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ABSTRACT

Title
Ontology-based Knowledge Management System with Verbal Interaction and Concept Learning for

Home Service Robots

Service robotics, which refers to assistant robots at home, has been gaining importance. Researchers are

creating robots to accompany and fulfill the needs of older adults or disabled humans. Developing a service

robot that can support people at home is still an open challenge that many researchers are targeting.

Service robots need skills and characteristics to be involved in the social environment of humans. Several

factors, such as the interaction with humans, the response and speed, and the usefulness for their tasks, must

be considered for service robots. Moreover, they need to learn and adapt to their particular house settings,

make decisions, and behave accordingly.

The ultimate goal of this research is to create fully autonomous robots that help people at home in diverse

ways. Therefore, it is necessary to provide the robot with different skills depending on the scenario facing,

such as vision, language communication, or learning. While a service robot can be equipped with the general

knowledge and skills to cope with the most common situations at home, it also might encounter new scenarios,

and hence, it must know what to do in such a case. For a service robot, learning a new concept by itself is a

crucial factor.

The contributions of this research are focused on the development of a system for service robots perform-

ing tasks at home and are divided into two main components. The first component is building an Ontology-

based Knowledge Management System with Verbal Interaction for Command Interpretation and Execution

by Home Service Robots.

We develop a system for service robots that combines ontological knowledge reasoning and human–

robot interaction to interpret natural language commands and successfully perform household chores, such as

finding and delivering objects. We use an ontology to represent the general information of the components in

the environment and their relationships; moreover, the system links natural language commands, the ontology

object representation, and the real objects’ information. The robot disambiguates uncertain requests through

spoken interaction with the human before completing a task. It utilizes information from the ontological

knowledge to create more precise questions.

The second component is realizing Ontology Learning of New Concepts combining Textural Knowledge,

Visual Analysis, and User Interaction for Service Robots Applications. On this part, the robot is provided

with another essential feature to adapt inside a home environment. In this part, we focus on the learning of

new ontological concepts oriented to service robot applications. We propose combining textural knowledge,

visual analysis and user interaction to determine the correct placement of the new concept in the ontology

structure. We aim to make the robot able to extend its ontological knowledge as needed. Moreover, the

system’s functionality and performance are demonstrated by experiments in a simulated environment.
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Chapter 1

Introduction

1.1 Service Robots for Home Support

Nowadays, robots are taking greater importance in areas such as the hospitality, enter-

tainment, and healthcare industry, where they must take on roles as caregivers and companions.

Researchers are creating robots to accompany and fulfill the needs of older adults or disabled

humans. These kinds of robots require special skills to operate in human environments in or-

der to work, interact, and communicate with them, especially at home. Service robotics, which

refers to assistant robots at home, has also been gaining interest. Developing a service robot that

can support people at home is still an open challenge that many researchers are targeting.

Service robots need skills and characteristics to be involved in the social environment

of humans. Several factors, such as the interaction with humans, the response and speed, and

the usefulness for their tasks, must be considered for service robots. Moreover, they need to

learn and adapt to their particular house settings, make decisions, and behave accordingly. A

robot’s behavior is crucial during human–robot contact; the person should feel safe, willing to be

assisted, and rely on the robot, and the overall experience must be satisfactory [1]. An essential

element needed to provide efficient service robots is knowledge and context reasoning, given

their diverse and continuously changing environments.

Various researchers have studied how to provide the knowledge that robots need to com-

plete different tasks [2], [3], [4], [5]. Some have attempted to make robots learn new concepts or

assignments by themselves [6], [7], [8]. Reasoning based on acquired knowledge before taking

action is a skill be pursued in robots [9], [10], [11]. Most of these published works focus on

1



2 Chapter 1 Introduction

specific and separate skills that service robots need. However, some of them lack well-ordered

concepts about the environment, and the knowledge is limited to that acquired during the learn-

ing phase that is, the first human–robot interactions. In other cases, the questions’ and answers’

patterns are fixed and do not handle unexpected answers from users [3].

The implementation of natural language in robots has been explored at different levels of

human–robot interaction. Models that can extract information from natural language instruc-

tions and their surrounding environments have been developed to improve robots’ instruction

understanding. NL-based probabilistic, cognitive, and logic models are used for plan genera-

tion. In contrast, theoretical knowledge grounding, knowledge gap detection, and gap-filling

models have been developed for knowledge world mapping [12].

1.2 Research Goal and Contributions

The ultimate goal of this research is to create fully autonomous robots that help people

at home in diverse ways. Therefore, it is necessary to provide the robot with different skills

depending on the scenario facing, such as vision, language communication, or learning. While

a service robot can be equipped with the general knowledge and skills to cope with the most

common situations at home, it also might encounter new scenarios, and hence, it must know

what to do in such a case. For a service robot, learning a new concept by itself is a crucial factor.

The contributions of this research are focused on the development of a system for service

robots performing tasks at home and are divided into two main components. The first compo-

nent is building an ontology-based knowledge management system with verbal interaction for

command interpretation and execution by home service robots.

We develop a system for service robots that combines ontological knowledge reasoning

and human–robot interaction to interpret natural language commands and successfully perform

household chores, such as finding and delivering objects. We use an ontology to represent the

general information of the components in the environment and their relationships; moreover,

the system links natural language commands, the ontology object representation, and the infor-

mation of the real objects involved. The robot disambiguates uncertain requests through spoken

interaction with the human before completing a task. It utilizes information from the ontological

knowledge to create more precise questions.

The second component is realizing ontology learning of new concepts combining textural

knowledge, visual analysis, and user interaction for service robots applications. On this part, the
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robot is provided with another essential feature to adapt inside a home environment. In this part,

we focus on the learning of new ontological concepts oriented to service robot applications. We

propose combining textural knowledge, visual analysis, and user interaction to determine the

new concept’s correct placement in the ontology structure. We aim to make the robot able to

extend its ontological knowledge as needed.

The main contributions of this work are:

• The conjunction of knowledge reasoning and verbal interaction to interpret and disam-

biguate natural language commands.

• Knowledge management based on ontology with inference capabilities in a home envi-

ronment.

• Question formulation incorporating ontological assertions.

• Textural knowledge acquisition for word meaning identification and image data collec-

tion.

• Image visual analysis and natural language interaction to concept description selection.

• Ontological knowledge update with the conceptualization of new objects.

Moreover, the system’s functionality and performance are demonstrated by experiments

in a simulated environment. The contributions are explained further in the following chapters.

1.3 Related Work

1.3.1 Ontology and Knowledge-based Systems

The first step in creating a service robot with the abovementioned characteristics is to

provide it with knowledge not only for completing chores but also for understanding what is

being asked, to manage unexpected situations or ambiguous assignments. Numerous systems

have been developed to manage knowledge in different areas. For instance, in [13], the authors

emphasized the importance of managing knowledge for software maintenance that is hard to

track using conventional documentation methods. They proposed the use of ontologies to save

such knowledge and described a methodology for developing such an ontology.
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A model conception for enterprise knowledge management was proposed in [14]. The

model includes a set of ontologies specializing in specific parts of the process of knowledge

management, such as the knowledge acquisition, knowledge storage, and knowledge identifi-

cation processes. Another system proposing a merged ontology was presented in [15], which

includes medical, hotel, and city ontologies.

An application for knowledge management in mechatronics was developed in [16]; it con-

tains retrieval information methods that humans and computers can understand. However, the

knowledge is static and does not consider the dynamic management of the information, which is

essential in a changing environment. The authors of [3] described an attempt to create cognitive

maps through interactive dialog; new attributes and names of objects can be learned through

the interaction considering the user preference toward an object. Nevertheless, the acquired

knowledge is limited to the user’s response and does not consider solving inconsistencies in

knowledge.

In the area of robotics, different studies have proposed the use of ontologies as a stan-

dardization of knowledge representation. Ontologies have been proposed to describe robots,

parts of robots, and their relationships [17]; products and their final assembled states [18]; and

appliances, their moving parts, and their functionalities [19].

Some ontologies were designed to include concepts related to advanced driver-assistance

systems, driving tasks, and driving distractions [20]. To eliminate the heterogeneity between de-

vices and applications, some ontology models describe concepts on the basis of sensor-stimulus-

observation design patterns [4].

However, the knowledge described in these ontologies needs to be complete, including all

the parts involved and their functions, because inferences rely on the integrity and precision of

the represented knowledge. Moreover, these approaches do not consider any mechanism besides

the inference process for dealing with lack of information.

A more robust approach is KnowRob [21], a knowledge processing system designed to

give entirely autonomous robots knowledge to accomplish manipulation tasks. This system in-

cludes knowledge representation, reasoning techniques, and methods of knowledge acquisition

and exchange. Its applicability has been demonstrated through experiments of a robot making

pancakes [22] and in projects such as openEASE [23].
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Two important aspects are the use of WordNet to disambiguate vague natural language

task descriptions [24] and the integration of robot control data into symbolic reasoning to gen-

erate information needed to execute tasks. However, the symbolic representation used in the

study was relatively shallow and customized to produce functional knowledge to execute tasks,

and the consistency in the knowledge base was not considered. Hence, executing symbolic in-

ference processes with a large amount of implicitly encoded information in the control system

might increase the computational cost. Moreover, the disambiguation process focused on creat-

ing a detailed robot plan of actions to be executed; by contrast, our objective is to disambiguate

the objects required in the actions and complete the plan to be executed.

Recently, KnowRob was extended and partially redesigned, and the new release was in-

troduced as KnowRob 2.0. It integrates photorealistic rendering and acquisition of low-level

robot data and information concerning tasks, contexts, and goals, among others [25]. KnowRob

2.0 implements hybrid reasoning, unifying inner world knowledge, virtual and logical knowl-

edge, and knowledge acquired from perceptual data during task execution. It also includes a

question-answering feature enabled by Prolog in the interface shell.

However, potential queries are meant to request manipulation information or motion pa-

rameters needed for a task. It does not consider actual human interaction to cooperate or support

task decisions in dynamic plan generation. Furthermore, as stated in [25], the knowledge orig-

inated from data collected from different sources might be redundant and inconsistent, leading

to the computation of multiple hypotheses to determine the correct answer. Moreover, the paper

did not mention how to deal with contradictory information.

Our purpose is to reason on the natural language command against the knowledge base

to identify vague commands in terms of the objects needed for a task rather than the motions.

Moreover, we include information derived from human interaction to support task completion

when doubts arise about the involved entities and the reasoning cannot resolve them.

1.3.2 Human-robot Interactive Systems

Apart from knowledge, service robots need the ability to interact with humans. Tutoring

systems are an example of human–robot interaction. The use of robots in one-on-one tutoring

promotes learning gains and strengthens engagement [26]. The combination of the use of a

robot’s gestures and adaptive training leads to better learning outcomes in children [27].
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Systems relying on learning-by-teaching methods using robots that act as learners and

receive correction from children increase children’s abilities and overall performance [6]. Meth-

ods of finding the best strategies for teaching robots have been studied in several works. In

particular, physical interactions and reductions in unintended learning enhance robot’s learning

efficiency [7].

Means of interaction is a key factor in human–robot interactive systems. In [8], a human–

robot architecture for interactive learning and conceptual reasoning using ontologies was de-

scribed. The interaction is based on natural language communication, and it can learn concepts

such as actions and targets of actions, although low-level mechanisms for linking the concepts

to physical actions were not considered.

Teaching and learning strategies are also prominent in human–robot interaction. Correct

strategies or combinations of strategies can be used to interpret the meaning of human actions

well, since every user interacts differently [9]. Other tools can be used to reduce the physical

and mental demands of humans when they collaborate with robots. These include an interactive

combination of projection and touch-enabled table and kinesthetic teaching with a high level of

abstraction [28]. However, users might take some time to learn the correct method of using such

tools.

1.3.3 Dialog Systems

The usage of spoken language to interact with systems is a natural way of communica-

tion in humans. Many works have attempted to use natural language as the primary means of

communication. In [29], scene generation was achieved by using natural language, and it can

be dramatically improved by online image cloud retrieval, and synthesized scene refinement

through natural language.

Some widespread usages of dialog systems are chatbots, recommendation systems, and

feedback collection. Sufficient and convincing information improves user satisfaction with vir-

tual dialog [30]. Letting on the user’s initiative creates a more appealing and entertaining ex-

perience [31], and gathering guest feedback with robots is a convenient and useful method for

the hospitality industry [32]. Dialog systems also emphasize adaptation to new domains and

changes in the knowledge content with new information [33].
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Conversational robots are a central topic regarding the future of human–robot communi-

cation. Multiagent conversations and interruptions must be managed appropriately while con-

sidering the importance of different factors, such as the conversation topics and emotional be-

haviors [10]. Moreover, a user’s experience in establishing dialogs with robots can be enhanced

by switching comment-speaking between more than one robot and the human to increase the

impression of dialog continuity and avoid breakdowns [34]. The robot can increase the engage-

ment, attention, and understanding of the user by adapting its dialog through considering verbal

and nonverbal feedback [35].

The use of dialog-based interaction is an important skill for robots socializing with hu-

mans. However, rather than creating dialogs for entertainment purposes, a home service robot

needs to create context and environment-specific conversations to solve requests accurately.

