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Abstract

Computer numerical control machines and industrial manipulators are extensively used in mod-
ern manufacturing industries to perform various tasks with complex profiles that require high-
speed, high-accuracy, and repeatability. Tasks are represented as a geometric profile in the
Cartesian workspace. Generally, complex profiles are separated into a series of linear segments
by the computer-aided manufacturing system. To avoid discontinuous motions at the sharp cor-
ners of two linear segments, the machine has to completely stop the motion for each segment,
which consumes energy and machining time. If the continuous feed rate is considered to trans-
verse between segment trajectories, discontinuities of resulting trajectories induce mechanical
wear and large tracking errors by the controllers.

To enhance productivity, the main objective is to complete the tasks in the minimum motion
time. Consequently, research has explored to simultaneously improve the contradictory objec-
tives of motion time, such as smoothness, consumed energy, and accuracy of the workpiece.
Therefore, the Pareto optimal solution, which contributes a trade-off between contradictory
objectives is getting attention by the decision makers nowadays. Due to the access limit of the
original controllers and the complexity of the control structure, the advanced controllers are still
difficult to implement for improving the desired objectives of industrial machines. Therefore,
the optimal reference trajectory generation becomes a key driver for its simplicity. Most impor-
tantly, the reference motion trajectories must accurately represent the geometric path, be at
least continuous in acceleration, and satisfy the kinematic and dynamic limits of the machines
for all horizons.

In literature, the optimal control problems are solved by direct transcription methods, where
the machine limits are considered as discrete constraints on grid points for calculation along
the trajectory. As a drawback, constraint violations may occur in-between the determined
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grid points. For complex paths with frequently changed derivatives, a large number of grids
are typically required for constraint satisfaction; thus, the problem becomes computationally
expensive, and the optimization solver may fail to find a feasible solution. Therefore, this
process is not straightforward for users. This thesis presents several approaches for single
and multi-objective smooth optimal trajectory generations for industrial machines by control
parameterization of splines, guaranteeing kinematic constraints for the entire horizon regardless
of the grid points. Two main approaches are analyzed in this study: decoupled, in which the
optimal control problem is solved with two steps of geometric path planning and trajectory
optimization, and coupled, in which the problem is solved in a single step of optimization.
Literature review and preliminaries for this thesis are discussed in Chapter 1 and 2.

Chapter 3 and 4 provide the decoupled trajectory generations, assuming the geometric paths are
predefined by a parametric curve or a set of via-points. The control parameterization is imple-
mented in terms of B-splines to provide acceleration and jerk continuities. Chapter 3 presents
the bi-objective optimization problem between the total motion and the jerk square integral of
motion trajectories in the time domain. Guaranteed kinematic constraints are proposed based
on the spline convex hulls and the maximum geometric derivatives along the path. The Pareto
front comprising the significant trade-off solutions is explored by the combinations of normalized
normal constraint and divide and conquer algorithms. The simulations and experimental re-
sults validate that the proposed method provides an approximately 3% faster and 21.57% lesser
average axial tracking errors than the conventional linear reparameterization method. Chap-
ter 4 discusses the time optimal control problem in the parameter domain using the nonlinear
transformation of optimization variables. The time dependency is excluded, and the optimal
motion time for each segment trajectory is independently achieved. The guaranteed kinematic
constraints are determined based on the spline convex hulls that limit the maximum geometric
derives between the locally affected intervals; therefore, it is more relevant to apply on complex
geometric paths. Comparison with the jerk-limited time-optimal trajectory generation shows
that the proposed method is more robust with the problem grid size and gives a smoother
time-optimal trajectory, which reduces the average axial tracking errors by approximately 12%.

Chapter 5 presents coupled optimal trajectory generations by parameterization of B-splines.
Time-optimal contour reshaping of the complex workpieces comprising straight-line, circle, and
spline contour segments is discussed in the first part. The velocity and acceleration continuity
between segment trajectories, fitting accuracy of the geometric path, and kinematic constraints
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using spline convex hulls are considered as constraints in the problem formulation. The op-
timization results prove that the proposed method can represent various G-code segments by
considering the trade-off between the time-optimality and fitting accuracy of the workpiece.
The second part discusses the smooth trajectory generation for reduced impact motion. Mo-
tion optimization is considered for the smooth catching of a flying object with a similar ve-
locity by minimizing the residual impact force between the object and the industrial machine.
The optimization results confirm that the resulting trajectories are bounded by kinematic and
workspace limits and satisfy the required velocity for the smooth catching operation. Finally,
the conclusions for proposed spline-based decoupled and coupled optimal trajectory generations
are drawn, and the expected future works are discussed in Chapter 6.
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Chapter 1

Introduction and Literature Review

1.1 Motivation

In modern manufacturing industries, the development of science and technology enables high-
speed and high-accuracy industrial machines such as CNC machines and robotic manipulators
to perform a variety of tasks with complex profiles in the workspace (Fig. 1.1) [1–4]. Due to
their repeatability and precise performance, these machines are extensively used to produce
high-quality products around the clock.

