion. (e) LSTM decoder to generate
sentence story. (f) The output of sentence story.

4.4.4 Evaluation

Similar to the evaluation performed in Chapter 3, we evaluate the output text generated
on several automatic metrics commonly used in natural language generation tasks.
Other than automatic evaluation metrics, we conduct the ablation study to analyze the



70 Multimodal Sequential Correlation Analysis

Fig. 4.5 Word frequency distribution for each sequence in the story. The ’Sequence 1’
is the first sentence regards as the opening of the story that followed by Sequence 2, 3,
4, and 5. The number of frequency indicating the uniqueness of words appears in a
particular sequence.

performance of the proposed framework by removing some components and investigate
the effect caused by these actions. In this research, we use automatic evaluation metrics
such as METEOR [14], BLEU [80], CIDEr-D [114], and ROUGE-L [62]. The METEOR
is an evaluation metric that originally for machine translation tasks quantifies the
quality of the use of generated text. It proposed to overcome the problem of BLEU
score that lacks specific matches. The other metric is CIDEr-D, which focuses on
measuring the similarity between the generated text and the human-generated story,
which did not use precision-based metrics. The last is ROUGE-L, a recall-oriented
evaluation metric for text generation in task summary. For the evaluation, this research
implement the code from this repository1.

For the ablation study, we conduct two removal scenarios of the framework com-
ponent, i.e., time-series canonical correlation analysis and the attention mechanism
ablation. Detailed scenarios will be described in the discussion part of this chapter.

1https://github.com/lichengunc/vist_eval



4.4 Experiment and Evaluation 71

Fig. 4.6 Top-40 of the non-visual concept comprises two groups of words, such as
transition and adjective words. The two heat map briefly represents the density of
frequency distribution on each sequence of the story for both of non-visual concept
words groups.

4.4.5 Result & Analysis

In this section, we will present detailed results and perform analysis based on the
extensive experiment. There are two primary investigations conducted, i.e., the
performance of time-series multimodal correlation and natural language story generation
quality. We divide the result and analysis into several parts, i.e., analysis from dataset
visualization, the comparison of proposed work with the previous related work, the
analysis of the effectiveness of time-series canonical correlation, and the correlation
coefficient, and the qualitative result analysis.

Token distribution analysis. An additional investigation is conducted to get a
glimpse of the token word distribution in the stories. The token distribution analysis
aimed to find the characteristics of the time-series-related token appearance in a story.
Presented in Figure 4.5, the word token frequency distribution from each sequence from
entire available stories depicts the differences of the word characteristic that appears
for each sequence. Before we present the word frequency distribution across different
sequence orders, we eliminate several word tokens, such as stop word, number, and
punctuation. Based on the visualization from Figure 4.5, the occurrence of several
words can be considered as describing the uniqueness from a particular sequence order.
In the first sequence or denoted as ‘Sequence 1‘, the occurrence of the word ’location’
and ’today’ characterize the opening of a story as it appears in the first sequence.
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The closing words of the story, which occurs in the last sentence, such as ’end’ and
’night,’ indicate that some words have their specific purpose. Our objective is to explore
the non-visual concept word to investigate the frequency distribution of non-visual
concepts in the story generation. Figure 4.6 presents the heat map of two kinds of
word groups and transition and adjective words. First, to produce this heat map, the
investigation of considering transition and adjective words as the foremost part of the
non-visual concept was decided. This figure examines both the quality and quantity of
non-visual concept words with or without applying the proposed architecture. Token
distribution analysis is aimed to analyze the initial condition of the word distribution
in general. From the result, the pattern can be presumed that both the general word
and the transition word are clearly segmented based on the sequence order as shown
in Figure 4.5 and 4.6.

Multimodal Data Visualization Analysis. To observe the distribution of the
multimodal features from the VIST dataset, we present the t-SNE data visualization on
Figure 4.8 from high dimensional multimodal features. This visualization is aimed to
examine the effectiveness of the new feature generated based on canonical correlation
analysis. As images and text have high feature dimensionality, the t-SNE algorithm
reduces the data dimensionality to an adequate size. Figure 4.8 shows that they are
divided into six sub-figures, i.e., Figure 4.8a-Figure 4.8f. Based on the data arrangement,
we categorize the t-SNE representation into two groups, i.e., grouping features data
from the same sequence order (same sequence order will have the same attribute
color), and the second is grouping features data from the same story. Both groupings
are then differentiated by their modalities, i.e., visual features, textual features, and
combinational features. Figure 4.8a-b are the t-SNE visualization of visual features
which the data grouped by the same sequence and story, respectively. Figure 4.8c-d
visualizing the t-SNE from high dimensionality of textual features which differentiate
by the same sequence and story respectively. Figure 4.8e-f are the t-SNE representation
of combinational features from visual-textual modality.

Figure 4.8a, data points with the same color represent the same sequence among
stories. It appears that the majority of data points from the same story tend to have
a close position. Besides, most of the same color data points are scattered randomly,
but concurrently they group with other colors data points in arranging a story. Figure
4.8b shows that the same color data point represents the features from the same
story. Data points in Figure 4.8a and 4.8b can be analyzed that the similarity of the
intra visual-feature of a story tends to have higher similarity compared with the inter
visual-feature (another story), which means the images from the same story tend to
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have similar looks. Figure 4.8c has a similar pattern compared to the Figure 4.8a,
while the Figure 4.8d has scattered data points randomly among the same story in
comparison with the Figure 4.8b. Data points in Figure 4.8d do not present a clear
pattern as in Figure 4.8b. This condition can be analyzed that some groups of words
tend to present in a specific sequence, as presented in Figure 4.6. In other words, the
dominating character of the sequence-specific word affects this condition. Figure 4.8e
and 4.8f are present the feature fusion of the visual and textual features. Figure 4.8e
shows the fusion of the original features, both visual and textual, that look randomly
scattered with no obvious pattern that can be observed. After applying the time-series
canonical correlation analysis, the fusion of the two modalities as the new features can
be observed in Figure 4.8f. The semantic pattern group of data plots is clearly present
where the data point from the same sequence and same modality forming a cluster as
the consequence of time-series correlation.

Comparison with related work. We followed automatic metric evaluation
from baseline and related work in visual storytelling to compare with previous works.
Table 4.1 presents the comparison of our proposed framework with the baselines and
re-implementation of related works using several evaluation metrics such as METEOR,
CIDEr, ROUGE-L, BLEU 1, BLEU 2, BLEU 3, and BLEU 4. In this experiment,
we compare several baseline works from the visual storytelling task and re-implement
additional works from another image-to-text task related to the visual storytelling
task. The first work is neural image captioning (NIC) [115]. Inspired by the seq-to-seq
problem in utilizing the encoder-decoder architecture applied for language machine
translation, NIC encodes the visual representation into a fixed-length vector then
decodes it into a variable-length of text description. We re-implement this work and
applied it to the visual storytelling task to investigate whether it is adequate to use
single input images compared with the sequence images input approach. The learning
objective of this approach is to maximize the likelihood of the input image with the
target sequence of words. Instead of using the static visual representation, this approach
focuses on the important object and omitting unimportant objects. The second work is
the visual attention [131] allows the salient features of visual representation dynamically
used in the language generation. Similar to [131], adaptation is performed to receive an
array of images rather than a single one. The next work is Global Local Attention
Cascading (GLAC) [48] faces the problem of generating an image-specific sentence
that covers the overall image representation in sequence. Two levels of attention
containing overall global encoding and local features of an image. These attentions are
implemented via hard connections from the output encoder onto the sentence generator.
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The next work Hierarchical Aligned Cross-modal Attention (HACA) [126]
fuses both local and global temporal dynamics of different modalities. HACA addresses
the fusion problem of the multimodal domain to learn temporal features from multiple
modalities. Using cross-modal attention through the temporal structure, this approach
discovers the benefit of learning and aligning both global and local temporal transitions
of multiple modalities. Knowledgeable Storyteller [133] attempts to overcome the
problem in the absence of the non-visual concept by incorporating external knowledge.
Using a knowledge graph, the non-visual or imaginary concept can effectively integrate
with semantic relevance that enhances the coherence of the generated text.