The dialog creation needs to incorporate grounded knowledge, including general and situation-

dependent concepts. The information received through the conversation is essential for task

planning and execution.

1.3.4 Service Robots

Systems and service robots that are in contact with humans require several features, such

as general knowledge, interaction skills, and language skills. When a robot deals with a verbal

request, it sometimes needs to clarify the elements involved in the human request. Research

has been performed to evaluate different visualization mechanisms that will allow a user to

determine objects that match a request, and to develop more features to help robots select correct

ones, such as head-mounted displays, monitors, and projectors [36].

A robot requires techniques to connect verbs to their associated tasks intuitively and the

tools or sensors needed to execute such tasks [37]. A study expanded a robot’s language under-

standing and grounded physical objects through conversations with humans [38]. The system

creates dialogs to confirm the understood command or clarify unknown words to later ground

the concept. It incorporates the description of objects, including visual, audio, and haptic prop-

erties. Although the system can learn new concepts referring to object properties successfully,

it still requires a considerable number of clarification questions, even after training perception

and parsing modules, to understand before executing a command.

Language understanding is essential for service robots. Some probabilistic graphical

models are trained by associating language to scene semantics and perceptual classifiers to map
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natural language instructions correctly [11]. However, these models do not consider techniques

of solving ambiguous instructions, such as verbal interaction.

The authors of [39] proposed an approach that combines existing inference technologies

to identify a command’s semantic information and improve the design of human–robot inter-

action architectures. This work was extended in [40] with the incorporation of discriminative

learning and distributional semantics. Spoken language understanding is achieved using linguis-

tic data and perceptual knowledge. The resulting semantic frames are mapped into plans whose

respective arguments are associated with their corresponding actors. Although this approach

deals with ambiguous sentence structures, it does not consider situations where knowledge is

missing in the semantic map, and neither creates any spoken interaction other than upon receiv-

ing the initial command.

Another approach to language understanding was developed in [41]; in this approach,

the interpretation of utterances and context information are represented as logical forms. Then,

given a first-order formula, the framework uses theorem provers along with model builders as

inference engines to find either a proof or a model that satisfies it. Despite the robustness of

this approach, the search for a suitable model or proof might require several processes; thus,

it will need a long time to solve a task but still not guarantee that the identified model is the

most efficient. Although this approach implements clarification dialog when the recognition

confidence is low, it does not consider the number of dialogs made before being able to obtain

the information needed for the model or the proof.

In [42], a log-linear reward function model was presented to find the possible sequence of

instructions considering environment context information to perform tasks, such as cooking (ra-

men). This method handles generalization to new environments and can deal with ambiguities,

such as incomplete instructions. However, the instruction disambiguation focuses on finding

the subtasks’ sequence to perform when the main instruction does not explicitly describe all the

required subtasks. In addition, this method does not consider disambiguation methods, such as

spoken interaction, when the entities involved in performing the instruction are not precise.

1.3.5 Concept Learning

Ontology learning techniques have been explored in different research domains such as

tourism [43], [44], medicine [45], [46], and computer science [47], [48]. Their main goals vary

from enriching concepts in the ontology, extending it with new concepts, building taxonomies,

and discovering new relations between concepts. Some examples of potential input data are text,
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existing ontologies, databases, dictionaries, lexical resources, and corpus from the web. More-

over, the main techniques for ontology learning include term and relation extraction, syntactic

patterns, statistical methods, and machine learning [49].

Researchers have developed tools for ontology development tasks, such as the ROBOT

tool [50]. This tool helps to check logical errors and standard quality control; it eases the

creation, maintenance, and release of ontologies, currently working only with Open Biomedical

Ontologies [51].

In the field of robotics, an attempt to create an ontology standard for autonomous robotics

was presented in [52]. The authors demonstrated some of the benefits that using ontologies pro-

vide to a system, such as semantic interoperability. The knowledge representation focuses on

notions like behavior, function, goal, and task. Although the ontology includes object manipu-

lation behaviors, it is not clear how the objects are described. Moreover, it is not mentioned if

the robot can extend its knowledge autonomously.

An approach to expand the knowledge of a conversational agent during run-time was

presented in [53]. It presents a technique for automatic knowledge extraction, and it was tested

with a social humanoid robot in a residential care home setup. The insertion of concepts is

accomplished using verbal interaction, and it includes cultural knowledge about the user. Before

the robot inserts a new concept, it asks whether the new concept belongs to a previously mapped

class. However, it will continue asking in the same way for each class of the ontology in a

descending form which might lead to a rather prolonged confirmation process if the mapped

class is too general. Furthermore, the correct insertion of concepts depends on the ability of the

user to describe the new concept so that the system can find a matching or related class; this can

end up in a limited meaning conceptualization.

A different approach for learning concepts is found in [54], where an integrated cogni-

tive architecture was realized to learn concepts, actions, and language. The authors integrated

multiple probabilistic generative models to accomplish this. Experiments proved that a robot

was able to learn based on its own experiences while interacting with the objects and receiving

feedback from the user. However, they do not consider any hierarchy or relation between the

concepts related to objects learned by the robot. Also, the model does not consider reasoning on

the newly acquired concepts.

Learning word meanings has been achieved using statistical models such as probabilistic

latent semantic analysis and latent Dirichlet allocation [55]. The approach, further extended in

[56], used multimodal information such as visual, auditory, and haptic information, and it can
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learn object concepts incrementally. However, the categorization of objects is based on their

visual features; hence the semantic relationships between the object concepts are not present.

Another approach for learning visual concepts is proposed in [57]. It collects training

videos and uses human annotation for data collection. The vision system learns concepts that

are used to extract related concepts with ontology knowledge. The system searches for more

videos using those extracted concepts and repeats the process. It shows the importance of having

a concept hierarchy. However, it is not a fully autonomous learning process since it relies on

human annotation data.

In [58], an incremental object learning system is described. The system uses a few sample

images to learn new objects and their categories visually. However, the category hierarchy of

concepts is not considered in the learning process.

A model for automatic ontology learning from unstructured text data was proposed in

[59]. A classifier is trained with domain-specific data and consists of a two-stage process. The

stages consist of classifying the data into concepts and classify them into more specific types.

They showed that polysemy is one of the most important features to consider for the classifi-

cation and learning model. The evaluation of the ontology learning system showed good per-

formance; however, it considerably decreased when the test data contained different distribution

from the training data.
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1.4 Thesis Organization

The thesis is organized as follows. Chapter 1 briefly describes the background, explains

the research goal and contributions. It also describes the related work of this research. Chapter

2 describes the ontology-based knowledge management system which can interpret commands

and interact verbally. Chapter 3 describes the implementation of ontology learning of new con-

cepts that combine textural knowledge and visual analysis with user interaction. Finally, chapter

4 provides the conclusion and future work.





Chapter 2

Ontology-based Knowledge
Management System with Verbal
Interaction for Command
Interpretation and Execution

In the endeavor of creating a system for service robots performing tasks at home, we

focused on equipping the robot with structured knowledge of concepts and language communi-

cation skills that it can use throughout the execution of a task. As we showed in section 1.3.1,

the representation of knowledge using ontologies offers an advantage in managing information

containing descriptions of various concepts and describing their relationships. Therefore, we

decided to use an ontology to provide the robot with the knowledge necessary to function effec-

tively in a home environment.

Furthermore, sections 1.3.2 and 1.3.3 showed that human–robot interaction presents a

more enriching experience when working with robots and a natural way of interacting for non-

expert users. Hence, the selected communication method between the robot and the user is

through verbal interaction. An important point to bear in mind is that most of the approaches

developed for service robots focus on techniques for task planning (section 1.3.4); hence, the

command disambiguation process covers handling missing subtasks descriptions needed to com-

plete the main task. By contrast, our focus is on interpreting and disambiguating commands in

terms of the objects involved to complete the main task.

13
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A service robot can perform a wide range of tasks, such as finding objects, cleaning

up an area, and cooking. However, we focus on a limited number of tasks that challenge the

robot’s knowledge and reasoning capabilities to handle objects categories. The tasks included

are bringing, delivering, finding, getting, placing, taking an object, and going to a place. This

set of tasks makes it possible to create variations of commands to test different aspects of the

ontological knowledge representation, reasoning, and interaction process. To satisfy all the

mentioned aspects of a service robot that we are targetting, we developed an ontology-based

knowledge management system that combines reasoning and human-robot interaction to inter-

pret natural language commands. The system contains inference capabilities as it is based on

ontological knowledge, and the formulation of questions incorporates parts of this knowledge.

The overview of the system is explained as follows.

2.1 System Overview

The system is composed of four main modules with different functions. These modules

manage the robot’s knowledge and reasoning, command analysis, decision-making, and talking

interaction. These modules are interconnected and share information between themselves in

different steps of the processes. One of the modules has a link to the robot’s perception and

control modules, which enables the robot to perform the actions physically.

The system can perform some generic tasks, such as bringing an object, delivering an

object to a place, finding an object, going to a place, taking an object, and placing an object.

An overview of the system is shown in Fig. 2.1. General explanations of the modules and their

functions are presented in the following subsections.

2.1.1 Knowledge Management

The first part of this module is the main ontology, which contains knowledge about the

objects in the environment and their relationships. For instance, we can instantiate an object

named mug and create a statement indicating that it belongs to the class Mug. With this con-

nection, the ontology can immediately relate the mug to similar superclasses, such as Cup and

DrinkingVessel.

Using this ontology, we can assign properties to the instances of the objects it has, and

define classes connected by property restrictions. Considering the object class Mug, we can
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FIGURE 2.1: System overview.

assign the property hasDefaultLocation, which refers to a place where individuals of the class

Mug can usually be found. The property hasDefaultLocation is linked to the class Cabinet,

which is a Furniture. As a result, it is possible to deduce which furniture can be linked to a mug

by the relation “Mug hasDefaultLocation some Cabinet".

This module contains the definition of the ontology and implements the formation of De-

scription Logics (DL) queries to access its knowledge. The DL queries are class expressions

based on the Manchester OWL syntax [60], a user-friendly syntax for handling ontologies de-

signed using the Web Ontology Language (OWL). These DL queries are constructed as needed

when a natural language command is received and during the information disambiguation pro-

cess. Direct and indirect property values can be assigned to instances and classes using these

queries. This module also makes complex inferences by querying links between the instances,

properties, and classes, as explained in the subsequent sections.

2.1.2 Command Interpretation

2.1.2.1 Command Analysis

For a human, instructing a robot by speech is effortless and natural. One of the objectives

of this module is to enable robots to receive commands through natural language and execute

them.
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This module processes a spoken command given by the human and creates goals based

on the command. For instance, the human can tell the robot, “Go to the living room, take the

soda, and place it on the coffee table". This module will generate the following set of goals for

the command:

1. Go to the living room.

2. Find and grasp the soda.

3. Place the soda on the coffee table.

With this set of goals, the robot can begin the task execution process. However, the robot

needs to verify whether some information is missing before accomplishing these goals. The

missing information often depends on the actual environment setup, which could differ between

houses. Some examples of possibly missing information from the previous set of goals are as

follows:

• the location of the soda in the living room

• the type or name of soda, in case there is more than one

• the location of the coffee table

• which coffee table the human is referring to, in case there is more than one

The missing information differs according to the explicitness of the command. When the

robot receives a command such as “Bring me the soda," it still needs to determine the location

of the soda and the type of soda (if relevant). For this, the robot first creates DL queries based

on the natural language command. The information obtained from that query is included in the

generated goals. The clarification and disambiguation of this information are performed in the

command refinement process that is part of the Task Planning and Execution module.

2.1.2.2 Talking Interaction

This module is in charge of the interaction between the robot and the human. It generates

questions according to the missing information to complete a task. It also validates whether the

answer fulfills the robot’s question. If necessary, the module restructures the question or asks a

new one.
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For the command “Bring me the soap," the robot can either think or interact to find the

possible location of the soap. If the robot interacts, it may need to know the kind of soap using

this module so that it can infer its location, or it can ask for the location directly. The robot

might ask the following questions:

• Where is the soap?

• What kind of soap? Dishwashing? Laundry?

For instance, if the human response is “It is on the shelf," the robot might be confused as

to which shelf in which room the human is referring to. By contrast, if the answer were “It is on

the kitchen cabinet," the robot would directly go to the kitchen and approach the cabinet.

The next step for the robot is to determine the best question to ask by knowing its en-

vironment. The robot might encounter different situations. On the one hand, soaps could be

kept inside a container in the laundry room. In that case, the robot needs to ask for the kind of

soap the human wants, not its location. On the other hand, dishwashing soap could be in the

kitchen cabinet, and laundry soap next to the washing machine. In this case, both questions will

be helpful. In case there is no usual place for the soap, the best option would be to ask where the

soap is. In summary, several situations arise depending on the environment setup. This module

generates questions that will likely obtain the information the robot needs to fulfill a task.