This thesis mainly focuses on the optimal motion trajectory generation for industrial machines.
For the productivity, the main objective is to accurately track a desired workpiece in the mini-
mum motion time [5, 6]. The most conflicting objectives with the motion time in the literature
are the trajectory smoothness [7] and accuracy of the workpiece [8]. Nowadays, the deci-
sion makers are interested about formulating the Pareto optimal solutions, which can give the
trade-off level between the contradictory objectives. The conventional interpolator for complex
workpieces consists of a series of linear segments provided by the Computer-aided Manufactur-
ing (CAM) system. These trajectories are discontinuous in velocity and acceleration between
the linear segments. The tracking performance of the reference trajectories is implemented by
the CNC controllers, whose advanced strategies are designed to achieve the aforementioned
objectives of industrial machines [9, 10]. However, these strategies are complicated to use in
real applications and have been limited by the accessibility of original controllers. Besides,
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(a) CNC milling machine. https://www.bkbprecision.com/ (b) Industrial robot manipulator. https:
//www.robots.com/

Fig. 1.1: Usage of CNC machines and robotic manipulators in manufacturing industries.

discontinuous and unbounded kinematic values of the reference trajectories may excite ma-
chine structures and induce large tracking errors by the control systems. Therefore, an optimal
reference trajectory generation plays an important role in industrial manufacturing systems.

The motivation is that the optimal motion trajectories can be generated off-line considering
the machine limits such as maximum velocity, acceleration, and jerk limits, and the quality
requirements such as the accuracy of the workpiece. Thereafter, these optimal trajectories can
be applied to the industrial system, without changing the original controllers for a high perfor-
mance. Optimal trajectory generation techniques include coupled and decoupled approaches
by direct or indirect optimization methods.

For the requirement of complex workpieces in automotive, aerospace, and biomedical parts,
B-splines and Non-uniform rational B-spline (NURBS) are used as a standard form for the
geometric modeling of curves and surfaces in Computer-aided Design (CAD) programs, and
the motion primitives of industrial machines [11, 12]. The advantage of using splines over the
conventional linear or circular interpolation is the faster motion time, flexibility, continuity in
high derivative values, and the exact representation of complex geometric paths. This thesis
presents a spline-based coupled and decoupled trajectory generations by a direct optimization
approach. This study aims to address the time-optimal and Pareto optimal solutions with
the development of guaranteed kinematically constrained structures for industrial machines.
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1.2. Literature review

Although the application of spline-based motion trajectories in this thesis is primarily for the
bi-axial Feed Drive System (FDS), it can be extended to the multi-axial CNC machines and
the robotic manipulators as well.

1.2 Literature review

1.2.1 Geometric path representation

For CNC machines, workpieces are designed by the CAD software and represented in a para-
metric form. The CAM system transforms the complex geometric profiles into a series of small
segments for machining purposes. For robotic manipulators, the geometric path is given by a
set of via-points determined by the high-level path planners (e.g., A* or hybrid A* algorithm
[13]). The most used motion interpolators in common practice are the linear (G01) and the
circular (G02/G03) segments. Using this conventional approach, the data transmission size
becomes extremely large for accurate machining of complex geometric profiles [14]. Moreover,
the machine has to accelerate and decelerate for each interpolated segment; therefore, the total
motion time significantly increases. When the continuous feed rate is considered, discontinuities
in velocity and acceleration occur between the segments, exciting the machine vibration and
leading to the large tracking errors by the control systems [15].