Effectiveness of Time-series Canonical Correlation. To analyze the effec-
tiveness of our proposed time-series canonical correlation procedure, we group the
analysis based on the result from the conducted experiments. Three points will be
analyzed, i.e., comparing visual sequence with the single input for story generation,
the relation of visual storytelling with the sequence of video captioning, and attention
mechanism with time-series correlation attention mechanism. To apply a single input
image-to-text description generation for visual storytelling task, we have two different
following scenarios: first is concatenating visual sequence feature into a single vector as
the preceding step before learning, and the second is by generating image description
independently for each image sequence followed by concatenating the text results. The
result shows that the second scenario [115]b (concatenate the output from all image
description) has the better result compared to the first scenario [115]a.

Adapting video caption model [126] into the visual storytelling problem is conducted
to investigate the performance compared with the image-to-text description generation
in [115]a and b. The result shows that the [126] has a better result average compared
to [115] for visual storytelling tasks. Based on this investigation, we can conclude
that video captioning is closer to visual storytelling regarding similarity in time-
series data structure. The next is comparing the original attention mechanism for
visual storytelling [131, 48] with the proposed time-series canonical correlation. Our
proposed approach outperforms the standard attention approach by adding the feature
combination from canonical correlation. The last, compared to the research in the
knowledgeable storyteller [133] that involves the external knowledge, our proposed
approach outperforms except in BLEU 1 score.

Correlation Coefficient Observation. To measure how strong a relationship
between two variables is, we use the correlation coefficient value. Figure 4.7 compares
the correlation value to show that our proposed multimodal time-series correlation is
effective for this task. Inspired by [2] in how to compare and visualize the correlation,
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Fig. 4.7 Average correlation coefficient comparison of visual-textual features over a
different number of dimensions

we use the mean of correlation coefficient by setting the different number of dimensions.
The correlation coefficient represents the visual and textual modality from the original
features compared to the new representation from several correlation-based fusion
features. The various number of dimension sizes (feature-length) is considered the
input size to determine the correlation applied to the original dataset, CCA, DCCA,
and the proposed approach time-series CCA. Results show the proposed framework on
time-series canonical correlation has the highest average score compared to the other.
As the visual storytelling data is arranged in a sequence manner, it can be analyzed
that the result of the proposed method is averagely outperformed as the consequence of
considering the time-series aspect in determining the correlation in order to fusion the
multimodal features. The significant score of correlation indicates that the semantic
fusion between modality in a time-series setting impacts the story generation.

Qualitative analysis. In this analysis, we will use the resulting experiment
by considering the text story output qualitatively. We present an example of the
images Figure 4.9 with the story output comparison from the ground truth and the
output from the proposed approach Figure 4.10. From the text output shown in
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Figure 4.10, the proposed approach can generate the additional non-visual words
(underline printed words), i.e., ”first”, ”greattime”, ”afterward”, ”tired”, ”finally”
are occurring in proper sequence. The presence of the non-visual concept word can
be regarded as the result of the guidance of attention mechanisms joining the time-
series multimodal features. The result can be analyzed that the obtained time-series
multimodal correlation can significantly perform in the entire sequence.

Fig. 4.8 Visualization comparison by t-SNE of high dimensional multimodal features
of VIST dataset divided as follows: (a) Visual features group by sequences, (b) Visual
feature group by stories, (c) Textual features group by sequences, (d) Textual features
group by stories, (e) The combination of original features, (f) The new representation
of correlation dataset from the proposed model.

4.5 Discussion
In this discussion, we explain the result investigation according to the ablation study to
know the impacts from specific system parts. To demonstrate and examine the effect of
each component of the building block on its performance, we conducted investigations
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Fig. 4.9 The image sequence sample of visual storytelling dataset

Ground truth #1 our kids have many different interests. one likes to play
football. #2 Another love matching games. #3 one likes to play on the
computer. #4 the little one loves to cuddle #5 but all of them love to eat
fresh berry pie.

Proposed approach #1 first the kids were having a great time at the party.
#2 they were all dressed up for the occasion. #3 there were many people
playing games. #4 afterward some of them were very tired. #5 finally, we
had a lot of food.

Fig. 4.10 Story output comparison with extra non-visual concept word of Figure 4.9
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into two parts. First, the investigation was performed to know the impact of involving
time-series multimodal features combination based on canonical correlation analysis.
Second, the investigation of the effectiveness of attention mechanisms by the guided
decoder. We divide the first investigation into two parts: i,e., removing the new feature
combination based on time-series CCA and involving new feature combinations based
on the image-text multimodal concatenation. The results are shown in Table 4.2 which
compares metric evaluation from the upper-bound full model, without time-series CCA,
without CCA (feature concatenation), and without attention decoder. The absence of
time-series CCA gives the lowest average score compared with the feature combination
by concatenation. This indicates that in multimodal manners, the feature fusion has
an impact on guiding the decoder. On the other hand, using the features fusion by
only concatenating the textual and visual feature is ineffective due to the probability
distribution between modalities.

The second investigation to know the impact and the effectiveness of the guided
decoder by attention mechanism. Table 4.2 presents the performance of an evaluation
metric which removes the attention mechanism that has a large gap with the upper-
bound full model. The drawback of the standard seq-to-seq model instead of the
attention model is the difficulty in memorizing long sequences to generate text from a
long vector representation, and this ablation results answer that kind of problem.

4.6 Summary
This chapter presented a time-series multimodal correlation framework focusing on
finding the correlation of the sequence of image-text to mitigate the lack of non-
visual concept words generated in automatic visual storytelling. To improve the
quality performance of generating text stories, we introduced a time-series canonical
correlation analysis applied to pairs of sequence images and text stories. The proposed
framework effectively finds new features correlation on multimodal sequential data and
temporal association. We utilize the non-linear model of canonical correlation analysis
that maximizes the association of two different data distributions. The attention
mechanism guides the decoder to generate a coherent story based on the new feature
combination. Based on the experiment on several automatic evaluation metrics, our
proposed framework outperformed, and the occurrence of the non-visual concept words
is increasing.



80 Multimodal Sequential Correlation Analysis

Table
4.2

T
he

autom
atic

evaluation
of

ablation
study.

Full
m

odel
m

eaning
that

the
proposed

tim
e-series

C
C

A
w

ith
attention

m
echanism

isapplied,"w/o
tim

e-seriesCCA
"m

eaning
thatthe

decoding
processperform

ed
withoutadding

features
com

bination
from

tim
e-series

C
C

A
,"w

/o
C

C
A

(w
ith

feature
concatenation)"m

eaning
that

the
decoding

process
perform

ed
w

ith
features

com
bination

by
features

concatenation
only,

"w
/o

A
ttention

decoder"
m

eaning
that

the
decoding

process
perform

ed
w

ithout
attention

m
echanism

.

M
odels

M
ET

EO
R

C
ID

Er
RO

U
G

E-L
BLEU

1
BLEU

2
BLEU

3
BLEU

4
Fullm

odel
31.23

3.30
24.72

33.32
18.93

9.60
4.98

w
/o

tim
e-series

C
C

A
23.43

1.82
22.91

30.54
15.23

6.71
3.80

w
/o

C
C

A
(w

ith
feature

concatenation)
27.30

2.50
23.20

34.98
17.20

8.40
4.20

w
/o

A
ttention

decoder
24.67

2.43
21.34

28.12
13.73

5.58
3.92



Chapter 5

Contextualizing Language
Generation on Visual Storytelling

5.1 Introduction
Multimodal translation tasks transforming data representation from one modality
into another modality which preserves important contained information. Due to its
abundance of data availability, an emerging study and image-to-text research attempt
to generate human language based on visual representation. The progress from simple
generating language description of an image known as image captioning [47, 120, 115] to
more complex scenario which generate coherent sentence story from given time-ordered
image sequence named visual storytelling [124, 111, 48, 24, 34, 36, 35, 133, 57, 86].
The image-to-text study combines the advancement of two background work in the
computer research field, i.e., computer vision (CV) and natural language processing
(NLP). The algorithm for detecting the salient object with its properties is required in
the image-to-text domain from the computer vision. At the same time, the automatic
language generation from the NLP focuses on how to generate human-like language by
machine.