2.1.3 Task Planning and Execution

This module generates a robot-specific subset of tasks based on the set of goals generated

by the Command Analysis module. This subset describes each goal in a specific way such that

the robot can execute them directly. For example, for the first goal, “Go to the living room,"

the subtask generated would be sending the coordinates of the living room to the navigation

function.

Other goals may require more subtasks to be completed. For instance, when there is only

one object called soda, the goal “Take the soda" would result in the following subtasks:

1. Receive the coordinates of the soda (from the previous goal, “Find the soda").

2. Check whether nothing is obstructing the path.

3. Grasp the soda located at the given coordinates.
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These are examples of the possible subtasks created. However, the number of generated

subtasks depends on the information given from the subset of goals and thus might vary.

The information included in the set of goals received from the Command Analysis module

might not be enough to execute the subtasks. This module queries the Knowledge Management

module to acquire the missing information; if it stills need added information afterward, it inter-

acts with the user. The information found during the inferring process is used to create questions

for the user. The robot is not expected to face a new concept; instead, it will receive a request of

a known object in an unclear manner.

2.2 Knowledge Management

The organization and management of knowledge are an essential part of the proposed

system. The robot needs to have a clear concept of the entities with which it interacts in its

surrounding environment. We use an ontology to represent this knowledge. In this section,

we explain the base ontology and then the inference processes along with their outputs, both

corresponding to the Knowledge Management module.

2.2.1 Ontology Model Adaptation

We use the standardized description language Web Ontology Language (OWL). OWL

has a high degree of expression, thereby enabling the inference of complex implicit knowledge

[61]. Different ontology models can be found for robots, depending on their application. We

adopt an open-source ontology for robots included in the KnowRob framework that best match

our purpose. The KnowRob framework is designed to provide knowledge to totally autonomous

robots [21].

However, our system aims to use language-based human interaction to supplement the

robot’s knowledge and facilitate natural human–robot communication. KnowRob requires trans-

lation of predicates to query the ontology, which sometimes results in unnecessarily long and

inefficient queries [62], and the interpretation does not consider human interaction to solve am-

biguities. In our system, natural language commands are automatically translated into queries,

and they are interpreted using ontological knowledge combined with spoken interaction with

humans.
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For these reasons, we utilize only the base ontology instead of the entire framework.

The base ontology contains the conceptualization of household domains, which aims to provide

vocabulary that describes events, objects, actions, states, and parameters. Although the base

ontology contains well-described concepts, we add certain types of classes and object properties.

We also instantiate the individuals representing the real objects in the environment and their

respective associations.

We perform this adaptation to complete missing class names according to the description

of our environment, and to facilitate querying classes that are frequently used. Due to these

changes, we have to modify some object property names, change their data types, and adjust

some of the relationships between them.

We use statements to describe the concepts (axioms) of classes and properties in the on-

tology. By using axioms, we can create and associate, for instance, classes, properties, restric-

tions, individuals, and intersections. An axiom can describe the connection between classes

with a SubClassOf property by assigning a value to a data property, such as integer, Boolean,

float, and other data types. It also describes the domains and ranges of properties and indicates

whether an entity is equivalent to another entity, and other varieties of restrictions. The ontol-

ogy management module reads this information and creates OWL axioms that are based on this

information. These axioms are added to the ontology, whose consistency is then checked.

Figure 2.2 shows the part of the ontology containing concepts from the HumanScaleOb-

ject class and the SpatialThing class with some relationships. The descriptions of four relations

are as follows:

1. The first relation (1R) connects the EdibleFruit class (1a) with the EatingTable class (1b)

using the property hasDefaultLocation. This connection means that the default location of

entities from the EdibleFruit category is some entity falling into the EatingTable category

(Fig. 2.2, items framed in blue).

2. The second relation (2R) sets up the domain and range for the storedAtPlace property. It

assigns the domain as part of the HumanScaleObject class (2a) and the range as Place

class (2b). This statement means that entities that can use this property must belong to the

HumanScaleObject class, and the entities that will be linked need to be from the Place

class; hence, an object can be stored at some place (Fig. 2.2, items framed in green).

3. The third relation (3R), similarly to the first relation, the Cupboard class (3a) is linked

to the FoodVessel class (3b) using the StoragePlaceFor property, meaning that entities
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FIGURE 2.2: Visualization of a part of the ontology containing concepts from the HumanSca-
leObject class and the SpatialThing class with some relationships.

belonging to the Cupboard category will be a storage place for FoodVessel entities (Fig.

2.2, items framed in yellow).

4. The fourth relation (4R) connects the EdibleStuff class (4a) with the FoodOrDrinkOr-

Ingredient class (4b) by the subclassOf property (Fig. 2.2, items framed in purple).

We supplement the ontology with instances of objects possibly found at home, as ex-

plained in the experimental scenario shown in Section 2.4. The Common sense regarding the

objects’ default location is established according to the house’s layout in the experiments. This

knowledge can be easily extended if necessary, as long as the concepts are appropriately de-

scribed and associated. Moreover, it can be changed to describe new environments, such as

hospitals and nursing homes.
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2.2.2 Inference Process

In OWL, inferences are used to access to concepts in the ontology. We rely on a so-called

reasoner to access the information in the ontology using DL queries. A semantic reasoner is a

piece of software that can infer logical consequences from a set of asserted facts or axioms. It

helps reduce the redundancy of information and finds conflicts in knowledge content [63]. If the

ontology is not consistent, some conflicts or misconceptions might arise. Using the reasoner, we

perform the query answering to find asserted statements, infer knowledge, check consistency,

and identify hierarchical relationships.

We use the OWL API [64] for querying the information in the ontology. This library

contains functions for working with OWL ontologies using the Java programming language and

tools for DL parsing. We use this library to design methods of accessing the information stated

in the ontology, perform query reasoning through DL queries, and extract the output information

as needed.

Some of the reasoners’ methods, the queries constructed during the command interpreta-

tion and disambiguation, are explained below.

Algorithm 1 receives the name of an individual and an indicator to return direct or poten-

tially direct classes. It first brings the instance of the individual by using the input name on line

1. Then, it obtains the class types of the individual on line 2. Finally, it extracts the name of the

first immediate class and return it (line 6).

Algorithm 1 getFirstTypeOfIndiv. It gets the name of the first type of class of an Individual.
Input: The name of the individual indivName and an indicator for considering just direct classes

isDirect

Output: The name of the class f irstClassName

1: indivInstance = GETONEINDIVIDUAL(indivName)

2: nodesetClasses = rsn.GETTYPES(indivInstance, isDirect)

3: entitiesList = nodesetClasses.ENTITIES()

4: f irstType = entitiesList.FINDFIRST()

5: f irstClass = f irstType.GET()

6: f irstClassName = GETNAMEOF( f irstClass)

return f irstClassName
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Algorithm 2 confirms whether an individual exists inside the ontology by accessing the

method included in the library to bring the list of individuals (line 1). It iterates (line 3), checks

whether the given name matches the name of an individual, and returns whether it exists. This

method is useful, for example, for checking whether the object that the user is asking for is

instantiated in the robot’s knowledge.

Algorithm 2 checkIndividualExists. It confirms if an Individual exists.
Input: The name of the individual indivName

Output: Whether the individual exist or not, true or f alse

1: listO f Individuals = ontology.INDIVIDUALSINSIGNATURE()

2: entityExists = f alse

3: for each i ∈ listO f Individuals do
4: if GETNAMEOF(i) == indivName then
5: entityExists = true

6: end if
7: end for
8: return entityExists

With Algorithm 3, we can access the value assigned to a data property of an individual.

Since it receives the name of the individual and the data property to access, it first looks for the

instance of those entities in the ontology (line 1). Then, it applies one of the reasoner methods

to extract the values by sending the instances on line 4.

Algorithm 3 getDataPropValuesOfIndiv. It gets the value from a Data property of an Individ-
ual.
Input: The name of the individual indivName and the name of the data property dtPropName

Output: Value of the property value

1: indInstance = GETONEINDIVIDUAL(indivName)

2: dtPropInstance = GETONEDATAPROPERTY(dtPropName)

3: value = empty

4: aLiteral = rsn.DATAPROPVALUES(indInstance,dtPropInstance)

5: value = aLiteral.GETVALUE()

return value
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Not all the values of a property can be obtained immediately with the names and instances

of the entities provided. Thus, we need to look through their connection with other entities as

well. We created additional general methods to access inferred knowledge through ClassEx-

pressions with a DL query parser. These methods receive a DL query, which is parsed to an

OWLClassExpression. Then, they extract the required entities using the reasoner. For instance,

Algorithm 4 retrieves the list of SuperClasses that satisfies the given expression.

Algorithm 4 getSuperClassesOfClassExpression. It gets the list of Super classes of a Class-
Expression.
Input: The DL-query classExpDL and an indicator to clarify if the output should contain only

directly stated classes or with potentially direct classes isDirect

Output: A list of super classes allSuperClassesList

1: allSuperClassesList = empty

2: classExpParsed = PARSEDLEXPRESSION(classExpDL)

3: nodesetClasses = rsn.GETSUPERCLASSES(classExpParsed, isDirect)

4: entitiesList = nodesetClasses.ENTITIES()

5: for each cl ∈ entitiesList do
6: tempClassName = GETNAMEOF(cl)

7: allSuperClassesList.ADD(tempClassName)

8: end for
9: return allSuperClassesList

These algorithms are used at different steps of the command interpretation process to

extract data and infer knowledge. The received linguistic command is preprocessed, as explained

in Section 2.3, to extract the essential words from it and create query statements.

Ideally, the linguistic representation of the objects extracted from the command should be

mapped to the individuals; this would require less inference process to know with certainty the

objects needed from the real world. However, we consider cases where the user can ask for a

specific target object (individual) or a general target object (class) in the command, e.g., “Bring

the bottle of water" and “Bring a bottle".

In the first command, the target object can be mapped directly to an individual bot-

tle_of_water. The second command refers to the class Bottle, in which case the system needs to
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find the specific individual to complete this action. For the second case, the linguistic represen-

tation can be mapped to a class first, which would require more inference process and a possible

speech interaction with the commander.

The following shows an input and output for the abovementioned algorithms. When the

robot receives a command, such as “Bring the milk," it sends the input = [milk] to Algorithm

2 to verify whether an object called milk exists inside the current environment, and it receives

back true or false. Moreover, by sending the input = [milk, graspable] to Algorithm 3, it can

verify whether the object milk can be grasped by the robot; for this property, it sends back true

or false. For the other properties, it can return other kinds of values, such as black and white

when color is queried.

Some of the processes that utilize these algorithms are shown in Section 2.3. The entire

list of methods for accessing the ontology can be found in Table 2.1 for data reasoning and Table

2.2 for data access. The data reasoning methods help obtain information that is not necessarily

stated in the ontology and thus needs to be deduced from the assertions. On the other hand, the

data access methods retrieve information that is directly stated in the ontology and can access

any property of it.

2.3 Command Interpretation and Command Refinement

The proposed system aims to interact with humans by receiving spoken commands and

executing them. The robot must understand the meaning of the words and what these words refer

to in each command. To accomplish this, the system transforms the command given in natural

language into DL statements to query the ontological knowledge. The obtained information is

used to generate a set of goals that are based on it. When uncertainties are found, the information

is validated and refined first through alternative assertions in the ontological knowledge and

inferring processes, and then through interaction with the human. In the following subsections,

we explain how these goals are created.

2.3.1 Information Extraction and Grammar Rules

In this subsection, the processes performed by the Command Analysis module are ex-

plained. The first step in analyzing the command is part-of-speech (POS) categorization, and

dependency parses identification. With POS categorization or POS tagging, we can divide the
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TABLE 2.1: List of data reasoning methods for general domain.

Name Description
getAllClassesofIndividual Brings a list of the classes that an individual

belongs to and their superclasses
getDataPropValuesOfIndiv Brings the value from a data property of an

individual
getEquivalentClassesOfClassExpression Brings a list of the equivalent classes that

describe a given class expression; it can be
specified to return directly stated or potentially
direct

getFirstTypeOfIndividual Brings the name of the first type of class of the
given individual

getIndividualsOfClass Brings a list of individuals that belong to the
specified class

getInstancesOfClassExpression Brings a list of individuals that satisfy the class
expression

getObjectPropertyofIndividual Brings the value from an object property of an
individual

getPropValuesOfIndiv Brings the value from a property of an individual;
it does not need to specify the type of property

getSuperClassesOfClassExpression Brings a list of the classes that describe a given
class expression; it can be specified to return
directly stated or potentially direct

individualBelongsToClass Verifies if the given individual belongs to the
specified class

words that share common grammatical properties and assign them to a class [65]. With the

dependency parser, we obtain the type of relationship between the “head" words and their de-

pendent words, which modify them. We implement Stanford Log-linear POS Tagger [66] and

Stanford Parser [67], which are parts of the Stanford CoreNLP toolkit [68], for this purpose.

After the tagging and dependency parsing are completed, the system extracts relevant in-

formation to create a DL query which will help find the objects’ instances satisfying the given

concept description required for each task. The results of the query are passed as arguments to

the next step. Finally, the system identifies the action classes and their respective arguments,

which are called keywords. We define an action class as a group of verbs sharing similar seman-

tic properties.