Concerning the continuity of the path, there exists the geometric and parametric continuities
[16, 17]. The paths provided by the CAD software are geometrically smooth, i.e., G0 for
the position vector continuity, G1 for tangent vector continuity, and G2 for curvature vector
continuity. Considering a complex geometric path, the classical approaches, cubic-splines [18],
Bézier [19], and non-uniform rational B-splines (NURBS) [20] are widely used to represent
geometric paths due to their continuity, flexibility, and the exact representation of complex
profiles with a few variables. The simplified form of the NURBS with the weighting factor
of one is the B-spline, which is a linear combination of piecewise polynomial functions, whose
shape is determined by the vector of control points over the unified knot vector. Generally, two
types of geometric fitting are considered: the interpolation (the curve or surface exactly passes
through all the data points) and the approximation (the curve or surface passes through near
the data points by minimizing the error between the data points) [11, 21, 22]. To accurately
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fit the complex geometric paths, tangent, normal, and curvature controls are included in the
B-splines with the geometric algorithms [21, 23, 24]. In order to generate smooth trajectories,
the geometric paths are required to be at least G2 continuous. Although the paths are geometric
continuous, they may be parametrically discontinuous in velocity, acceleration, and jerk values
unless the proper motion law or control parameterization is adopted for trajectory generation
[25].

1.2.2 Curve motion interpolators

Given a geometric path represented as a parametric curve by B-splines or NURBS, the motion
interpolators are used to obtain a commanded position for each sample time. The curve param-
eter is reparameterized in the time domain in terms of a specific motion law, which modifies
the velocities, acceleration, and jerk vectors. In many cases, the motion law is considered as
the constant scaling [25]. However, this method may not guarantee the smooth starting and
ending of the trajectory i.e., the starting/ending velocity and acceleration are not zero.

Concerning a generic motion interpolation, Zhang and Greenway presented the curve interpo-
lator with a desired trapezoidal feed rate based on the first-order Taylor series expansion [26].
Similarly, trapezoidal, exponential, and bell shapes profiles were used as the desired feed rate
of the path, and the curve parameter is estimated for each sampling time by the second-order
Taylor series expansion [14]. To reduce feed fluctuations, feed correction polynomial methods
were proposed in [27, 28]. However, these methods require calculating the arc length of the
geometric path to determine the motion time and the required velocity commands. Otherwise,
arc length parameterization of the geometric path is required. The drawback is that inaccurate
mapping between the arc displacement and the curve parameter may induce feed fluctuations,
which produce high acceleration or jerk of the trajectories, exciting the machine structures and
resulting in large tracking errors.

1.2.3 Optimal trajectory generation

In order to provide the drawbacks by conventional and curve motion interpolators, optimal
trajectory generations were investigated in the literature. An optimal trajectory generation
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generally considers satisfying kinematic and dynamic limitations of machines and accuracy of
the geometric path, and produces a reference trajectory with the desired objective. This pro-
cedure is naturally translated into the OCP by the control inputs, states, and outputs of the
system, which satisfy the equality and inequality constraints along the horizon. The primitive
trajectories are parameterized by smooth functions such as B-splines, Bezier, trapezoidal, s-
curve, and polynomials. Because B-splines can accurately represent complex geometric paths
with a high level of continuity, they have been extensively employed for control parameteriza-
tion. There are two approaches of control parameterization for optimal trajectory generation:
decoupled and coupled approaches [29, 30].

The decoupled approach separates the OCP into geometric path planning and optimal trajec-
tory planning following the exact path. First, a geometric path is predefined as a parametric
curve by one of the geometric algorithms discussed in Section 1.2.1, depending on the accuracy
and correctness of the workpiece. After that, trajectory planning is considered to optimize the
relation between the motion time and curve parameter to modify the velocity, acceleration, and
jerk vectors with respect to the motion time. The advantage is that the geometric path does
not change in the decoupled approach; therefore, it is suitable for industrial product designs
that requires a precise presentation of geometric profiles, e.g., a CAD design.

On the other hand, the coupled approach solves both problems simultaneously. Therefore, the
coupled approach requires more computation effort than the decoupled approach. Generally,
tolerance of the geometric path is included as geometric constraints in an OCP, and contours
of the geometric path are modified to obtain a desired objective. As a result, the geometric
path changes in coupled approach. Concerning both decoupled and coupled approaches, mainly
used objectives for OCPs in the literature are motion time, trajectory smoothness, accuracy
of the geometric path, and consumed energy. Methods to solve the OCPs are reviewed in
Section 1.2.4. The general flowchart for optimal trajectory generation of industrial machines is
illustrated in Fig. 1.2.