The abundance of images uploaded in photo albums followed by its text caption
or can be a story on social network service brings up the development of automatic
algorithms for generating natural language based on the image sequence without the
need for human efforts. This problem is known as automatic visual storytelling. In
real-world practical application, automatic visual storytelling can be applied for helping
visual impairment persons to understand the information from photo albums which
combine with the text-to-speech application. Another implementation of the general
image-to-text system is utilized for indexing and retrieving purposes on cross-modality
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data. Several previous studies on this domain attempt to build a model to generate
a near-human quality text story with some characters, i.e., coherent, relevant, fluent,
variation. An approach on neural image captioning Ref. [115] generates text description
of the literal object with many details instead of focusing on the main object. An
improvement of this research by utilizing the visual attention mechanism Ref. [131]
focuses only on the main object of visual representation. Both the aforementioned
approaches are optimal on one-to-one image-text data pairs, which face issues in
generalizing multiple inputs to obtain the global features of the visual sequence. To
obtain local and global features from a sequence of visual representation, Ref. [48]
attempt to combine global-local visual features to address the coherency of the generated
story. However, this approach still has limitations in generating monotonous stories
with low lexical diversities. Another framework addressing the lack of non-visual
concept words was introduced in Ref. [86] has successfully generated more story-sense
text.

However, this approach has a limitation of generating a story with inaccurate
context. This chapter will provide the proposed solution for the visual storytelling
task’s problem in generating monotonous stories with low lexical diversities due to
the limited number of visual storytelling datasets compared to other natural language
generation datasets. We also attempt to overcome the previous work as detailed in
Chapter 4 which has the limitation of generating a story with inaccurate context,
leading to a novel challenge.

In general, the proposed framework is composed of two main parts: (1) cross-modal
attention that acquires the feature representation in temporal multimodal learning, and
(2) contextualized language story generator. The language generator parts work based
on the joined feature representation and the pre-trained language model. The main
contributions of our approach are summarized as follows: (1) introducing an end-to-end
architecture of contextualized visual-to-language story generation by extending the
encoder-decoder procedure. Cross-modal attention is proposed to extract new feature
representation based on temporal image sequence, object-related vision, and language
encoder. (2) language generation decoder performs with three option scenarios: feature
concatenation, self-contained attention, and stacking attention. The decoder-only
pre-trained natural language model from the transformer is utilized to improve the
language generation quality. (3) Comprehensive experiments are presented to confirm
the qualitative and quantitative effectiveness of the proposed framework.

The rest of the chapter is organized as follows: Section 5.2 provides related works
which underlie the problem and the proposed solution. Section 5.3 provides a detailed
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mechanism of our proposed contextualized language generation on visual storytelling
tasks. Section 5.4 presents the result of our conducted experiment. Finally, Section 5.5
concludes this chapter with a summary of our proposed framework in generating text
stories.

5.2 Related Work

5.2.1 Visual Sequence Encoding

The encoder-decoder architecture is a common model widely used for sequence-to-
sequence problems such as visual storytelling. Visual storytelling is considered a
sequence-to-sequence problem due to the model translating sequence input images to
produce a sequence sentences story. Compared to the other task, the visual encoding of
the visual storytelling has a similar mechanism to the video captioning task due to its
required extraction of a sequence of clips in the video. Ref [112] utilize the convolutional
neural network (CNN) to extract the visual representation from a two-dimensional
setting. Each frame was extracted independently without considering the relation
among them. This approach can lead to the drawback of temporal information. In
other words, it is not suitable for image sequences in visual storytelling tasks. Ref.
[36] proposed to summarize the visual sequence features by averaging operation from
all images sequence. However, this method still lacks the order sequence of visual
features if applied to the visual storytelling task. Moreover, Ref. [34] incorporates the
detected literal object from the image by pre-trained Faster R-CNN and fed into the
Transformer-GRU as the term predictor. This approach has a drawback in capturing
the time-series information and losing the sequence relation in the visual sequence.

A common combination in extracting the features representation from a sequence
of images is by incorporating a CNN-based to extract the image features, followed
by the GRU to learn the sequence pattern proposed in Ref. [133]. The GRU has a
limitation in preserving the information regarding the long sequence. Similar to Ref.
[133], the Ref. [24] attempts to incorporate CNN-based pre-trained architecture called
Inception V3 combined with the LSTM in encoding the visual sequence representation.
Still, this approach has the limitation in handling long information of a sequence that
needs improvement.

We will implement the self-attention mechanism known as a transformer to overcome
the issue in RNN-based sequence modeling. To deal with the length sequence capacity
of the extracted visual features with the arbitrary vector length, the transformer-based
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encoder expected can address the aforementioned problem in the visual sequence
encoding process.

5.2.2 Decoding Language Generation

In automatic machine translation tasks, it is commonly used that the encoder-decoder
mechanism translates from a language to another, which performs in the same modality.
In visual storytelling, decoding the visual representation vector to different modalities
can be a novel challenge in maintaining the provided information that can be generated
a different modality appropriately. There are several works focused on the decoding
strategy of generating natural language from visual representation. Ref. [124] proposed
a mechanism for sentence generation by multi-RNN decoders that work parallel and
concatenate all results as a full story. The context vector from the encoder feeds to
generate a sub-story by sharing the same weight to each decoder. In this architecture,
the decoder works in parallel, in which the visual story sequence should be represented
in a serial mode. It can be concluded that the simple concatenation leads to the lack
of coherency between objects, as shown in the qualitative result comparison.

Similar to Ref. [124], the decoding mechanism in Ref. [24] use the extracted visual
representation from the encoder as the context sequence input to the decoder. Five
independent decoders contribute to the generation of the overall story with a particular
model for each sequence position. This strategy has a limitation in the low context of
the encoder, which affects the generation of monotonic stories. The GLAC [48] designs
two-level decoders based on different level information to acquire the overall context of
the image sequences. The decoder represents the relationship between low-level image
features and high-level encoded features. The extracted features then sequentially feed
to the bi-LSTM to maintain the story context that reflects the entire story. Intuitively,
this approach performs well with general objects without considering the object relation
and its context. In this study, the decoding process attempts to incorporate the large
pre-trained language generation model with different modalities as its vector source
representation to enhance the limited context quality provided by the dataset on visual
storytelling tasks.

5.2.3 Language Model Transfer Learning

Based on the previous work, transferring previous learning knowledge is performed a
lot on utilizing CNN-based visual feature extraction. However, the concept of transfer
learning is rarely used on language generation tasks based on visual representation.
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The concept of transfer learning Ref. [79] as described in this survey, is an attempt
to exploit the knowledge learned from model training to improve another learning
model from various domains and tasks. The NLP domain commonly applies the
transfer learning knowledge by sharing word-embedding vectors previously trained on
a large-scale text corpus into a downstream task, such as word2vec [73] and Glove [84].
Although it helps to skip training the word embedding vector from scratch, the major
shortcoming of utilizing pre-trained word embedding is context-free and trained on a
shallow model.

Several studies already address this problem by improving word-level embedding
into sentence-level embedding or higher, known as contextual word embedding. The
pre-trained contextual word embedding captures the semantic meaning depending
on its context. Recent works on the transformer-based NLP Ref. [113] that rely on
the attention model to effectively associate the input and output sequence of data is
commonly used nowadays. Several powerful pre-trained language models based on
transformer architecture have achieved universal language representations, such as
OpenAI GPT [89], GPT-2 [90], XLNet [134], XLM [53], BERT [18], and RoBERTa
[66]. In particular, this research focuses on natural language generation (NLG) tasks
in which GPT and GPT-2 are more suitable. Both models are built from decoder-only
transformer architecture. In the encoder-decoder architecture, the story generation
and the language-related process are held on the decoder side, potentially involving a
pre-trained language model to enhance the contextualized aspect. However, including
a pre-trained language model is not as simple as applying language to language tasks
due to different modalities (i.e., visual to language).

5.2.4 Cross-modal Pre-trained Model

The typical pre-trained model comes from a single modality to perform tasks, including
a pre-trained NLP model, suitable only for the downstream problems in NLP. A task
with multiple modalities, such as vision to language, requires combining different data
distributions from arbitrary sources to enable learning the correlation between input
and output. For cross-modality, many types of research have attempted to combine
multi modalities by building a pre-training model, such as VideoBERT [105], ViLBERT
[69], and LXMERT [109]. VideoBERT generates language from videos by joint visual,
linguistic learning as the first work conducted on pre-training cross-modality vision
and language tasks. The approach learns the high level in an unsupervised setting
by extending the BERT architecture to combine video data representation with text
sentences. Similar to VideoBERT, ViLBERT extends the BERT architecture for
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two-stream model processing and visual and textual inputs. The model developed by
the pre-train Conceptual Caption [99] dataset aims to build a pre-trained model for
multiple vision-to-language tasks.