Patterns of a particular group of verbs can be defined considering the lexico-syntactic

structure of the verb phrase. For instance, the verb “go" is commonly followed by a noun that

represents a place. Some verbs require more complex validation, such as double-object verbs

[69]. Therefore, we can identify keywords for each action class. The action classes and their
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TABLE 2.2: List of data access methods for general domain.

Name Description
checkExistsClass Verifies if the given class exists
checkIndividualExists Verifies if the given individual exists
containsADataProperty Verifies if the ontology has the specified data property
containsADataType Verifies if the ontology has the specified data type
containsAnIndividual Verifies if the ontology has the specified individual
containsAnObjectProperty Verifies if the ontology has the specified object property
entityExists Verifies if the given entity exists
getClassesName Brings a list of the names of all the classes
getFirstInstanceOfClass Brings the first instance found of the given class
getImmediateSuperClassOf Brings the first superclass that the given class belongs
getIndividualsName Brings a list of the names of all the individuals
getNameofClassasOntology Brings the name of the given class, as defined in the ontology
getOneClass Brings the requested class
getOneDataProperty Brings the requested data property
getOneDataType Brings the requested data type
getOneIndividual Brings the instance of the requested individual
getOneObjectProperty Brings the requested object property
getOwlDatatype Brings the requested instance of OWLDatatype
getOwlLiteralofDatatype Brings an OWLLiteral with the specified value and data type
getRangeOfDataProperty Brings the range of the given data property
getSuperClassesOfClass Brings the list of superclasses that the given class belongs

respective keywords, which represent objects or locations that can be identified, are defined in

Listing 2.1. The inferred information is used to generate the corresponding action class.

LISTING 2.1: Definition of Commands received by each Action Class.

〈actionclass-bring〉 ::= 〈verbs-bring〉 ‘the’ 〈object〉 [ ‘from the’ 〈location〉 ]

〈actionclass-deliver〉 ::= ( 〈verbs-deliver〉 | 〈verb-take〉 ) ‘the’ 〈object〉 ‘to the’ 〈furniture〉

〈actionclass-find〉 ::= 〈verbs-find〉 ‘the’ 〈object〉 [ ‘in the’ 〈location〉 ]

〈actionclass-go〉 ::= 〈verbs-go〉 ‘to the’ 〈location〉

〈actionclass-get〉 ::= 〈verbs-get〉 ‘the’ 〈object〉 [ ‘from the’ 〈location〉 ] | 〈verb-take〉 ‘the’

〈object〉 [ ‘from the’ 〈location〉 ] [ ‘to the’ 〈furniture〉 ]

〈actionclass-place〉 ::= 〈verbs-place〉 ‘the’ 〈object〉 ‘on the’ 〈furniture〉

〈location〉 ::= 〈furniture〉 | 〈room〉

〈verbs-bring〉 ::= ‘bring’ | ‘give me’
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〈verbs-deliver〉 ::= ‘deliver’

〈verbs-find〉 ::= ‘find’ | ‘locate’ | ‘look for’

〈verbs-go〉 ::= ‘go’ | ‘navigate’ | ‘enter’

〈verbs-get〉 ::= ‘get’ | ‘grasp’ | ‘pick up’

〈verbs-place〉 ::= ‘place’ | ‘put’

〈verb-take〉 ::= ‘take’

〈furniture〉 ::= instance or class name of type furniture

〈room〉 ::= instance or class name of type room

〈object〉 ::= instance or class name of a graspable object

2.3.2 Goal and final Subtasks Generation

After the action class identification and keyword extraction, it is verified whether no more

information is needed or whether the information is not precise, such as when the same concept

description describes several objects. Then, with the information completely disambiguated,

the set of goals can be generated. The disambiguation process is explained in Section 2.3.3.

Next, after forming the set of goals and keywords in the Command Analysis module, the system

needs to create a collection of final tasks that are based on each goal; the robot will subsequently

execute these tasks. The generation of the final subtasks is performed by the Task Planning and

Execution module.

As shown in Listing 2.1, an action class can receive different numbers of arguments,

depending on how much detail the human provides in the command. Therefore, we establish

an algorithm for each action class that receives different combinations of keyword patterns to

specify the series of subtasks needed. For instance, we create a method of selecting the valid

entities required for the action class Bring; it uses the inferred keywords and disambiguates

unclear data by interacting or querying related property statements, as shown in Algorithm 5, by

which subtasks are generated (lines 25–28).

This algorithm describes the process of identifying the correct object and the specific

source location to find it and bring it back to the commander. It starts receiving the keywords

inferred from the natural language command, which contain the set of possible objects and



28 Chapter 2 Ontology-based Knowledge Management...

Algorithm 5 Break down the goal for the Action Class Bring, which takes the list of keywords
inferred and the list of initial keywords.
Input: The list of inferred keywords in f erredKeywords and initial keywords from the linguistic
command initialKeywords

1: ob jsOptions = in f erredKeywords.GETOBJECTS

2: sourceLocs = in f erredKeywords.GETSOURCELOCATIONS

3: if ob jsOptions is 1 and sourceLocs is 1 then
4: validOb jN = ob jsOptions.GETOBJECT

5: validSrcLocN = sourceLocs.GETSOURCELOC

6: end if
7: if ob jsOptions more than 1 then
8: typeOb j = ob jsOptions.GETCLASS

9: validOb jN = CALLINTERACTION(‘class′, typeOb j)
10: if sourceLocs is 1 then
11: validSrcLocN = sourceLocs.GETSOURCELOC

12: else
13: validSrcLocN = CALLINTERACTION(‘general_pos′,validOb jN)
14: end if
15: end if
16: if ob jsOptions not found then
17: validOb jN = initialKeywords.GETOBJECT

18: alternativeLocs = MAKEDLQUERY(iOb j, ‘hasDe f aultLocation′)
19: if alternativeLocs is 1 then
20: validSrcLocN = alternativeLocs.GETSOURCELOC

21: else
22: validSrcLocN = CALLINTERACTION(‘speci f ic_pos′, iOb j)
23: end if
24: end if
25: MOVETOLOCATION(validSrcLocN)
26: TAKEOBJECT(validOb jN)
27: MOVETOLOCATION(initial_position)
28: HANDOVEROBJECT()

source locations. The output of the given inference can be empty, which means the reasoning

process did not find a suitable object and location according to the command description. This

algorithm checks the cases where

• the object and the location are both found and unique (line 3),

• several objects correspond to the entire description (line 7),

• several objects and one source location correspond to the entire description (line 10),
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• several objects and several source locations correspond to the entire description (line 13),

• no object corresponds to the entire description (line 16),

• there is an alternative location for the initial object when no other object matches the

description (line 19), and

• there are several alternative source locations for the initial object when no other source

location matches the description (line 22).

Once the concrete object and location are identified, then the robot can execute with

certainty the rest of the commands included in this action class (lines 25–28), which are as

follows:

1. Go to the place where the object is.

2. Take the object (including finding and grasping).

3. Go back to the place where the person is.

4. Hand over the object.

2.3.3 Command Refinement

The Task Planning and Execution module performs the command refinement process ex-

plained in this subsection, which needs information from both the ontological knowledge and

the user interaction to disambiguate the commands. We explain some of the queries submitted

to the Knowledge Management module (Section 2.3.3.1) and the generation of questions of the

Talking Interaction module (Section 2.3.3.2), which help refine the user’s command.

Communication in natural language can be complicated and ambiguous. When humans

receive commands, they use different skills to understand them and be confident before doing

them. Humans inadvertently access knowledge acquired from learned experiences and imme-

diately know whether they have enough information. In this part of the system, we attempt to

enable the robot to mimic this human behavior by using ontological knowledge as a first at-

tempt to understand the command and then interacting with humans to solve ambiguities in the

command.
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2.3.3.1 Ontology Access

The robot can access the knowledge kept in the ontology at any time as it attempts to

understand the command. However, there are cases where the inference process might not find

an instance with the natural language command’s initial description.

For instance, when the command requires a book from the kitchen, the knowledge will

state that books are usually in bookshelves, and bookshelves are not found in kitchens. In this

case, the initial query, which is based solely on book from the kitchen, will not retrieve any

instance of a book. Consequently, an alternative furniture name where to find the book is needed.

The robot first queries the ontological knowledge to find an alternative location. Then, if no

output is retrieved, the robot proceeds to interact with the user, as explained in the following

subsection.

For the example of Algorithm 5, on line 18, a query for finding an alternative source

location of the initial object is generated when no inferred possible objects are received. The

number of queries generated to find alternative instances of a concept description depends on the

action class definition. For example, the action class Deliver needs an object and a destination,

according to the definition shown in Section 2.3.1. This action class method will need to find an

alternative source location and determine the correct destination if needed.

2.3.3.2 User Interaction

In regular conversations, humans omit details when they think they are unnecessary or

to communicate faster. The same happens when humans give commands. However, the robot

needs a way to know the omitted information. The robot can find such information by using

its ontological knowledge to infer those statements. Another way is to interact with the person

who is giving the command. The robot interacts with the user for assistance when the general

inference rules cannot find the appropriate answer.

In this part of the system, the robot can create questions based on the information it needs

to complete its understanding of the tasks to be executed. In a question generation system, the

use of domain knowledge helps create significant questions and vary specificity [70]. We apply

the notion of generating questions from concepts where we can formulate flexible questions

instead of having completely fixed ones.
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TABLE 2.3: Labels with semi-static questions and types of answers.

Label Question Answer type
aspect What [property] is it? Property description
class Which [object_class] do you want? Object name
general_pos Where can I find the [object]? Room or furniture
options_pos Is it on the [furniture] in the [room_1] or in the

[room_2]?
Room

specific_pos In which piece of furniture can I find the [object]? Furniture

We define the set of semi-static “Wh" questions shown in Table 2.3. The set includes

labels identifying the types of questions and the strings describing them. Each question requires

a word to be completed depending on the previously given task, and it expects specific infor-

mation about the answers. The missing word and the expected answer can be the name of a

graspable object, the object class, a property of the object, a room, or furniture.

Due to the broad information stored in the ontological knowledge base, we have the con-

venience of creating questions that add details, thus narrowing the answer expected from the

user. The input for creating a question consists of two components: a label that describes the

type of question to ask (e.g., position or object class) and a set of concepts that should be in-

cluded in the question.

Consider the command “Bring me the salad bowl". Following the generation of the set

of subtasks, the robot knows that it needs the furniture and the room. Then, the robot can use

the input [general_pos, [salad bowl]], which will return the question “Where can I find the salad

bowl?" After receiving the answer from the human, the robot needs to confirm the location of

the given position (e.g., the kitchen cabinet or the high table in the kitchen) or only the name of

the room (e.g., the kitchen). Although the kitchen is received as the answer, the robot still needs

to find the furniture inside the kitchen where the salad bowl is.

The robot can encounter more complex situations where the questions must include more

concepts to narrow the answer. If the user asks, “Bring me the book," the robot can take advan-

tage of its ontological knowledge to create a more precise question.

Let us consider a scenario with two shelves — one in the living room and one in the bed-

room. By querying the ontology, the robot finds that books are usually on shelves. The robot

can use this information as an input, [options_pos, shelf, [living room, bedroom]], and receive

a question, such as “Is it on the shelf in the living room or in the bedroom?" The response

is narrowed to two options, unlike the possible responses to the question in the first example.
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FIGURE 2.3: Outline of the experiments. Top: Human subject receiving a command. The
subject’s view includes information about the objects in the simulated environment, and the
camera view perspective. Bottom: Robot receiving a command. The objects’ information is in
the ontology, and the camera view has the same perspective as the human subject. The figure

shows the camera view of the living room (top) and the bedroom (bottom).

Interacting with humans enables natural communication and allows the robot to clarify the in-

formation before taking action. It also reduces the time needed by the robot to find the object.

By generating questions from concepts, we look for balance between the inference pro-

cess and the questions made. The inferred knowledge gives us the advantage of selecting the

pertinent question and including useful data about it. Moreover, we aim to avoid overusing the

dialog to solve a task, which might lead to an unnecessarily large number of questions [38],

[41].

2.4 Experiments in Simulated Environment

We conducted two separate experiments inside a simulated environment to analyze human

behavior and compare it with the behavior of a robot that used our system. Fig. 2.3 shows the

outline of the experiments.

In the first experiment, the human subjects received commands that they had to fulfill.

They could interact with the commander with no restrictions, as the communication must be as

natural as possible. In the second experiment, the same commands were given to the robot. It

could use its knowledge, interact, or perform a combination of both to complete the tasks. In
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these experiments, we can observe the different sequences of decisions followed by the subjects.

The average solution for each command helped us discern what the subjects preferred to do to

fulfill the same commands.

We investigated the combinations that led to possibly faster solutions. Furthermore, we

used it as guidance to specify the range of an admissible number of decisions for each command.

We analyzed and compared the results of both experiments, as shown in the following subsec-

tions. We aim to show the feasibility of using inferred knowledge along with verbal interaction

to solve tasks such as searching and finding objects, rather than looking for a system that will

outperform humans.