1.2.3.1 Time-optimal trajectory generation

The main criterion for improving productivity is time optimality. Most importantly, the time-
optimal trajectory has to satisfy the kinematic or dynamic limitations of the machines in a
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Fig. 1.2: Overview of the optimal trajectory generation for industrial machines

minimum motion time. Time-optimal trajectories were generated by the multiple switching
curves along a specified path by the actuator torques/forces as the control inputs [5, 31]. The
solutions of these algorithms consist of the bang-bang control, which made the discontinuity
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in acceleration or torques, exciting the high-frequency dynamics and producing significant vi-
brations [6, 32]. In order to address the discontinuous inputs, the modified cost function, e.g.,
time-energy, was presented [33, 34]. The original time-optimal trajectory generation only con-
siders the constraints up to acceleration or torque limits in formulating the OCPs. The usage
of these trajectories with a non-specialized controller may cause non-smooth movements. Using
Parseval’s theorem, Jamhour and André presented that constraining the jerk value improved
the smoothness of the trajectory, which reduced machine vibrations [32]. For this reason,
jerk constraints were considered in the smooth time-optimal trajectory generations [35, 36].
In [37], the combination of trajectory planning with cubic splines in the Cartesian space and
B-splines in the joint space produced time-optimal and jerk-continuous trajectories. In [38],
the trajectory was parameterized by the smooth cubic splines, and torque rates were consid-
ered in terms of pseudo-acceleration and jerk. The tracking errors caused by the conventional
Proportional-integral-derivative (PID) controller were considered in time-optimal trajectory
generation [39, 40] to improve the tracking accuracy.

1.2.3.2 Time-jerk optimal trajectory generation

The generation of trajectories with minimum jerk has been investigated because high jerk
trajectories induce significant vibrations in actuators, which affect the tracking performance of
control algorithms [41]. In [42], the Pontryagin’s minimum principle was used to minimize two
objectives: the maximum absolute value of the jerk and the time integral of the jerk square. In
[43, 44], a cubic spline was used to parameterize the joint trajectory, and the interval analysis
was used to globally minimize the maximum absolute value of the constant jerk.

The above-mentioned jerk minimized trajectories were generated within a predefined motion
time without any kinematic constraints. The jerk minimization problem contradicts the time
minimization because the trajectory reaches the extremities of the kinematic limits when time is
kept minimum. Based on this concept, Gasparetto et al. formulated Bi-objective Optimization
Problems (BOOPs) for robotic manipulators considering total motion time and integral of jerk
square by the cubic splines [45] and by the fifth-order B-splines [7]. Time was not considered
as a priori, and the kinematic limits were considered along the trajectory. The experiments
for jerk-minimized trajectories were conducted in [46] and showed that algorithms with cubic
splines [45] and B-splines [7] generated the lower mean jerk values and lower computation time
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than the global minimization algorithm [44]. In their study, the weighted sum method was
used to formulate the BOOPs; however, a proper technique for choosing the weights for the
trade-offs of contradictory objectives was not addressed.

1.2.3.3 Optimal trajectory generation with geometric constraints

Trajectory generations by decoupled approaches do not lead to a time-optimal movement [47].
Therefore, the OCPs were formulated considering the accuracy of the workpiece as a constraint
or an objective function (coupled approaches). The corner smoothing methods were proposed
for the smooth transitions between the linear segments [48–51]. In [52], the linear segments
were expressed as two points jerk-limited acceleration profile and joined by the kinematic corner
smoothing with interrupted acceleration. The OCP was formulated as a BOOP between the
total motion time and accuracy at the corners. Similarly, the NURBS curve was used for the
optimal cornering motion for linear segments [8]. These methods only addressed the optimal
trajectory generations for linear segments by smooth cornering. In [30], Mercy et al. repre-
sented each a given linear (G01) or circle (G02/G03) segment by the cubic B-spline, and the
time-optimal trajectory generation was formulated, assuring smooth transitions between each
segment trajectory (continuous velocity and acceleration). Tolerance of each G-code segment
was considered as a constraint in the OCP; however, a more complicated contour, e.g., a spline
(G05), was not addressed. Therefore, the accuracy of the workpiece may be reduced without
necessarily dividing the spline profile into multiple linear or circular segments.

1.2.4 Approaches to solve the optimal control problem

The OCP finds the inputs and the corresponding state trajectories from the initial state to
the final state value by satisfying the state constraints by minimizing the performance measure
(objective function) [53] (See Fig. 1.3) There are several approaches to solve the OCPs: the
indirect and direct approaches [54, 55]. The indirect method solves the infinite OCP as the
boundary value problem providing the necessary optimality conditions. Korayem et al. pro-
vided optimal trajectory planning strategies for mobile manipulators based on the Pontryagin’s
minimum principle [56–58]. Time-energy optimal trajectory generation with small tracking
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errors was proposed in [34]. A method for determining the maximum allowable load for mo-
bile manipulators with redundancy constraints was presented in [59]. Indirect methods are
numerically unstable and are difficult to implement and initialize.