5.2.5 Curriculum Learning Strategy

Training neural networks using a mini-batch of random samples from the entire
training data is commonly practiced. A learning strategy named curriculum learning
first introduced in [5] is an attempt to solve the problem of the difficulty in learning a
complex task. It is inspired by human learning activity by providing easy and difficult
examples. The learning starts from an easy task and gradually increases the difficulty.
Learning the model for the visual storytelling task needs to improve in learning the
contextual relation between data in sequence. This learning strategy can improve the
performance and speed of convergence learning. The learning is moving to the next
increment if the error or loss value is saturated. In this chapter, we apply curriculum
learning in two parts. First, for learning the contextual relation between images input,
the second is for learning the contextual relation of text stories.

For more detailed about the curriculum learning algorithm, in algorithm 2 explain
how the curriculum learning works in common. To learn the model M , the dataset E

is used. The curriculum criterion C as the existence, the degree of the difficulty level l

is used. In this research, there are two types of difficulty level based on modality. First
on image modality, we apply by omitting image in sequence randomly. To make the
difficulty level increased, the curriculum learning omit gradually to check the resilience
of the model. It makes the evaluation move from easy-to-hard compared with the
traditional learning process. The scheduling function S is also specified when the
update process of the training should perform. In this case we increase the difficulty
when the loss or error value is saturated at the iteration/epoch t. To change the dataset
E which a subset E∗ (by omitting strategy) the model M perform the performance
measure P . Therefore, the criterion function C operates on M , E, P or according to l.

In addition, to perform curriculum learning for text modality, we format the sentence
story into two sequence pair which has the label TRUE if it is the next, and FALSE
for not the next. For more detailed explanation is on 5.3.3.
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Fig. 5.1 An illustration of curriculum learning strategy.

Algorithm 2: Curriculum Learning algorithm in general
M — a machine learning model;
E — a training data set;
P — performance measure;
n — number of iterations / epochs;
C — curriculum criterion / difficulty measure;
l — curriculum level;
S — curriculum scheduler;
for t ∈ 1, 2, . . . n do

p ← P(M)
if S(t, p) = true then

M, E, P ← C(l, M, E, P )
end
E∗ ← select(E) M ← train(M, E∗, P )

end
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5.3 Proposed Cross-modal Contextualize Attention
Architecture

5.3.1 Input Embedding and Positional Encoding

To obtain the contextualized representation, before the training modality (image
sequence and text story) data is fed into the encoding architecture block, we transform
the raw data into the desired new embedding representation, i.e., word-level from
sentence story and object-level visual sequence. The goal of this step is to provide the
encoder suitable inputs for further process.

Object-level Visual Embedding

Aimed to involve the detected objects as the additional features instead of only the
feature map from the convolutional neural network, the object-level visual embedding is
proposed in this model. Incorporating the object-level features is expected to ascertain
the literal object’s existence in the image sequence.

This proposed approach improves the ability to contextualize the encoder by
correlating the detected object with the textual sentence story. A single input of the
visual modality is a sequence of t ordered images Dv ∈ {v1, . . . , vt}, in which each
image vt has n different numbers of detected object Ot ∈ {o1, . . . , on}. The object
features Rj ∈ R2048×n×t represent a 2048-dimensional region-of-interest (RoI), followed
by the positional features Pj ∈ Rn×t as bounding box coordinates extracted by Faster
R-CNN [91]. The j index represents the batch or single data from the dataset. The
visual embedding layer learns gj to combine the region of interest Rj and the position
Pj features into a single output by adding a matrix operation of the two normalized
fully connected layers presented in Equation (5.1).

The variable Ot is a set of detected classes object on an image vt defined what kind
of objects appear from an image. The variable Rj is the vector features obtained from
the pre-trained object detection model which resulted in the class listed in the variable
Ot. The Pj is the embedding vector which represents the coordinates of the respective
detected objects. So, to involve the object information from an image, the obtained
information from an image with index j are a list of class object detected o, vector
feature of the detected object r̂, and the coordinates location of the detected object p̂.
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r̂j = LayerNorm(WRRj + bR)
p̂j = LayerNorm(WP Pj + bP )
gj = (r̂j + p̂j)/2

(5.1)

Word-level Story Embedding

Transforming raw textual data into numerical representation is broadly known as
vectorization. In this chapter we aimed to obtain word-level sentence story embedding
which then used for learning the contextualized sentence story representation. A text
story can be broken down into t-ordered sentences Ds = {s1, . . . , st}. Each sentence
st is split into a sequence of words w with length u, st = {w1, . . . , wu}. A pre-trained
BERT [18] model is used to obtain the corresponding contextualized embedding values
from the pre-trained model. The direct matrix addition of token embedding value
ŵj and its absolute token ID position ẑj as the final word-level story embedding is
performed to incorporate both features. As shown in Equation (5.2), the normalized
layer of the addition operation kj of the token vector values and the token position
embedding is presented to obtain word-level sentence story embedding.

ŵj = TokenEncode(st)
ẑj = TokenPosEmbed(wi)
kj = LayerNorm(ŵj + ẑj)

(5.2)

Positional Encoding

Another required input for the language model is the positional information about the
text story sequence. The positional encoding plays an important role which returns
the input length with the embedding dimension. Three positional encoding vectors
are provided herein: word sentence story, visual sequence images, and detected visual
objects. All positional encoding vectors have the same dimensions as the embedding
output for each modality. The positional encoding vector value is added to the input
embedding then fed to the self-attention encoder.

5.3.2 Global Encoding

This fragment will detail the overall components of the encoding process. The encoding
process mainly consists of modality and cross-modal encoding. For the modality encoder,
each modality is encoded separately which focuses to obtain the contextualized features
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then passed to the cross-modal encoder. This block is adopted from the encoder only
part from the transformer architecture with the input modification. The underlying
idea of the transformer is to learn to model sequence data representation by utilizing
a self-attention mechanism. Self-attention is a special case of multi-head attention,
in which the inputs (i.e., queries Q, keys K, and values V ) are based on the same
hidden layer. Before explaining more details about the encoding layer, this section
briefly describes the concept of dot-product attention as the foundation of multi-headed
attention.

Dot-product Attention

The following inputs are considered: a query qi, a set of keys K = (k1, . . . , kj), and
a set of values V = (v1, . . . , vj), where j = 1, 2, . . . , J and qi, kj, vj ∈ Rd. The scaled
dot-product attention calculates the weighted sum of values vj, which is the weight
obtained by the dot-product operation of each pair of rows of query q and keys kj . The
softmax function applied to the result of the dot-product and scaling is applied by the
dimension 1√

d
to prevent small gradient regions. The dot-product attention computes

the matrix output presented in Equation (5.3).

Att(qi, K, V ) = softmax
(

qiK
T

√
d

)
V (5.3)

Multi-headed Attention

The multi-head attention comprises multiple scaled dot-product attention that works
independently in the parallel mode. The "head" is a single scaled dot-product attention.
"Multi-headed" is performed as an N -number of heads shown in Equation (5.4) with
the weight W O ∈ Rd×d.

MultiAtt(qi, K, V ) = W O


head1

. . .

headN

 (5.4)

headj = Att(W q
j qi, W K

j K, W V
j V ) (5.5)

For each head, the following projection matrices with the index j = 1, 2, . . . N has
its parameters W q

j , W K
j , W V

j ∈ R d
N

×d learned independently to jointly attend the
information from multiple subspaces from different representation and positions.
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Fig. 5.2 The basic encoder layers underlie the overall encoding process, i.e., tempo-
ral visual encoding, object-related visual encoding, and sentence sequence encoding.
Multi-head attention (self-attention) is utilized to model sequence proceed by residual
connection and normalization layers.