2.4.1 Environment Layout and Contents

We designed a four-room house using the simulator Gazebo. The house is composed of

a kitchen, bedroom, living room with dining room, and lobby (Fig. 2.4). Each room has static

furniture, such as tables, cabinets, a sofa, and a bed. It also has graspable objects, such as food,

dishes, drinks, toys, electronic devices, and clutter (Fig. 2.5).

Most of the objects in the environment are organized intuitively, according to the house’s

layout. Food containers and kitchen utensils are in the kitchen, stationery on the office desk,

and books on the bookshelf. However, there are some objects whose location might not always

be the same, such as toys, tools, and personal items (e.g., wallet and cellphone). These objects

are randomly located around the house and do not have a default location assigned. We used

a virtually modeled Toyota Human Support Robot (HSR) [71] as the service robot for these

experiments. It has the same features and configurations as the real HSR.

We composed eight commands, as shown in Table 2.4. They included going and finding

commands. Some did not contain explicit details about the place to go to, the place to start

looking for the object, or the specific object to search. The purpose of having commands with

missing information and objects with no default location was to motivate reasoning about the

context and interaction with the instructor.

2.4.1.1 Experiment with Humans in Simulation

In this experimental scenario, the human subjects had to follow the commands shown

in Table 2.4 inside the simulation. We provided the subjects with a full list of the graspable
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FIGURE 2.4: Layout of the house in Gazebo simulator.

TABLE 2.4: Commands used in the experiments with the ontology-based knowledge manage-
ment system.

No. Command
1 Go to the kitchen.
2 Find the bottle of wine in the kitchen.
3 Go to the living room and find a book.
4 Find a toy in the living room.
5 Find the makeup.
6 Find the Rubik’s cube.
7 Find the hammer on the table.
8 Find a drink.
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FIGURE 2.5: Examples of graspable objects.

objects, a list of the furniture, and a house map. The list of graspable objects included the name,

picture, and type of the object. The list of furniture contained the type of furniture and the type

of objects they usually store. The house map is shown in Fig. 2.4. During the experiment,

the subjects were able to look through all three items at any time. Each subject’s camera view

provided a first-person perspective; the controls for the subject’s robot included moving forward,

moving backward, and turning; they were allowed to go around freely through the house until

they finished the task.

We selected eight people who could speak English (basic to fluent) to fulfill each of the

eight commands, resulting in a total of 64 natural language commands completed. Some of

the subjects had previous experience with service robots and simulations. This diversity of the

subjects provided contrasting conditions; the robot-experienced subjects were accustomed to

similar simulations, but their English-speaking skills might lead to varied responses.

Measuring the performance of a service robot in a real environment is difficult. Some

robotics competitions use independent test sets to benchmark robots’ performance and abilities

[72]. Such benchmarking is divided into system benchmarking and component benchmarking,

where the system is evaluated as a whole and by a single functionality, respectively. The design

of these benchmarks considers functional abilities, such as navigation, person recognition, map-

ping, speech recognition, and object manipulation. It also takes into account system properties,

such as ease of use, calibration speed, ergonomics, and adaptivity [72], [73]. As service robots

evolve and the environment changes, benchmarks need to be continuously improved, and new

ones might appear [74].

However, these benchmarks mostly evaluate an entire system’s or task’s success or fail-

ure rather than assessing the way the task is completed. Our target is to observe the different



36 Chapter 2 Ontology-based Knowledge Management...

variations of decisions made to complete the commands in the experiments. For these reasons,

we decided to estimate each subject’s performance by the number of times they interacted with

the instructor by asking questions, checked information about the environment, and thought and

acted inside the simulation. To measure these data, we asked the subjects to verbally describe

what they were doing or thinking during the experiment.

We counted every action (step) performed by the subjects that is, every time

• (ask) the subject interacted with the instructor, e.g., asked or confirmed information;

• (check) the subject checked information about the environment, e.g., location of furniture,

class of an object;

• (infer) the subject made some inference, e.g., the food must be in the kitchen; and

• (act) the subject performed an action inside the simulation, e.g., moving from one room

to another.

Examples of the steps taken by a human subject for the command “Find a drink" are listed

in Table 2.5.

Figure 2.6 shows the average number of steps taken for each command. The graph shows

that the predominant step is acting, whereas the others differ depending on the command. For

instance, for the fifth command (“Find the makeup"), most of the subjects preferred to take

action and attempted to find the makeup instead of accelerating the process by asking. However,

most of the subjects were unsure about the appearance or location of the makeup, resulting in

a large number of actions. The total number of steps could have been reduced by combining

asking and checking information.

For the third command (“Go to the living room and find a book"), the combination of

information checking, inferring, and asking resulted in fewer steps. Moreover, a book’s location

is more intuitive to assume compared with other objects, such as a Rubik’s cube or a hammer.

Regarding the seventh and eighth commands (“Find the hammer on the table" and “Find

a drink"), the subjects needed all their skills (e.g., checking information, making inferences)

to find the hammer and the specific drink correctly. In this environment, we did not assign

a specific location for the hammer; thus, it could be found anywhere. Moreover, this scenario

contained several drinks, such as milk, wine, and water. Hence, the last command required skills

other than acting to complete it.
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TABLE 2.5: Sample list of steps taken by a human subject for the command “Find a drink".
The numbers, types, and descriptions of the steps are shown.

Step No. Step Type Step Description
1 Check The subject accesses the environment information and checks

which objects are drinks.
Result: The subject finds milk, water, and wine.

2 Ask The subject asks, “Any drink?"
The commander replies: “A bottle of water please".

3 Infer The subject thinks and decides that the first place to look at is the
table in the lobby.

Note: The subject was near the lobby when the command was
received.

4 Act The subject approaches the lobby table.
Result: There is no water bottle on the table.

5 Ask The subject asks: “Do you know where I can find it?"
The commander replies, “in the living room".

6 Check The subject checks the map information to find a table.
Result: The subject finds the dining table.

7 Act The subject goes to the living room.
8 Act The subject approaches the dining table.

Result: The subject finds the bottle of water.

FIGURE 2.6: Average number of steps per command taken by the human subjects.

An interesting observation arose in these experiments. We expected the fluent English

speakers to interact more with the instructor or create better questions, resulting in better perfor-

mance. However, we noticed that the subject’s English-speaking skills did not interfere signifi-

cantly. Some subjects who were not highly fluent performed better in certain commands. Their

decisions may have been affected by their personalities rather than language skills.
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FIGURE 2.7: Number of steps per command of the robot.

2.4.1.2 Experiment with Robot in Simulation

To test our system, we performed the experiment using a virtual HSR with our proposed

system as the robot’s mind. The robot received the same set of commands as the humans did. It

had the option of thinking (accessing the ontological knowledge), interacting, or performing a

combination of them before executing the tasks. We determined its performance with the same

level of definition as that in the experiments with the humans. A step was recorded every time

the robot interacted, checked information, made an inference, or executed an action inside the

simulation.

Figure 2.7 shows the number of steps that the robot made per command. The differ-

ent combinations of steps and the total combinations per command are detailed. For most of

the selected cases, accessing the information in the ontological knowledge base was essential.

However, for the second command (“Find the bottle of wine in the kitchen"), the combination

of acting, inferring, and asking was optimal for understanding and execution. Some commands

could be completed in a few steps, while others required a larger number of steps due to different

reasons. For instance, the second command already included certain information; thus, the robot

needed only a few steps to complete the missing data.

The third and fourth commands (“Go to the living room and find a book" and “Find a toy

in the living room") had a similar structure; both of them included the object class and location.

The main difference was in the actual scenario; by making an inference, the robot could find the

furniture where the books were. By contrast, to know the name and location of the toy, the robot

needed to ask the instructor more questions.
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FIGURE 2.8: Comparison of the numbers of steps of the robot and the humans subjects per
command.

The eighth command (“Find a drink") needed a larger number of steps. The robot needed

access to ontological knowledge to check for objects that matched drink. It needed inference

processes to know the possible location for the drink according to this environment. The robot

also had to interact with the commander to know which drink they needed to find.

The robot attempted to balance its skills to acquire all the information needed to accom-

plish the tasks. Similarly, in the fourth and eighth commands (“Find a toy in the living room"

and “Find a drink"), the robot benefited from its skill of interacting when its knowledge was

insufficient.

2.4.1.3 Comparison and Analysis of Experiments

To determine whether our proposed system is adequate for such service robot tasks, we

compared the results obtained in the abovementioned experiments. Figure 2.8 compares the

average numbers of human and robot steps per command. Although the numbers of steps for

some commands are similar, their combinations are different for almost all cases.

For the second command (“Find the bottle of wine in the kitchen"), the humans made

fewer inferences but more actions than the robot, thus completing the task faster. However, for

the fifth command (“Find the makeup"), the robot made fewer steps by checking for information

in the ontological knowledge for this scenario. Regarding the sixth command (“Find the Rubik’s

cube"); the total numbers of steps did not considerably differ. The humans preferred to do more

actions and less reasoning, whereas the robot combined all of its skills. Measuring the results
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FIGURE 2.9: Minimum and maximum numbers of human and robot steps.

for this command through the number of steps might not yield a significant difference. However,

in a real situation, acting requires more time than reasoning; thus, the humans took longer than

the robot to complete this task.

Figure 2.9 compares the maximum and minimum numbers of steps taken by the humans

and the robot for each command. The minimum number of steps may be deemed the best

combination, since the more steps the humans took, the longer the time they needed to complete

a task. The numbers of steps by the robot in all cases were within the minimum and maximum.

For the fifth and eighth tasks, the robot’s scores were close to the minimum, which meant the

robot’s performance was excellent.

The system showed competitive performance compared to the human subjects in the ex-

perimental setup. However, this might change if the experiments are performed in a real envi-

ronment. The human subject’s behavior could differ if they interact in an environment that is

natural for them; hence, their performance could improve.

Knowledge management is an essential component of the proposed system; this was eval-

uated through the times the robot accessed stated and inferred knowledge. The human subjects’

knowledge was similarly assessed; we observed during the experiments every time they used

the environment’s information given beforehand to check the data and infer facts. However, the

subjects’ knowledge would be more challenging to evaluate in a real-world experiment when

the environment is utterly familiar to them; it is not known with certainty what knowledge they

already have or what kind of inferences they would make.
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2.5 Discussion and Summary

This chapter described an ontology-based knowledge management system with verbal

interaction for command interpretation and execution by home service robots. We proposed

the combination of ontological knowledge reasoning and human–robot interaction to interpret

natural language commands. The system is composed of four main modules that (a) manage

the robot’s knowledge and reasoning, (b) analyze the command to generate goals, (c) refine the

information and execute tasks, and (d) interact with humans by speech to disambiguate infor-

mation. The system relies on inference methods and verbal interaction to understand commands

and clarify uncertain information.

We tested the proposed system in a scenario where the robot received commands, such as

going to rooms and finding objects, with missing or unclear information. It had to understand

them by using reasoning and interaction to be able to execute them. We performed another

experiment where human subjects solved the same set of commands. We then compared the

performance of the system and the human subjects.

Some improvements could be achieved in future work, such as the interpretation of nat-

ural language statements with entirely new entities. To accomplish the mentioned skill, we

need to implement a new sequence of actions to acquire a new concept and new dialog-based

clarification methods to handle inconsistencies in ontological knowledge.

The concepts represented in the ontology can be easily extended with more home-related

concepts or a new environment definition. The linguistic representation of verbs associated with

the current action class description can also be extended. However, increasing the keywords

involves modifying the goal generation’s disambiguation process; adding new action classes re-

quires the definition of new methods describing their main sequence. These bring an opportunity

to adapt the system to create the subtasks sequence dynamically.





Chapter 3

Ontology Learning of New Concepts
combining Textural Knowledge, Visual
Analysis, and User Interaction

3.1 Problem Definition and Our Approach

Concept learning has been achieved using techniques for automatic knowledge extraction

from ontologies, databases, dictionaries, and other resources from the web, as well as with

human–robot interaction (section 1.3.5). The need for concept categorization and hierarchy

has been emphasized when using significant amounts of concept descriptions. Moreover, using

ontologies to store this knowledge opens the opportunity for semantic interoperability.

The ontology used in our proposed system for service robots includes the description of

concepts of the objects that the robot operates within in its environment. These concepts have

their corresponding characteristics, relationships, and instances of objects belonging to those

concepts. Expanding this ontological knowledge is essential as the robot’s environment can

change over time.

Some challenges must be addressed to ensure the correct conceptualization during the

ontology learning process, such as deciding where the new concepts will connect with existing

ones in the current knowledge and preventing or dealing with inconsistencies. The scenario we

face is as follows, a robot with general ontological knowledge is required to learn a new object,

43
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FIGURE 3.1: Concept learning scenario [75]. The robot receives the name of a new object,
along with its visual image. On the right side, textural knowledge information and visual anal-
ysis are used to select the new hierarchy of classes to include in the current robot’s knowledge.

which entails learning the new word concept to correctly create the new instance and the corre-

sponding classes inside its predefined knowledge. Although the robot could use methods, such

as using online resources or actively asking a user about the new object to extend its knowledge,

we want the robot to learn new concepts as needed with the little burden on the user as possible.

For this purpose, we want to achieve the learning of a new concept using three methods.

First, (1) using textural knowledge to identify the possible meaning of a new word; second, (2)

performing meaning selection by analyzing the visual characteristics of related concepts against

the new object; third, (3) creating user interactions to support meaning selection.

The proposed scenario to demonstrate the usability and feasibility of learning new con-

cepts through textural knowledge and visual analysis is shown in Fig. 3.1. A service robot with

vision capabilities and ontological knowledge is requested to learn a new object. First, the robot

receives the name and the image of the new object. Then, the new object must be conceptualized

to include it in the current knowledge.
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3.2 Ontology Learning Components

Our approach for ontology learning of new concepts consists of four modules. These

modules are responsible for (1) textural knowledge acquisition and semantic relation extraction,

(2) image collection and analysis, (3) concept description selection, and (4) ontology updating.

The modules are connected consecutively until finalizing with the object conceptualization pro-

cess. These components enable the robot to learn new objects by conceptualizing them. The

robot only needs the name of the new object and its image to start this process. It can also

verbally interact with a user to obtain confirmation before conceptualizing a new object.

An overview of the ontology learning components is shown in Fig. 3.2. The concept

learning process starts when a user shows the robot an image of the new object and names it; this

information is sent to the Word Meaning Identification module. It acquires textural knowledge

about the new object to extract its semantic relations as a concept. Then, all senses, which refer

to the possible meanings of the new word concept, are sent, along with their semantic relations,

to the Visual Analysis module.

The Visual Analysis module performs online image queries using the hypernyms con-

tained in the semantic relations received. Next, it analyzes the images downloaded to find fea-

tures similar to the image of the new object, and a similarity score is assigned to each sense.

Senses with their respective similarity scores are sent to the Concept Description Selection mod-

ule. In this module, the similarity scores are examined to choose a sense that best describes the

new object concept to learn. When the robot finds more than one high similarity score, it re-

sorts to interacting with the user to confirm the correct concept description. Once the robot

knows which concept description best represents the new object, it sends it to the Knowledge

Management module to update the ontology.

In the following sections, we explain the word meaning identification process, the vi-

sual analysis performed, the concept description selection, and the ontology update with new

concepts.
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FIGURE 3.2: Concept learning components.

3.3 Word Meaning Identification

3.3.1 Textural Knowledge Acquisition

The ontological knowledge contains a collection of concepts of objects associated with

each other by properties such as the “subclass of" property. It also contains instances of real

objects belonging to some of those class concepts with their respective characteristics. An im-

portant factor in extending this knowledge is determining the correct correlated concepts and

the corresponding categories that will connect to the whole hierarchy of concepts. According to

this, the semantic relations associated with the new concept are needed. Therefore, we decided

to employ online processing resources to acquire this information.

Textural knowledge containing semantic relations is based on a well-known lexical database

WordNet [76]. To access the WordNet database, we use the general architecture for text engi-

neering GATE [77], which can add WordNet as a processing resource. WordNet classifies the

meanings of the new word into four types of POS tags: noun, verb, adjective, and adverb. We

are only interested in the noun POS tag type since the robot will learn exclusively objects as

concepts. This type of tag contains the collection of semantic relations (or synset) with associ-

ated concepts for each possible meaning (or sense). The types of semantic relations included in

each collection are hyponym, meronym, and hypernym. However, only the hypernym type of

relation will give us the categories into which the new word falls that can be connected to more

general concepts in the ontology hierarchy.
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Querying WordNet using GATE and extracting the semantic relations we need is shown in

Algorithm 6. First, the POS tag and semantic relation are defined as noun and hypernym types,

respectively (lines 1-2). Then, the robot queries GATE with the new word concept to retrieve

the corresponding collection of noun POS tag senses only (line 4). The list of senses is looped

(line 5) to get the synset (line 6) and extract the hypernyms (line 7). Since the list of hypernyms

comes nested, they are extracted in two steps. First, the synset members are acquired (line 13),

containing the list of words defining the current hypernym and its synonyms if applicable (line

25). This situation can be illustrated in Fig. 3.3 bottom, where the fourth hypernym of the Sense

1 contains two words “instrumentality" and “instrumentation." Next, the semantic relations of

the hypernym type for that synset are pulled (line 15), and the same process of acquiring the

synset members is performed recursively (line 18). The resulting list for the current sense is

added to the main list of hypernyms (line 8). Last, the list of all hypernyms per sense is returned

(line 10). This list represents the superclasses of the new word concept according to each sense

that will be used to create the new concept in the ontology.

An example of a query for the word “pen" is shown in Fig. 3.3. The robot receives

five different senses for the same word: writing implement, enclosed area, portable enclosure,

correctional institution, and female swan. In Fig. 3.3 (bottom), the retrieved hypernyms for the

first two senses are shown. After the robot obtains the list of senses and their semantic relations,

it must identify which sense best describes the new word concept to add the corresponding

semantic relation in the ontology.

3.3.2 Considerations in the Semantic Relation Selection

The selection of the correct semantic relation is a crucial step for ontology learning since

this will establish the connection of a new concept with existing ones. In addition, new concepts

that are correctly associated will allow the ontology to make inferences over them, such as

deducing the possibly inherited characteristics from potential superclasses.

The new semantic relation to be added to the ontological knowledge must comply with

the following guidelines:

• The sense of the chosen semantic relation must correspond to the correct meaning of the

new word concept.

• The new semantic relation will be linked to the closest or an equivalent concept in the

ontology hierarchy.
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Algorithm 6 getHypernymsOfWord. It consults the GATE tool and extracts the list of hyper-
nyms per sense of a given word.
Input: The new word concept newWord
Output: The list of hypernyms per sense hypernymsPerSenseList

1: posTag = POS_NOUN
2: relationType = REL_HY PERNY M
3: hypernymsPerSenseList = empty
4: sensesList = gateServer.LOOKUPWORD(newWord, posTag)
5: for each sense ∈ sensesList do
6: synset = sense.GETSYNSET()
7: hypernymList = GETHYPERNYMSOFSYNSET(synset)
8: hypernymsPerSenseList.ADD(hypernymList)
9: end for

10: return hypernymsPerSenseList
11: function GETHYPERNYMSOFSYNSET(synset)
12: synonymsList = empty
13: synMembers = GETSYNSETMEMBERS(synset)
14: synonymsList.ADD(synMembers)
15: semRelationsList = synset.GETSEMANTICRELATIONS(relationType)
16: for each semRel ∈ semRelationsList do
17: currentSynset = semRel.GETTARGET()
18: hypernymList = GETHYPERNYMSOFSYNSET(currentSynset)
19: synonymsList.ADDALL(hypernymList)
20: end for
21: return synonymsList
22: end function
23: function GETSYNSETMEMBERS(synset)
24: synsetMembersList = empty
25: synonyms = synset.GETWORDSENSES()
26: for each syn ∈ synonyms do
27: lemma = syn.GETWORD().GETLEMMA()
28: synsetMembersList.ADD(lemma)
29: end for
30: return synsetMembersList
31: end function

• The concept classes of the new word concept will be added sequentially following the

semantic relation.

• The insertion of a new class will stop when the new class already exists in the ontology.

Otherwise, a maximum of four new classes will be created as the higher the concept in

the hierarchy is, the more general it becomes.



Chapter 3 Ontology Learning of New Concepts... 49

FIGURE 3.3: (top) List of senses from querying the word “pen" using GATE. (bottom) Hyper-
nyms lists of the first two senses [75].

Semantic relations acquired from WordNet might contain general concepts that can be

found in the ontological knowledge, such as an artifact or physical entity (Fig. 3.3 bottom).

However, this does not ensure that those concepts accurately describe the new concept to be

learned. Analyzing the visual characteristics of the new object and user interaction aid in deter-

mining the correct semantic relation.

3.4 Visual Analysis

We assume that the robot cannot recognize the new object with the current object iden-

tification module in the concept learning scenario. Hence, it is impossible to know the name

or category of the object that could assert the position for the new semantic relation in the on-

tological knowledge. Therefore, we propose supporting the selection of semantic relations by

analyzing the visual characteristics of the new object and comparing it with objects belonging

to the possible semantic fields of the new object based on its name. This visual analysis process

aims to find the correct semantic field of the new object by studying the similarities with other

objects from a set of potential semantic relations. The process starts with an online image query
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to collect images of hypernyms included in each potential semantic relation, followed by feature

analysis, as explained in the following subsections.

3.4.1 Online Image Query

In the first part of the visual analysis process, the robot makes an online image query

to collect image samples of object categories associated semantically. Potential categories are

chosen from the list of potential semantic relations obtained previously in the word meaning

identification process.

PSemRelw = [S1,S2, . . . ,Si]

Si = [H1,H2, . . . ,H j]

H j = [hypSyn1,hypSyn2, . . . ,hypSynk]

where:

PSemRelw = list of potential semantic relations of the new word w per sense

Si = list of sets of hypernyms belonging to the sense i

H j = j-th set of hypernyms

hypSynk = a hypernym or its synonym k

A query is formed using the new word w and a hypernym hypSynk, different from w,

e.g., for the first sense of the concept washer, whose first three hypernyms are worker, person,

and organism, the first query generated would be “washer worker." This method of formulating

queries helps the online image query return good results according to the expected meaning. To

illustrate this situation, Fig. 3.4 shows image results for querying the hypernyms of the second

sense of the concept washer in different ways. According to WordNet, the second sense of the

word washer refers to a “seal consisting of a flat disk placed to prevent leakage." The difference

in image results depends on the query. In the case of (a), (b), and (c), when the query contains

only a hypernym, image results do not fully represent the meaning required. This situation can

confuse the robot’s understanding since objects in the resulting images can be rather general and

variable, not necessarily representing the expected meaning.
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(a) Query: “seal"

(b) Query: “fastener"

(c) Query: “restraint"

(d) Query: “washer seal"

(e) Query: “washer fastener"

(f) Query: “washer restraint"

FIGURE 3.4: Examples of online image query for the first three hypernyms of the second sense
of the word “washer."
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FIGURE 3.5: Online image query results for the concept Washer. The query generation uses the
combination of the word concept “washer" following a hypernym, e.g., “washer seal," “washer

fastener."

In contrast, adding the word washer to the query makes it more specific, and resulting

images show objects closer to the meaning required (Figs. 3.4 (d-f)). Therefore, the robot can

have a better approximation of objects belonging to the required sense.

Following the query generation method, the system creates online image queries for the

first three sets of hypernyms H j per sense Si to download sample images (Fig. 3.5). Thus,

these images symbolize examples of objects from each semantic relation. Fig. 3.5 depicts the

hypernyms of three senses corresponding to the concept washer and examples of the online

image query results for the second and third senses.

The importance of correctly identifying the sense that best describes the new object to

learn cannot be overstated. Choosing the wrong sense could result in a completely different

meaning being assigned to the new object, the incorrect concepts, and an incorrect hierarchy

being created in the ontological knowledge. Once the online image query collects sample images

of the potential semantic relations for the new object, the next step is to analyze the image

features to find similarities between them to help determine the correct meaning for the new

object.
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FIGURE 3.6: Image analysis process for similarity score assignment.

3.4.2 Image Analysis

The second part of the visual analysis process consists of comparing the new object’s im-

age with the potential semantic relation data collection. Up to this point, the robot has collected

n number of images for the set of hypernyms H j for each sense Si in the online image query

process. Next, the robot is expected to find a group of images belonging to only one sense sim-

ilar to the new object image. We propose using a pretrained artificial neural network to extract

image features of the new object and the downloaded collection of images. Then, it is possible

to calculate a similarity value between them using the extracted features.

This study uses a deep convolutional neural network (CNN), namely, ResNet-152 version

2 architecture [78]. The CNN is pretrained on the ImageNet dataset [79]. We removed the net-

work’s last layer to extract a 2048-dimensional feature per image from the last fully connected

layer. Next, the features were computed for the new object image and the downloaded images

of all the potential semantic relations. Subsequently, the robot computes the cosine similarity

between the features of the new object image and those of each image from the semantic rela-

tions. Then, the average similarity for each semantic relation, representing a sense, is calculated.

Hence, each sense is assigned a similarity value. Fig. 3.6 depicts this process.
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3.5 Concept Description Selection

Before the robot can add the new concept to its ontological knowledge, the final step is

deciding which concept description best represents the new object shown. Thus, to recap, the

first part of the concept learning process is the word meaning identification, which acquires the

meanings and the semantic fields of the new word concept. The second part is image analysis,

which collects image samples for each semantic field and finds similarities between them and

the new object to learn. Finally, the robot needs to choose the best concept description for the

new object.

3.5.1 Issues in Concept Description Selection

The selection of the concept description utilizes two resources, the similarity values com-

puted during the image analysis process and user interaction which will add confidence to the

selection. Ideally, the sense with the highest similarity score would be the best to describe the

new object concept. However, the similarity is significantly affected by the variation of results

during the online image query, as shown in Fig. 3.5. There are some situations when image

results may contain unrelated images, even with the descriptive query. That is the case of Fig.