Encoder Architecture

In this proposed architecture, the encoding process is performed several times which
has the same steps. In this fragment, we will explain the details of the encoder building
block that is generally used. An encoding layer is composed of two sub-layers, i.e.,
self-attention and position-wise feed-forward neural networks. The encoder might have
an M number of the encoding layers. Each layer m processes the features set from
arbitrary inputs xj and produces a result as the internal representation output y ∈ R.
Normalization layer [56] be passed by the inputs and outputs from self-attention layer
in LayerNorm then followed by the residual connection [27] (Figure 5.2). Formally,
the building block of the encoder is presented in Equation (5.6), where FeedForward
is the position-wise feed forward neural network. From the previous explanation in
Subsection Encoding Block, self-attention has the same queries, keys, and values (xm

j )
that can acquire information from the previous layer xm−1

j , not the accumulation state
on the last position.

xm
j = LayerNorm(xm

j )
ym

j = xm
j + MultiAtt(xm

j , xm
j , xm

j )
ym

j = LayerNorm(ym
j )

xm+1
j = ym

j + FeedForward(ym
j )

(5.6)

5.3.3 Cross-modal Features

Temporal Visual Encoding

As illustrated in Figure 5.4, the visual storytelling task’s visual modality input is an
array t-ordered images Di = {v1, . . . , vt} containing information about the features of
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each image (spatial feature) and their dynamics over time (temporal feature). The
two components of temporal visual encoding are the extraction of visual features and
the encoding of sequence data. By omitting the final fully-connected layer from the
visual feature extractor, a pre-trained CNN is used as the transfer learning strategy
for the visual feature extractor. By employing pre-trained CNNs, the input image is
transformed into high-level features, avoiding overfitting [115]. The visual features of a
story sequence are output as a collection of fixed-length vectors that are fed into the
encoder layer. (Equation (5.6)).

Fig. 5.3 The overall cross-modal attention encoder architecture performs encoding
during the training phase. Images sequence feature and text are transformed into
embedding representation before proceeding to the cross-attention layer to obtain the
encoded visual features, cross-modal features, and language features.

vj = ConvNet(vj)
I = Encoder([v1, . . . , vt])

(5.7)

Object-relation Visual Encoding

The purpose of extracting visually appearing objects from an image sequence is to
assist cross-modal attention in inferring the visual modality from the convolutional
feature maps and object detected features. As shown in Equation (5.1), the object-level
embedding layer ObjectEmbed produce vector gj obtained by combining the region
of interest rj vector and the position pj vector features provided to the transformer
Encoder layer (Equation (5.6)) to learn the sequence representation of object-level
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Fig. 5.4 Temporal visual encoder takes an input of image sequence then fed to pre-
trained CNN visual extractor with vector embedding output. The embedded visual
feature is the input for the encoder layer to obtain sequential representation.

features (Figure 5.5). A set of t-ordered object-related vector Dg = {g1, . . . gt} is fed
as input to the encoding layer (Equation (5.8)).

gi = ObjectEmbed(gi)
O = Encoder([g1, . . . , gt])

(5.8)

Sentence Sequence Encoding

This research, which aims to extract the semantic representation from manually labeled
sentence stories, employs a self-attention encoder to obtain global semantic information
from text stories. The layer’s input is the word-level sentence story embedding vector
output ki as described in Subsection Word-level Sentence Story Embedding, which is a
combination of token encoding ŵi and the positional token encoding ẑi. The input for
the WordLevelEmbed layer is the Sj the concatenation of n sentences story. As shown
in Figure 5.8, we perform formatting sequence story into sentence-pair data format
with TRUE and FALSE labels. Pair from next sentence sequence will have TRUE,
otherwise FALSE.

Sj = s1∥s2∥ . . . ∥sn

kj = WordLevelEmbed(Sj)
T = Encoder([kj])

(5.9)
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Fig. 5.5 The visual object-related encoder incorporates both the region of interest
feature and object coordinate position feature as the encoder’s input.

Cross-modal Encoding

The final stage of block encoding is to learn to represent multiple modalities. The
purpose of the cross-modal encoder is to discover the ideal alignment between the
visual sequence input and the sentence narrative output based on semantic correlations.
This encoder implements the self-attention mechanism to obtain a precise attention
weight globally for the decoding process. The sequential pairwise relationship between
the visual and textual modalities is captured in the respective contexts. This encoder
employs the self-attention mechanism in order to achieve an accurate attention weight
for the decoding process globally. The respective contexts are captured from the
sequential pairwise relationship between the visual and textual modalities. In Figure
5.3, the cross-modal encoder contained within the dashed block is composed of two
unidirectional self-attention sub-layers that together form the bi-directional cross-
attention. More detailed process on cross-modal encoder, we present Figure 5.7. The
cross-attention layer basically is the self-attention mechanism which take cross modality
for the query and the value. It utilize the residual mechanism to prevent from the
losing information. Then the feed forward neural network learn on specific vector
size. The cross-attention sub-layer learns the weight for different representations
(i.e., visual to language and language to visual). Additionally, both temporal visual
I and object-related O features (detailed in Equation (5.7) and (5.8), respectively)
are added, V = I + O, before passing through the cross-attention sub-layer for the
visual representation. The encoded language modality S = {s1, . . . , st} that represents
the vector feature from the story output will be paired with the encoded visual
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Fig. 5.6 The sentence sequence encoder utilizes a self-attention encoding mechanism
by combining the token and positional encoding.

sequence V = {v1, . . . , vt} on bi-direction: V→ S and S→ V. More details for the
cross-attention sub-layers are presented in Equation (5.10):

v̂m
j = MultiAttV→S(vm−1

t , vm−1
t , {sm−1

1 , . . . , sm−1
t })

ŝm
j = MultiAttS→V(sm−1

t , sm−1
t , {vm−1

1 , . . . , vm−1
t })

(5.10)

ṽm
j = vm

j + MultiAttV→V(v̂m
j , v̂m

j , {v̂m
1 , . . . , v̂m

j })
em

ṽ,j = ṽm
j + FeedForward(ṽm

j )
s̃m

j = sm
j + MultiAttS→S(ŝm

j , ŝm
j , {ŝm

1 , . . . , ŝm
j })

em
s̃,j = s̃m

j + FeedForward(s̃m
j )

(5.11)

Then, the cross-attention sub-layer visual to textual output vector v̂j and textual to
visual ŝj uses the self-attention sub-layer, and fully connected layer, for each modality.
The normalization is applied first, followed by the residual connection, as illustrated
in Figure 5.2. Lastly, the new feature representation of the pair of image sequences
and sentence story for the decoder inputs is obtained from the encoder output ej from
the visual modality em

ṽ,j ∈ Rj×d and text modality em
s̃,j ∈ Rn×d (m, j, and d denote the

layer, index of batch, and vector feature length, respectively)
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Fig. 5.7 Cross-modal Encoder: this layer combine two contextualized modalities from
independent encoding process

5.3.4 Contextual Attention Story Generation

The language decoder is a block of processes in the neural encoder decoder architecture,
more specifically in the natural language generation of visual storytelling, that gener-
ates contextualized and coherent sentences y = (y1, . . . , y5) from the encoder output
conditioned new feature representation ej.

Decoder Architecture

The story generation decoder is composed of transformer blocks with several fusion
strategies to achieve more contextualized sentences in this proposed architecture. It
is aligned with the encoder block. Originally proposed in the transformer [113], the
decoder block consists of two attention layers, a feed-forward layer, residual connections,
and a layer norm (Equation (5.12)). The first attention layer is a multi-head self-
attention applied to human-generated text as the ground truth output bm

j (input vector
bj on layer m) preceded with the normalization and perform residual connection that
produces vector gm

j . Next, for the second multi-head attention layer that traditionally
handles a single modality, it attends from the two following sources: the encoder
conditioned output em

j and the first self-attention output gm
j . This second layer of

attention, named Context Attention, guides the generation of a contextualized story
from multiple modalities simultaneously. Last, the output of the second attention
layer qm

j is fed to the feed-forward neural network and applied residual connection to
produce the final output bm+1

j .
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Fig. 5.8 The next sentence sequence pair formatting. The learning contextual sentence
relation encoder is performed using this format.

While developing a model for generating a sentence story in an appropriate context
from multiple arbitrary source modalities, a sub-layer within the decoder block called
the contextual attention layer will guide the generation of a story based on multiple
modalities concurrently. This sub-layer considers two strategies: fusion strategies and
incorporating the weight of the pre-trained network into the language generation model.
Fusion strategies are concerned with the model’s attention to two distinct modalities in
time-ordered sequence settings in order to obtain the appropriate context for the story.

bm

j = LayerNorm(bm
j )

gm
j = bm

j + MultiAtt(bm

j , bm

j , bm

j )
gm

j = LayerNorm(gm
j )

qm
j = gm

j + MultiAtt(gm
j , em

j , em
j )

qm
j = LayerNorm(qm

j )
bm+1

j = qm
j + FeedForward(qm

j )

(5.12)

Feature Concatenation

This modality fusion strategy based on the chained sequence of features is a straight-
forward way to create new information representations from multiple modalities. The
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contextualized attention is performed on concatenated em
s̃,j ∥em

ṽ,j both visual and textual
features encoded vector em

c̃,(j+j) ∈ R(j+j)×d.