3.7, where querying “pitcher containerful" retrieves mixed results. Therefore, it is necessary

to emphasize that having additional images for each semantic relation contributes to a more

accurate differentiation.

The senses of a word can refer to multiple different meanings for the same word concept.

Hence, the robot needs to be sure that the correct concepts will be added to its ontological

knowledge. There are three main cases to consider regarding the results of the similarities of

images:

1. The sense with the highest similarity score is the correct one, and no other sense has a

close similarity score.

2. The sense with the highest similarity score is the correct one, and a second sense has a

close similarity score.

3. The sense with the highest similarity score is the incorrect one.

As previously mentioned, the first is the ideal case since the new object would be ad-

equately conceptualized. However, for the second and third cases, an additional method is
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(a) Query: “pitcher containerful"

FIGURE 3.7: Example of online image query using the query “pitcher containerful".

required to confirm that the correct sense is being selected. Therefore, we propose assisting in

selecting the concept description using human–robot interaction, as explained in the following

subsection.

3.5.2 User Interaction for Concept Description Selection

In the concept learning process, a situation may occur where the robot requires the user’s

approval for the series of concepts that it is about to learn. Also, as discussed in the previous

chapter, human–robot interaction can be considerably helpful in a service robot environment.

The robot may encounter three main scenarios, previously discussed, after obtaining im-

age similarities: when the highest score is either for the correct or incorrect sense, and when the

second-highest score is close to the first. We propose using human–robot interaction to provide

final assistance in the concept description selection depending on which scenario the robot faces,

having the following benefits:

• it helps the robot confirm that it is conceptualizing the new object concept correctly,

• it helps the robot decide which definition of the new object is accurate when the image

analysis results are not confident,

• it gives assurance to the user that the robot is learning the new object correctly, and

• teaching a new object to the robot would be more interactive for the user.

The robot creates three types of dialog sentences for (1) requesting the image and the

name of the new object, (2) reporting that it saved the new object and a one-word description
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of it, and (3) allowing the user to choose between two options of concepts that possibly define

the new object. While the first and second dialog sentences are always used in the concept

learning to start and finish the process, the third dialog sentence is used when the first two

highest similarity scores are very close. Hence, the robot can ask which one it should save. The

user interaction helps the robot with the final selection of the concept description. It is worth

mentioning that limited interaction is preferable since spending much time teaching one object

could be exhausting for the user.

3.6 Ontology Update

The final step in the concept learning process is to update the ontological knowledge with

information about the new object. At this point, the correct semantic relation has been chosen

according to the guidelines explained in subsection 3.3.2.

The ontology update process starts by creating a new instance of the object. Then, the

first concept class created corresponds to the exact name of the object that is being taught; this

means that if the new object is a “pen," the first concept class would be Pen. Next, the following

three hypernyms of the semantic relation will be added sequentially based on the hierarchy.

Finally, the creation of new classes stops when (1) the concept already exists in the ontological

knowledge or when (2) four class concepts have been created. Figs. 3.8 and 3.9 show an example

of these two cases, respectively.

One problem arises in the second case when four classes are created without finding an

existing class. In this case, the four classes will not have any precedent class and would be

forcefully linked to the root ontology concept. A new concept class linked to the root ontology

will not connect with any other concept unless explicitly specified. The robot has to conceptu-

alize new tangible objects available in the current environment in the proposed concept learning

scenario. Therefore, the previously mentioned problem is overcome by linking the last class

created to the HumanScaleObject class, which best describes the possible objects the robot can

learn (Fig. 3.9).

3.7 Experiments in Learning a New Concept

We conducted a set of experiments to show the applicability of the presented method for

ontology learning of new concepts. Some essential factors are considered in these experiments:
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FIGURE 3.8: Concept pitcher created in the ontology. The new class Pitcher is connected to
the existing class Vessel.

FIGURE 3.9: Concept drill created in the ontology. The new classes Drill, Tool, Implement,
and Instrumentality are connected to the existing general class HumanScaleObject.

• Ontological knowledge enables the robot to progressively and accurately expand its knowl-

edge. It also allows the utilization of more linguistic variations for the same referent.

• Textural knowledge contributes to the understanding of the meanings of a new concept.

• Visual analysis significantly supports the robot in the selection of the meaning of the new

object concept.

• Human–robot interaction creates a more natural learning process and assists the robot in

the correct conceptualization of objects.

3.7.1 Experiment Setup

The experiments consisted of two parts: concept learning experiments and experiments

with an integrated robot system. In the concept learning experiments (Section 3.7.2), the robot

was asked to learn new objects as follows (Fig. 3.10):

1. The user showed an image of the new object and named it.

2. The robot conceptualized the new object using textural knowledge and visual analysis.

3. In case more interaction with the user was required, the robot created it.

The concept learning experiments were divided into two tasks. In the first task, the robot

learned one object, and the results were compared with a baseline method. In the second task,

the robot learned eight different objects with specific characteristics to challenge the robot.
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FIGURE 3.10: Layout of experiments in concept learning.

After the robot had finished learning the new objects of the concept learning experiment,

we conducted the integrated system experiments (Section 3.7.3), where the robot was asked to

search and find the new objects learned.

3.7.2 Concept Learning Experiments

3.7.2.1 Learning an Object with no Interaction

The first experiment consisted of the robot learning only one object concept, and it did not

include interaction with the user. This experiment is a continuation of experiments performed in

[75]. This experiment aimed to show the importance of visual information to assist in selecting

the semantic relation corresponding to the new object concept.

In this experiment, we taught the robot the concept of a “pen." The image and name of

the new object were inputted to the robot. The robot started the learning process by acquiring

the senses of the word “pen." Then, it made an online image query of the first three hypernyms

of each sense. We set the online image query process for this experiment to download the first

10 images found in Google for each search. With this, the robot created sets of images for

each hypernym of the semantic relation. Table 3.1 shows 4 sample images for each sense of the

concept Pen taken from the online image query results.

As a baseline, we used color histograms in the visual analysis process for feature ex-

traction. Hence, color histograms for all sets of images were created. Subsequently, the robot
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TABLE 3.1: Sample images of querying the hypernyms of the concept Pen per sense used in
the concept learning experiments [75].

Writing implement

Enclosure

Playpen

Penitentiary

Swan
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TABLE 3.2: Similarity scores assigned to each sense of the object “pen" using the baseline and
proposed methods.

Word “pen" Baseline Our method

Sense 1. Writing implement with a point
from which ink flows.

0.82 0.15

Sense 2. Enclosure for
confining livestock.

0.54 0.11

Sense 3. Portable enclosure in which
babies may be left to play.

0.70 0.13

Sense 4. Correctional institution for
those convicted of major crimes

0.22 0.09

Sense 5. Female swan. 0.12 0.09

computed the cosine similarity between the histograms of each image searched online and the

new object image. Finally, the average similarity was calculated for the set of images of each

semantic relation.

The similarity score was assigned to each of the senses. The sense with the highest simi-

larity score was selected to describe the new concept in the ontology. Table 3.2 shows the sim-

ilarity scores calculated for each sense of the object “pen" using the baseline and our method.

Sense 1 has the highest similarity score in both methods; therefore, the robot conceptualized

it in the ontology. The robot added the new semantic relations starting from the first concept

listed in the hypernyms list of the chosen sense. The new concepts created for the object “pen"

according to its Sense 1 (Fig. 3.3 bottom left) are Pen, Writing implement, Implement, and In-

strumentality. The semantic relations were created on the basis of only the sense description

to keep consistency in the terminology used to describe the concepts, and no manual modifica-

tions were made. The new concepts are linked to a general concept in the ontology when the

ontological knowledge and the sense have no common concepts. Consequently, the robot can

conceptually know about the new object.

The similarity scores computed using the baseline and our method shown in Table 3.2 are

significantly distant due to the difference in the methods employed in the visual analysis pro-

cess. While the baseline utilized a color histogram as the feature extraction method, our method

used the pre-trained ResNet-152 network. We believe that analyzing the images considering

more features identifies them into a category more accurately. Based on these experiments, we
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confirmed the importance of selecting the best sense describing the new object in the concept

learning process. In addition, the correct placement of the new concepts in the ontology hierar-

chy is crucial for ensuring that the overall ontological knowledge is consistent.

3.7.2.2 Learning Objects with the Proposed Method

The second experiment consisted of showing the robot eight different objects, which it

must conceptualize. In this experiment, the robot used the proposed method for image analysis

and user interaction. We demonstrated the challenges in a concept learning scenario involving

objects and concepts. In the visual analysis process, the robot used the pretrained network to

extract image features. This time, the set of objects included the following types:

• The resulting images between each sense are visually similar.

• Images of the correct sense are significantly different.

• Images of the correct sense appear in the results of another sense.

• Very few images of the correct sense appear in the results.

• Images of the correct sense appear in the results of all senses.

• The image results are visually different for all senses.

• The correct semantic relation contains common concepts with the ontology.

• The correct semantic relation does not contain any common concepts with the ontology.

Fig. 3.11 shows the set of objects used for this second concept learning experiment. It

includes a drill, durian, nail, pitcher, sponge, trunk, washer, and wrench. Each of these objects

corresponds to at least one of the types of objects listed above.

During the experiment, the robot received the image of each object and its name sequen-

tially. Next, it performed the word meaning identification process, acquiring the corresponding

senses and semantic relations, as explained in Section 3.3. Then, it continued with the visual

analysis process. In the online image query method, the robot created two datasets: a small

dataset of 10 images and a large dataset of 50 images. Next, it extracted features using the pre-

trained network and computed the similarity scores for each semantic relation, as explained in

Section 3.4.
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FIGURE 3.11: Objects used in the concept learning experiment. The names of the objects are:
drill, durian, nail, pitcher, sponge, trunk, washer, and wrench.

Table 3.3 illustrates the results of the similarity scores assigned to each sense of the set of

objects for the small and large datasets. The senses marked in blue represent the true meaning

of the new object concepts to learn. In addition, the highest similarity score for each sense per

new object is marked in bold; this corresponds to the sense chosen by the robot.

Based on these results, we can see that the robot correctly chose the desired sense for all

objects in both datasets. However, the similarity score is not as high as expected, and this is

due to the variety of objects used in the previous experiments. The chosen senses with a low

similarity score belong to the object drill and the nail. The similarity score was significantly

affected by the results of the online image query, where the images did not fully represent the

expected meaning. In both cases, images similar to the new object appear only in the results of

one hypernym of the chosen senses, as shown in Fig. 3.12.

In the case of the objects durian, sponge, and wrench, the highest two similarity scores

are slightly close for the small dataset. These results were caused by images of the correct

sense appearing in other senses’ results, increasing the score of the incorrect sense. However,

we believe that having several samples for each sense according to its hypernyms adds more

variations of objects helping in the semantic selection. This is evident in the results of sponge

and wrench in the large dataset, where the two highest similarity scores are more distant than

the scores for the same objects in the small dataset.

A challenging case was observed in the object wrench for the small dataset. In these

results, images similar to the target object were found in all senses (Fig. 3.13). This case

corresponds to the third situation mentioned in Section 3.5, where a second similarity score is
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TABLE 3.3: Similarity scores computed per sense of all objects. The correct sense is marked
in blue and the highest similarity score is marked in bold.

Object name Sense number Small dataset Large dataset
Baseline Our method Baseline Our method

drill

Sense 1 0.58 0.19 0.53 0.15
Sense 2 0.10 0.09 0.16 0.08
Sense 3 0.43 0.11 0.50 0.10
Sense 4 0.46 0.12 0.54 0.12

durian Sense 1 0.09 0.29 0.01 0.26
Sense 2 0.14 0.35 0.06 0.29

nail
Sense 1 0.73 0.10 0.56 0.10
Sense 2 0.68 0.17 0.62 0.15
Sense 3 0.62 0.10 0.43 0.10

pitcher

Sense 1 0.27 0.09 0.17 0.07
Sense 2 0.66 0.30 0.58 0.27
Sense 3 0.51 0.18 0.32 0.14
Sense 4 0.44 0.11 0.22 0.09
Sense 5 0.08 0.07 0.11 0.07

sponge

Sense 1 0.56 0.27 0.58 0.24
Sense 2 0.41 0.21 0.38 0.17
Sense 3 0.45 0.22 0.34 0.17
Sense 4 0.03 0.15 0.13 0.14

trunk

Sense 1 0.00 0.09 0.00 0.09
Sense 2 0.00 0.23 0.00 0.22
Sense 3 0.00 0.12 0.00 0.12
Sense 4 0.00 0.16 0.00 0.14
Sense 5 0.01 0.10 0.01 0.09

washer
Sense 1 0.31 0.13 0.51 0.12
Sense 2 0.63 0.27 0.54 0.25
Sense 3 0.60 0.14 0.58 0.13

wrench
Sense 1 0.52 0.17 0.63 0.16
Sense 2 0.77 0.24 0.72 0.19
Sense 3 0.85 0.26 0.84 0.23

very close to the highest score. Therefore, the robot proceeded to use the text-based interaction

to confirm the meaning of this new object, wrench. Thus, it created an alternative question using

the first hypernyms of the two optional senses: “Is it a spanner or a twist?" With this question,

the user helped the robot to confirm the correct meaning. Then, the robot conceptualized the

new object successfully.

Sponge is another object in the small dataset with two close similarity values. However,

the robot did not prompt a question with this concept due to the threshold value. Setting up a
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Concept Hypernym Sample images

drill

tool

implement

instrumentality

nail

device

fastener

restraint

FIGURE 3.12: Sample images obtained for the hypernyms of the drill and nail concepts.

higher threshold might cause unnecessary interaction with the user. Therefore, an appropriate

threshold calculation must be investigated in the future.

3.7.3 Integrated System Experiment

The last experiment consisted of the robot searching and finding the new objects in the

current environment once it completed the concept learning process. The user challenged the

robot skills to deduce the requested object and infer its location according to its knowledge.

In this last experiment, we demonstrated the advantage of having ontological knowledge when

conceptualizing new objects, such as referring to the new object differently according to its

newly connected classes and making inferences about the new objects using possibly inherited

attributes.
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Wrench Sample images

Sense 1. A sharp strain on muscles or ligaments.

Sense 2. A jerky pulling movement.

Sense 3. A hand tool that is used to hold or twist a nut or
bolt.

FIGURE 3.13: Sample images obtained for the senses of the wrench concept.

The robot test included the following specifications to examine the integrated system after

the concept learning effects:

• The objects are requested by their names or the names of their class.

• When the object class’s names are used, they are as follows: a directly stated class name,

an inherited class name, and a possibly linked class.

• Object concepts that are expected to inherit attributes such as possible locations are re-

quested.

• The integrated ontology-based knowledge management system with verbal interaction

and concept learning was evaluated by its success in solving the object search experiment.

To provide the robot skills to complete the mentioned challenge, we joined the concept

learning components (see Fig. 3.2) and the ontology-based knowledge management system

for home service robots presented in Chapter 2. The system integration consists of command

analysis, talking interaction, task planning, execution modules, and knowledge management

connected to the concept learning components.

We conducted the experiments in the simulated environment used in Section 2.4, which

includes a four-room house with static furniture and graspable objects commonly found in home

settings. We placed boxes at different locations inside the living room, bedroom, lobby, and

kitchen, as shown in Fig. 3.14. Each box had one of the images of the new objects that were
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FIGURE 3.14: Map showing the locations of the new objects. The pictures highlighted in red
represent the new objects.

used during the learning process. The new objects were taught to the robot sequentially during

the concept learning. Then, the robot was given different kinds of commands to find the newly

acquired objects. The conceptualization of the new concepts was tested using the following

natural language commands, which evaluated the correct association of the concepts and the

inheritance of features in the ontology:

1. Find the wrench.

2. Find the durian.

3. Find the sponge on the kitchen cabinet.

4. Find the nail in the bedroom.

5. Find the seal (washer).

6. Find the vessel (pitcher).

7. Find the luggage on the bed (trunk).

8. Find the tool in the lobby (drill).

The first four commands request for the new objects by their names. The first two (“Find

the wrench" and “Find the durian") do not include a location to search for the object. The third

command (“Find the sponge on the kitchen cabinet") includes the name of the furniture. The

fourth command (“Find the nail in the bedroom") includes the room’s name to find the object.
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TABLE 3.4: Types of commands used for the integrated system experiments. They are divided
by commands referring to the object by its name or class. The locations of the objects are
divided into non-inherited and inherited if it is not given, and furniture and room if it is given.

The number of instances available in the environment for those objects is listed.

Command Location not given Location given Number ofNon-
with an object called by inherited Inherited Furniture Room instances

Name:
1. Find the wrench. O 1
2. Find the durian. O 1
3. Find the sponge on the
kitchen cabinet.

O 1

4. Find the nail in the
bedroom.

O 1

Class:
5. Find the seal (washer). O 1
6. Find the vessel (pitcher). O 1
7. Find the luggage on the
bed (trunk).

O 1

8. Find the tool in the lobby
(drill).

O more than 1

The last four commands request for the new objects using the name of an upper class and

two do not include a location to search for the objects. In the fifth command (“Find the seal"),

the class name used refers to the object “washer," and the sixth command (“Find the vessel")

refers to the object “pitcher." The seventh command (“Find the luggage on the bed") includes the

furniture on which the object is located, and the class name refers to the object “trunk." Finally,

the eighth command (“Find the tool in the lobby") includes the room’s name, and the class name

refers to the “drill."

In addition, the second and sixth commands (“Find the durian" and “Find the vessel")

include objects that are expected to inherit a location where are commonly found from its onto-

logical knowledge. A particular case is considered in the eighth command (“Find the tool in the

lobby"), where more than one object belonging to the required class exists in the environment.

A summary of the characteristics of each command can be found in Table 3.4.

The robot completed all the commands using the integrated system successfully during

the experiment. The robot used its ontological knowledge and interacted with the user when
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TABLE 3.5: Experimental results using the integrated system. The robot found the instances
of the requested objects using its knowledge or by asking the user. The locations were acquired

using its knowledge or from the command, or by asking the user.

Object Location
Command Succeeded

In Asked In knowledge Asked
knowledge user /command user

1. Find the wrench. O O Yes
2. Find the durian. O O Yes
3. Find the sponge on the
kitchen cabinet.

O O Yes

4. Find the nail in the
bedroom.

O O Yes

5. Find the seal (washer). O O Yes
6. Find the vessel (pitcher). O O Yes
7. Find the luggage on the
bed (trunk).

O O Yes

8. Find the tool in the lobby
(drill).

O O Yes

necessary. We analyzed the robot’s process in each command to evaluate the use of its onto-

logical knowledge after the learning process. The results can be found in Table 3.5. The robot

found object instances applicable to the description when the objects were requested either by

their names or classes. Furthermore, the robot found a suitable instance of a location to search

for the object when its ontological knowledge had an inherited location or when the command

provided it.

A particular case was observed when the commands included any object belonging to the

Tool class, which are “wrench," “nail," “washer," and the “drill." This type of class does not

include an inherited location that could be inferred from the robot’s knowledge; therefore, the

robot could not find a suitable location. However, since the integrated system includes human–

robot interaction, the robot could ask the user for an object’s location.

Fig. 3.15 shows the dialogs that occurred during this interaction. The robot asked the

object’s location for commands 1 and 4 with the questions: “Where could I find the wrench?"

and “In which piece of furniture can I find the nail?", respectively. However, the question

formulated differs because, in command 4, the name of a room is given bedroom, causing the
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Dialog command 1:
Human: “Find the wrench."
Robot: “Where could I find the wrench?"
Human: “It is on the sideboard."

Dialog command 4:
Human: “Find the nail in the bedroom."
Robot: “In which piece of furniture can I find the nail?"
Human: “It is on the desk."

Dialog command 5:
Human: “Find the seal."
Robot: “Where could I find the washer?"
Human: “It is on the chest."

Dialog command 8:
Human: “Find the tool in the lobby."
Robot: “Which tool do you want?"
Human: “The drill."
Robot: “In which piece of furniture can I find the drill?"
Human: “On the armchair."

FIGURE 3.15: Illustration of the dialogs between the robot and the user when receiving a
command to find a newly learned object. The commands that are shown required objects cor-

responding to the Tool category.

robot to require a more specific place inside the room to search for the object since no inherited

location fulfilling these characteristics could be found in the knowledge.

As for the dialog generated for command 5, the user required a seal which is a category

for the newly learned object washer, and no other instance of objects of the seal category exists.

Consequently, the robot proceeded to ask the question: “Where could I find the washer?". An-

other case occurred in the last command (“Find the tool in the lobby"), where the robot found

more than one object that could belong to the Tool class, and it asked the user for the specific

object with the question: “Which tool do you want?". Next, similarly to command 4, the robot

could not find a location for the object drill in the room lobby, resulting in asking for the specific

location: “In which piece of furniture can I find the drill?".

We can conclude that the new objects learned by the robot were accurately conceptualized

in the ontological knowledge, considering that the robot could find the possible instances of the
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requested objects. Furthermore, the new concepts learned for each new object were linked to the

proper hierarchy since the robot found inherited properties such as the location. In cases, where

the ontological knowledge was insufficient, the system used human–robot interaction to acquire

information, which is the expected behavior of a service robot.

3.8 Discussion and Summary

This chapter described ontology learning of new concepts combining textural knowledge,

visual analysis, and user interaction for service robot applications. We proposed analyzing the

semantic relations and visual features of a new object concept to determine its correct concep-

tualization in an ontology. In addition, we employed human–robot interaction to assist the robot

when necessary.

We tested the proposed concept learning method in a scenario, where the robot has to

conceptualize new objects with only the image and the name of the object. In addition, we

demonstrated some challenges to consider in concept learning scenarios. Future work could

make some improvements, such as improving the input query formulation for the online image

query process to obtain more accurate image results according to each sense. This improvement

could be achieved by further analyzing concept meanings and the semantic relations of a concept

since more information defining each sense can be obtained.

Furthermore, the interaction with users during the word meaning selection process could

be improved by including more variations of questions formulated by the robot, such as in-

quiring about the new object and mentioning its possible applications. Improving the verbal

interaction would be helpful too during the ontology update process, as there is a possibility of

concept inconsistency. Ontology inconsistencies occurs when a concept is not adequately de-

fined, including missing equivalent classes, disjoint classes, and other properties. Hence, a more

extensive verbal interaction would be necessary.



Chapter 4

Conclusions and Future Work

4.1 Conclusions

Service robots at home convey the possibility of having assistance and companionship to

older adults or disabled humans living independently. However, dealing with people requires

specific skills for a robot as human contact and changing environment are inevitable. Function-

alities as finding objects, interacting with humans, or learning new concepts are desired features

in a service robot. An essential factor in enabling such functionalities is providing the robot

with knowledge about the environment. Knowledge represented using ontologies describes the

conceptualization of entities of the real world in a structured form. Using ontologies offers the

robot the option of making inferences in its knowledge and gradually incrementing its concepts.

However, it is important to handle or prevent inconsistencies.

This research aims to develop a fully autonomous system for service robots to help people

at home, giving the robot knowledge of the environment, reasoning, natural language interac-

tion, and incremental concept learning. To achieve this, we have successfully built an ontology-

knowledge management system for service robots. It combines ontological knowledge reason-

ing and human–robot interaction to interpret natural language commands. The system allows

the robot to disambiguate uncertain requests through spoken interaction. It also utilizes infor-

mation stated in the ontology to create more precise questions. The system contains modules to

manage the robot’s knowledge and reasoning, command analysis, decision-making, and talking

interaction. These modules are interconnected and share information between themselves in

different steps of the processes.

71
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We introduced a second essential component of this system that is concept learning. This

component uses textural knowledge to identify the possible meaning of a new word that will

be added to the ontological knowledge. Furthermore, it supports the meaning’s selection by

analyzing the visual characteristics of related concepts against the new object. Finally, it updates

the ontological knowledge incrementally as needed.

We conducted separate experiments inside a simulated environment to analyze the be-

havior of a robot using our system. The experiments included completing tasks given a natural

language command and the conceptualization of new objects given an image and an object name.

4.2 Future Work

Some improvements could be achieved in future work mentioned in previous chapters,

such as the interpretation of natural language statements with entirely new entities. The concepts

represented in the ontology can be easily extended with more home-related concepts or a new

environment definition. The linguistic representation of verbs associated with the current action

class description can also be extended.

The concept learning process could be improved by changing the input query formula-

tion for the online image query process to obtain more accurate image results according to each

sense. Furthermore, the interaction with the user in the word meaning selection could be en-

hanced by including more variations of questions formulated by the robot, such as asking about

the new object mentioning its possible usage.

Although the current system tries to prevent inconsistencies in ontological knowledge

before adding a new concept, it does not include dealing with them if found in the ontology. We

believe that a more extensive verbal interaction would be necessary to deal with inconsistencies

appearing in the ontology.

We did not approach some challenges in this research as we focused on the ontological

knowledge-based system development and functionalities, such as the vision and navigation

features. The vision module needs to be upgraded with a method that can either be retrained

fast or learn visual objects incrementally. Likewise, the navigation module needs to be extended

with functionalities to explore the environment and learn locations.

Multifunctionality in a service robot is greatly desired as one robot must help humans

with numerous tasks at home. However, this is highly restricted by the hardware components of
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the robot. This study used the HSR robot to test the proposed system, which limits the number of

objects that can be manipulated simultaneously since the robot has only one arm. Also, if using

a real robot, the weight of the objects affects the grasping motion. By employing a different

robot, e.g., a two-handed robot, more functionalities can be implemented to carry out multiple

or more complex tasks.

The proposed approach for service robots is currently meant to be applied in home settings

scenarios where a human needs help. However, it can be easily transferred to a different type of

scenario as long as it is required to handle objects and move them to different places, such as a

convenience store where the human–robot interaction could simplify the collaboration process.

One final application, although ambitious, is the deployment of this kind of system in service

robots helping children, for instance, in a childcare facility where a wide variety of objects must

be organized every day, such as toys, books, stationery, handicrafts supplies, and more.
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