Self-contained Attention

A strategy for higher-level fusion is proposed that involves the addition of two self-
contained attention layers capable of simultaneously processing two distinct modalities.
A multi-head self-attention layer is applied independently to each modality. Two
self-attention outputs from visual cj

j and textual cj
t are combined via vector addition

operation with the output cj
l (Equation (5.13)).

cj
t = gj

l + MultiAtt(ej
t̃,n

, ej
t̃,n

, gj
l )

cj
v = gj

l + MultiAtt(ej
ṽ,m, ej

ṽ,m, gj
l )

cj
l = gj

l + LayerNorm(cj
t + cj

v)

(5.13)

Stacking Attention

This technique utilizes two distinct conditional self-attention layers to represent each
modality sequentially. The stacking attention order has two possibilities: visual
ej

ṽ,m attention layer over textual ej
t̃,n

attention layer, and vice versa. The inversion
of attention demonstrates how modality attention differs in its ability to generalize
features. Equation (5.14) shows the attention stack with the setting visual attention is
followed by the textual attention.

cj
v = MultiAtt(ej

ṽ,n, ej
ṽ,n, gj

l )
cj

v = gj
l + LayerNorm(cj

v)
cj

t = MultiAtt(ej
t̃,m

, ej
t̃,m

, cj
v)

cj
l = cj

v + LayerNorm(cj
t)

(5.14)

Following the fusion strategies, this research considers incorporating pre-trained weights
from similar tasks in order to develop a model for contextualized language story
generation. Typically, the training process is used to determine the optimal network
weight by calculating the gradient of the loss function over a set of randomly initialized
network weights. Due to the fact that the pre-trained language model is currently
adequately provided [19], fine-tuning pre-trained contextual word embedding is expected
to generate textual stories that are not monotonous and lack word diversity. The
decoder based on only the transformer architecture [113], is applied in the pre-trained
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language model, GPT-2 [90]. To improve the quality of conditional generation, pre-
trained network weights are used to initialize the decoder weight.

Fig. 5.9 During the training phase, the decoder focuses on generating a language story
from the encoder output and the contextual embedding from the manually generated
text story in the dataset.

5.4 Experiment and Evaluation

5.4.1 Dataset

The training and validation processes in this research make use of the VIST [111]
dataset, which is composed of pairs of image sequences and sentences used in visual
storytelling. The VIST dataset, alternatively referred to as the Sequential Image
Narrative Dataset (SIND) v2, consists of multi-tiered descriptions of images in isolation
(DII), descriptions of images in sequence (DIS), and stories regarding images in sequence
(SIS). The SIS tier is chosen for the visual storytelling task since it directly models the
narrative language with the temporal context, integrating literal and abstract visual
concepts. The table 5.1 shows the configuration for splitting the number of image
and story compositions in the VIST dataset used in this research. It consists of five
time-ordered images accompanied by five human-generated sentence stories for a story.
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Fig. 5.10 Word frequency distribution from the text story training data. This stacked
bar chart shows the word significantly characterized by the following sentence order:
first to fifth sentence order.

Table 5.1 The VIST dataset splits the number of images and stories for training,
validation, and testing

Number of Training Validation Testing Total
80% 10% 10%

Images 167,528 21,048 21,075 209,651
Stories 40,155 4,990 5,055 50,200

The token analysis’s frequency distribution plots the frequency with which each word
appears in the sentence, denoted by color (Figure 5.10). The words are selected from
the top-n most frequently occurring in all sentence orders, implying that the word
significantly characterizes a sentence order. For example, the words today, party, and
trip appear more frequently in the first sentence, while end, night, finally, and
back appear more frequently in the last sentence.

5.4.2 Experimental Setup

In the training phase as shown in Figure 5.11, the image sequences and the corresponding
text story are provided, while in the testing or inference stage as shown in Figure 5.12,
the required input is only the image sequence. The training phase learns to model the
pairs of image sequence and sentence story by jointly the multimodal features. For
testing or inference using the trained model, we need the images sequence only and
the model will output a sequence of sentences.
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Fig. 5.11 The training process overview. In this phase, both visual and textual modality
are provided for learning the model.

Implementation

PyTorch 1 [83] was used to implement the proposed architecture model as it is a deep
learning framework that supports GPU hardware and integrates seamlessly with a
popular scientific computing library. All code is written in Python and executed on a
computer equipped with multiple NVIDIA RTX graphics processors in parallel. The
details of each block implementation and layer configuration are detailed in Table 5.2,
including the input output size, dimensions, and number of layers. The model weights
were trained using an Adam optimizer [50] with an initial learning rate of 1e−3 to meet
the desired outcome criteria. The optimizer updated the weights using a linear decay
learning rate schedule with a warm-up strategy set to 1e− 5. The training procedure
took 64 epochs for each mini-batch size and was repeated until the early-stopping
criteria were met.

1https://pytorch.org/
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Fig. 5.12 The testing phase only receive the image or visual modality.

Objective Function

θE and θD are the learnable parameters of the encoder and decoder networks, re-
spectively. The training objective was to optimize the model parameter weight by
constructing the combination of loss functions L, which consists of three parts (i.e.,
cross-modal loss (encoder loss) Le, cross-entropy loss for visual object detection Lv,
and maximum likelihood estimation as language generation loss (decoder loss) Ld).
The total loss function is defined as follows:

L = Le + Lv + Ld (5.15)

The encoding process is designed to discover the alignment representation for visual
V and textual data T pairs. The objective function for the joint cross-modality is
determined by the distance-matched relation pairs between the visual and textual
D = {(t, i)} models, according to CRAN [88], defined as follows:

Le(θE,D) =

max (0, α− 1
K

K∑
k=1

d(t+, i+) + 1
K

K∑
k=1

d(t+, i−))
(5.16)

where, d(.) is the dot product of the relation similarity of the K-nearest neighbor
measurement; d(t+, i+) indicates the matched pairs; d(t+, i−) indicates the mismatched
pairs; and α is the matched and mismatched proportion simply set to 0.5. Visual
object detection attempts to correctly identify objects within an image; as such, it
can be used as one of the visual features for text story generation. The categorical
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Table 5.2 Component and dimension of the building block deep neural network con-
figuration for the model architecture building blocks (T : length of sequence in a
story).

Block Component and dimensions
Input layer
Image sequence T × 224× 224
Embedding
Word-level sentence Output: 512
Visual object feature (a) Output: 2048× Num. of object ×T
Object position feature (b) Output: Num. of object ×T
Embedding combination (a+b) Output: 512
Encoder Transformer with six blocks, four multi-head

attention with dimension 256
Temporal visual Output: T × 2048
Visual object relation Input: 512, Output: 2048
Sentence sequence Input: 512, Output: 2048
Cross-attention Same with encoder with input 2048
Decoder Transformer with 16 blocks, eight multi-head

attention with dimensions 512

cross-entropy loss function with softmax is used as the loss function for object detection
as one of the encoder components:

Lv(θv,X ) =
K∑

k=1
−yk log P (ŷk|X , θv)

= −
K∑

k=1
yk log efθk (X )∑K

1 efθk′ (X )

(5.17)

where, X and θv denote the image features and the learnable parameter, respectively.
K is the number of classes. In this experiment, the total number of K = 95 different
visual objects. yk is the class label predicted by the softmax function.

The decoding block aims to generate sentences by training to predict the next word
over batches. D = {(V, T )} denotes the input-output pairs (i.e., visual and textual
data) for obtaining the optimal solution θD, by minimizing the negative log-likelihood.
The loss function is maximum likelihood estimation defined as follows:

Ld(θD,D) =
∑

V,T ∈D

n∑
i=1
− log pθ(t∗

i |vi, v) (5.18)
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5.4.3 Feature Extraction

Separate processes were used in the experiment to extract the feature modalities (i.e.,
image features, visual objects, and text stories). The feature extraction process was
designed to convert raw data to a numerical representation suitable for further analysis
requiring pre-processing.

Image Features

Rather than train a model from scratch, this experiment used a pre-trained model
previously trained on a large-scale dataset for efficient feature extraction and com-
putation with a limited number of datasets. By omitting the final classifier layer
from the pre-trained model ResNet-152 [27], we obtained the fixed-length vector of
features. Numerous pre-processing steps were performed to align the expected image
input with the pre-trained model’s input size (i.e., three-channel RGB images with
a dimension of 3×H ×W , where H and W are the height and width, respectively)
of at least 224× 224. Resizing was accomplished through random cropping, followed
by normalization using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225] to
convert the vector loaded in to the [0, 1] range defined by the ImageNet [13] dataset.
Each image’s output embedding vector dimension was 512.

Text Features

Before sending the manually generated story from the VIST dataset as the learning
input to the pre-trained model, the story must be converted into an appropriate
format. In this experiment, the pre-trained BERT [18] bert-base-cased model was
used to obtain a representative embedding vector from the sentence input. Several
pre-processing steps were carried out. To begin, the sentences were tokenized using
WordPiece algorithm procedures [129]. Following that, a special purpose token [CLS]
was appended to the array of tokens at the beginning and [SEP] at the end of the
sentence. [PAD] was added as the sentence’s padding to make all arrays of tokens have
an equal length with maximum length tokens. Finally, each token was converted to the
token IDs defined by the pre-trained model, preparing them to feed to the pre-trained
model for the purpose of generating a fixed embedding with a dimension of 512 for
further learning.
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Visual Object Features

To extract visual object detection features from images, this experiment used the
Faster R-CNN [91] architecture as the object detector, which recognizes 95 different
visual objects. Rather than developing the Faster R-CNN model from scratch, we
leveraged Detectron2 [128], a software package that implements state-of-the-art object
detection algorithms, to accelerate the investigation of various object detection models.
Detectron2 includes a repository [15] of popular base models. We also used two pre-
trained Faster R-CNN-based models (i.e., R101-FPN [16] and X101-FPN [17]) trained
on a large-scale dataset (ImageNet [13]).

5.4.4 Evaluation

Automatic Evaluation

Manual evaluation of machine-generated natural language is inefficient and time-
consuming; therefore, metric evaluation is intended to overcome these limitations.
This experiment evaluated the proposed architecture’s performance and effectiveness
using several commonly used automatic evaluation metrics in natural language genera-
tion. The evaluation metrics herein were compared to those of the previous baseline
approaches using METEOR [14], BLEU [80], CIDEr-D [114], and ROUGE-L [62].
METEOR is a metric for assessing the quality of machine translation that is not based
on an exact match between two texts. ROUGE quantifies the degree to which generated
text is overlapping with previously generated text by humans. ROUGE-L, a ROUGE
variant, was used to quantify the quality of the longest common subsequence in this
study. BLEU evaluates the text using a precision-based metric similar to ROUGE and
determines the overlapping component by counting the uni-grams that correspond to
the text references. It is common to report the BLEU score from 1 to 4 grams. The
BLEU 1 to 4 score which is presented separately is referred to as individual BLEU
score, whereas the single BLEU score can be regarded as cumulative BLEU score. The
cumulative scores refer to calculation from 1 to n individual BLEU by calculating
weighted geometric mean. The individual BLEU score is intended to prevent from
linearly declining due to the decaying at some exponential rate.

Finally, this research took a step forward by implementing the BLEURT [97]
evaluation metric, which is a learned evaluation metric based on the BERT model
and pre-trained on large-scale human judgment training examples. The automatic
evaluation metrics (i.e., BLEU, ROUGE, CIDEr-D, and METEOR) were implemented
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with codes from a vist_eval 1 repository. BLEURT was implemented from the bleurt
2 repository.

Human Evaluation

The automatic metric evaluation has a limitation in that it cannot assess the subjective
aspects of a text story. As a result, the human evaluation is conducted on Amazon
Mechanical Turk 3. It randomly selects twenty respondents or workers to read and
rate every ten stories from the proposed model, the baselines, and previously manually
generated human-generated stories from the dataset. Subjectivity in human evaluation
is classified into four categories: fluency (assess how fluent is the story), variation (how
varied the text generated and not monotonous), relevance (evaluate the generated story
is in a suitable context), and coherence (how seamless the flow of sentences from start
to the end of story). We specify that the score for each category is an integer between
1-5.

5.4.5 Result & Analysis

Baselines

NIC [115] is one of the baselines for examining the effect of converting a simple image
to text using two distinct modes. The (a) scenario combines visual and textual elements
from the early stages preceding the training, while the (b) scenario incorporates the
result after it has been generated. Visual attention [131] is a mechanism that enables
language generation to focus on a specific visual representation area. This approach is
similar to NIC with multiple input images but only accepts one input at a time. In
this study, the re-implementation used scenarios that join the result of the language
generation. By combining global and local attention mechanisms, GLAC [48] overcomes
the inability to generate text that encompasses all image context representations. The
attention is implemented through the use of a hard connection. Hierarchically aligned
cross-modal attention (HACA) [126] attempts to model multi-modal temporal data by
combining global and local temporal dynamics when generating captions from scenes.
In terms of data representation, this task domain is similar to visual storytelling,
but the text generation is contextually differentiated. Knowledgeable Storyteller [133]
integrates non-visual concepts from images with sentences by utilizing an external

1https://github.com/lichengunc/vist_eval
2https://github.com/google-research/bleurt
3https://www.mturk.com/
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knowledge graph. This strategy aims to improve the coherence of the generated text by
focusing on its semantic relevance. On the basic principle of the attention mechanism,
the canonical correlation attention mechanism (CAAM) [86] attempts to generate
a new joint representation for multi-modal temporal data. CAAM maximizes the
correlation between images and text representations in order to provide an appropriate
context for story generation.

(a) Frequency of the visual object detected
through the sequence comparison

(b) Visual object variance distribution through
the sequence comparison

Fig. 5.13 Visual object detection analysis within image sequences to illustrate the
distribution behavior. For readability, the y-axes are presented on a logarithmic scale.
A comparison is presented from two visual object detection models, that is, Faster
R-CNN X101 and R101, to identify the outperformance of the model.

Contextual Attention Layer Variation Analysis

This section discusses a proposed decoder sub-layer variation called contextual attention.
To determine which fusion strategies are most effective in obtaining the multimodal
context for the model, perplexity evaluation was used to compare model variations in
the validation set. Table 5.3 compares the perplexity values obtained during the training
model validation process for three distinct fusion types (i.e., feature concatenation,
self-contained attention, and stacking attention). Feature concatenation has the lowest
perplexity, which indicates that it performs the best. It is followed by stacking attention
and self-contained attention with the greatest degree of perplexity, which results in
the least ability to refine outputs. The feature concatenation method is extremely
flexible in terms of determining which modality should be addressed. In comparison to
others, high independence fusion (self-contained attention and stacking attention) is
imposed in order to incorporate information from both modalities in situations where
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Fig. 5.14 Appearance frequency of the object from different sources in the test set. The
two sources (i.e., image and text) are presented to describe the alignment between the
input images with the output text story.

Table 5.3 Perplexity value from the model fusion of contextual attention sub-layer in
the validation set.

Fusion type Average Perplexity
Feature Concatenation 7.56
Self-contained Attention 7.92
Stacking Attention 7.73

the context is limited. As a result, in this study, feature concatenation was used to
evaluate the model’s performance on the test set.

Quantitative Result Analysis

The results were analyzed by comparing the proposed approach’s evaluation metrics
to several baselines on the test set. The proposed CMCA outperformed the others,
achieving 75% in the majority of baseline metrics (Table 5.4). The bold printed value in
each column of Table 5.4 represents the best score from a metric. Our result achieved
a 71% relative improvement over the baseline score on the BLEU-4 metric. This
demonstrates that our proposed model is capable of generating plausible sentence-level
text when compared to the test set’s provided label. Additionally, this demonstrates
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the contextualizing process facilitated by pre-trained language generation, which is
conducive to producing high-quality outputs.

(a) Token frequency comparison (b) Token unique comparison

Fig. 5.15 Evaluation on the use of the pre-trained weight natural language generation
model is performed by comparing the total number of word tokens and unique word
tokens from each sequence.

Qualitative Analysis

The Figure 5.16 demonstrates qualitatively how the proposed CMCA outperforms the
other baselines. To begin, an image sequence is presented in a row, from left to right,
indicating a time-ordered event. Second, a visual object detection algorithm is used to
encode visually visible objects in order to obtain their features. The detected object is
represented visually as a labeled boundary box with a class and percentage value (for
clarity, the detected object list is presented below the images with its frequency). Lastly,
a comparison is made to the text story. The comparison included references (a narrative
created by humans), the baseline result, and the proposed approach. Compared to the
other baselines, the proposed CMCA was more context-correct in containing the visual
object. For instance, to point to the same object, the token baseball is more context-
correct than the big game, as determined by GLAC. Related to token sequence-specific,
compared with CAAM, there is similar for some token appear in correspond to the
order distribution that analyzed in Figure 5.10, but the remaining problem of CAAM
is lack of correct-context objects in the story generated. Lastly, the generated result
is coherent with that from the NIC, which does not perform global attention, but
separated attention. The proposed approach generates less monotonous stories and
produces more token varieties.



110 Contextualizing Language Generation on Visual Storytelling

Table
5.4

A
utom

atic
m

etrics
evaluation

(M
ET

EO
R

,C
ID

Er,R
O

U
G

E-L,B
LEU

,and
B

LEU
RT

)
com

paring
the

proposed
C

M
C

A
w

ith
our

re-im
plem

entation
ofthe

baselines.

M
ethod

M
ET

EO
R

C
ID

Er
RO

U
G

E-L
BLEU

1
BLEU

2
BLEU

3
BLEU

4
BLEU

RT
N

IC
[115](a)

27.60
1.60

21.80
29.20

14.00
7.00

3.60
-

N
IC

[115](b)
29.30

3.60
23.10

33.41
17.70

8.90
4.60

-
V

isualA
ttention

[131]
30.41

3.40
24.28

34.89
18.87

9.32
4.82

-
G

LA
C

[48]
28.90

2.60
22.80

32.80
17.20

8.60
4.40

-
H

A
C

A
[126]

30.00
2.00

23.70
33.80

18.00
9.10

4.40
-

K
now

ledgeable
Storyteller

[133]
30.89

3.12
23.32

30.41
16.98

9.12
4.80

-
C

A
A

M
[86]

31.23
3.30

24.72
33.32

18.93
9.60

4.98
-

C
M

C
A

(proposed
approach)

31.63
3.72

25.16
32.11

18.88
9.83

5.02
30.4



5.4 Experiment and Evaluation 111

Human Evaluation Analysis

The human evaluation results in Table 5.5 demonstrate the respondent’s subjectivity
following reading and viewing the image-story pairs. The score for each subjectivity
criterion is calculated using the average rating score of all respondents. Our proposed
model outperforms 75% of all the criteria, except fluency. Additionally, respondents
were asked to rate the human-generated story in order to confirm the validity of a gap
between natural and machine-generated stories. The coherence criteria result reflects
the model successfully learning the story’s sequential flow, i.e., the generated story has
obvious parts such as opening and closing statements. Due to a lack of word diversity
or monotony in the language generated, the human subjectivity score of variation in
our proposed approach outperforms the baselines. It is implied that the use of the
pre-trained language generation weight shows the effectiveness in overcoming the low
lexical diversities. The relevance score shows that the generated language is relevant
to the presented images in a suitable context. The fact that the generated story has
a lower fluency score than the baselines indicates that the generated story contains
numerous object details that are unsatisfying to the readers.

Ablation Study

The ablation study aims to explain the effect of a pre-trained weight on the language
generation stage by comparing two conditions (i.e., with and without the pre-trained
model). Related to the decoding process, the analysis of utilizing the pre-trained
weight from a large-scale model, as mentioned in Subsection Contextual Attention
Story Generation, is presented herein. This analysis compares the two distributions
that potentially describe the quality of the generated story (Figure 5.15a and 5.15b)
to investigate the effect of the pre-trained model weight. First, the token frequency
comparison presents the token frequency from each sequence. From this distribution, it
can be concluded that the pre-trained weight gives an impact in terms of the number of
words generated, which is greater for each sequence. Second, related to the monotonous
word generated story, the analysis is performed by comparing the frequency of unique
words between two conditions (i.e., applying and not applying pre-trained models).
Figure 5.15b depicts that the pre-trained model can boost the word variant for the
generated story.
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Table 5.5 Human evaluation results of the proposed model compared to baselines and
human-generated stories. The subjectivity criteria are fluency, variations, relevance,
and coherence. The value for each category is the average of the total score from the
whole respondents.

Models Coherence Relevance Fluency Variation
Human reference 4.40 4.55 4.60 4.45
NIC [115](a) 2.25 1.45 2.60 2.35
NIC [115](b) 2.90 3.25 2.45 2.35
Visual Attention [131] 3.25 3.60 3.50 3.35
HACA [126] 3.40 3.45 3.35 3.05
Knowledgeable [133] 3.45 3.25 2.90 3.25
GLAC [48] 3.55 3.45 3.60 3.25
CAAM [86] 3.60 3.55 3.25 3.45
CMCA (proposed approach) 4.00 3.90 3.30 4.25

5.5 Summary
By contextualizing the feature representation, this research attempted to improve
the visual storytelling quality of the language generation. The new contextualized
features were generated as a result of the encoder’s cross-modal attention combined with
pre-trained language generation. By adding additional features, object detection was
performed on the encoding side. The extensive experiment conducted demonstrated that
the proposed model outperforms the baseline in both automated and human evaluation.
The problem of low-lexical diversity and incorrect context have been overcome, reflected
by the variation and relevance score value from the human evaluation consecutively.
Additional research on token diversity revealed that the proposed model generates
a story that is less monotonous. Additionally, an external resource (i.e., knowledge
graph) will be considered in the future to generate more plausible results.



5.5 Summary 113

Fig. 5.16 From top to bottom: sequence of image input, object detection annotation,
list of detected objects class, and output story generation comparison. Underlined
words: contextualized from the encoded feature of visual detection.





Chapter 6

Summary and Future Work

6.1 Summary
This dissertation focuses on the research problems related to generating a plausible
human-language text story from sequence images input or known as visual storytelling.
In this regard, we have proposed an approach of the contextualized image to text
storytelling generation where several novel techniques are introduced to improve the
generation quality. This thesis mainly focuses on two contributions, i.e., (1) extracting
image-text semantic correlation to obtain the non-visual concept features in temporal
cross-modality, (2) a strategy to contextualize language generation from sequential
visual representation. The preliminary work of our research focused on a multimodal
learning representation strategy for cross-domain image-to-text tasks.

Since images and text features have different data distribution that does not op-
erate interchangeably, multimodal representation becomes important. We propose a
multi-modal binary hashing strategy for the image-to-text tasks to preserve the original
information. The proposed new feature representation is not suitable for temporal
correlation between image sequence and the sentence sequence; thus, nonlinear canon-
ical correlation analysis on multimodal learning is proposed. Time-series canonical
correlation extracts semantic correlation between sequences of image-text pairs, which
overcomes the limitation of traditional canonical correlation analysis. The new feature
representation then involved the attention mechanism. The visual storytelling task
can be viewed as a sequence-to-sequence task. A standard encoder-decoder mechanism
should be improved due to the capacity to remember the long sequence. This contribu-
tion attempts to utilize an attention mechanism that focuses on aligning the important
part of features and considering the multimodal feature’s combination.
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Finally, in response to the low-quality output of text story natural language genera-
tion, the context-aware model architecture has proposed that focus on overcoming the
lack of correct context, low lexical diversity, and monotonous story. This contribution
not only relies on the learning feature representation but also incorporates external
knowledge from the available previously pre-trained model. The encoding strategy
focuses on the cross-modal sequence to obtain latent feature representation. The
decoding strategy transforms the encoded visual representation into the text modality.
To achieve a plausible story output, this contribution attempts to give context and
diverse the output words due to the relatively small size of the VIST datasets. Experi-
ment results on automatic evaluation metrics and human evaluation demonstrated the
effectiveness of our architecture over the baseline and known related works.

6.2 Future Work
In the future, we plan to utilize the learning strategy such as continual learning,
which is modified to suitable with multi-modal data such as image-text pairs. The
continual learning or lifelong learning strategy allows the model to learn incrementally.
Since the currently available number data pairs of the image sequence and sentence
story in the VIST dataset are limited, we expect to incorporate unpaired data, i.e.,
image sequence only or text story only. With learning in a continual setting such as
catastrophic forgetting, there will be many opportunities to explore another learning
strategy. Transferring knowledge from previously learned multi-modal image-text pairs
can be expected as a new challenge in learning strategy.
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