On the other hand, the direct method discretizes the infinite OCP and converts it into the
finite-dimensional nonlinear programming problem, which is solved by numerical optimization
techniques. A direct method was applied to generate the optimal trajectory of rigid body
systems with environmental contact [60]. The direct methods are based on the control param-
eterization of the state trajectory and are the most widespread and successfully used technique
for constrained OCP in real-world applications [54, 61]. The direct approaches include single
shooting, multiple shooting, and collocation techniques.

In the single shooting technique, the control inputs are discretized on the unit grid interval
and rescaled into the time horizon. The state trajectory is regarded as an implicit function of
the piecewise control input; therefore, the simulation of the state trajectory and optimization
procedure goes sequentially one after another. Although it is simple, the unstable systems
are difficult to implement with a single shooting [62]. The multiple shooting technique breaks
down the problem into multiple single shootings and adds the state trajectory as the equality
continuity constraints. The simulation of the state trajectory delivers when the optimization
iterations end; therefore, it is considered as the simultaneous approach. Similar to multiple
shooting, the collocation method uses the knots points, which are the connection of piecewise
polynomials, and the state constraints are imposed at the collocation points [61–63]. The
decision variables are the coefficients of polynomials, which change the value of the state and
input at each knot. All these direct methods are successfully used to solve the OCPs for
industrial machines.

However, all these methods require the discretization form of the constraints in order to avoid
semi-infinite inequality constraints along the path. As a drawback, the constraints are not
guaranteed to satisfy in-between the determined grid points along the horizon.
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Fig. 1.3: Illustration of an OCP with the state constraint along the time horizon.

1.3 Thesis contributions and outline

1.3.1 Contributions

The time-optimal trajectories are the main necessity in modern manufacturing industries to
improve productivity. At the same time, these time-optimal trajectories must follow the kine-
matic and dynamic capabilities of the industrial machines in order to prevent tool vibration
and damage to the actuators induced by the discontinuous unbounded acceleration or jerk val-
ues. According to the industrial needs, the decision makers are interested about the Pareto
optimal solutions, which gives the trade-off level between the total motion time and its contra-
dictory objectives. In this thesis, spline-based single and multi-objective decoupled and coupled
OCPs are proposed for optimal trajectory generation of industrial machines considering motion
time, smoothness, and geometric accuracy. The dynamic constraints are not included in OCP
formulation to avoid the high computational complexity. However, the kinematic constraint
satisfaction largely affects the dynamic behavior of industrial machines (e.g., constraining jerk
values improve the tracking accuracy of control systems). Therefore, these constraints can be
considered as kinodynamic constraints. The main contributions are described as follows:

■ The OCPs solved by the direct transcription method has been presented by setting discrete
constraints on specific grids for calculations. The drawback is that when generating time-
optimal trajectories of complex geometric paths whose derivative values are frequently
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changed over the horizon, the bang-bang behavior of the kinematic constraints may vi-
olate the machine limits, especially when the number of grids is small. Increasing the
grids introduces additional variables and constraints in the OCP; therefore, it is compu-
tationally expensive. This thesis introduces a guaranteed satisfaction of kinematic limits
for decoupled and coupled trajectory generation approaches regardless of the number of
grids by exploiting spline properties.

■ The usage of spline properties introduces the conservatism of kinematic constraints, where
the kinematic values are distant from the maximum allowable limits. This study discusses
a technique for reducing the conservatism by increasing the problem grids, along with
the generated total motion time and the computation time of the trajectories. As an
advantage, the trajectories move closer to the maximum limits for a faster motion.

■ Several studies have considered time-optimal trajectories with jerk constraints to reduce
machine tracking errors and tool vibrations. However, a few studies were considered to
simultaneously address the contradictory nature of motion time and jerk. Therefore, in
this study, the contradictory objectives of motion time and jerk square integral of the
generated trajectory are formulated as a BOOP. The Pareto front comprising the trade-
off solutions is explored by the combination of the NNC and D&C algorithms. Therefore,
compared with the previous studies, the decision-maker can choose the specific trade-off
level for manufacturing systems.

■ The proposed optimal trajectories satisfy the kinematic limits for all horizons, whose
results are verified not only by the simulation results but also by the experiments with
a significant tracking error reduction compared to the related studies. Therefore, the
proposed method is practical to use as a reference trajectory for improving the tracking
accuracy of machines, where the original controllers are difficult to be changed.

■ Several studies have considered the time optimality of the trajectory while reshaping
the contours for the given G-codes provided by the CAM system, especially for the
straight-line (G01) and circle (G02/G03) segments. Considering a complex geometric
path, the workpiece accuracy might decrease without necessary dividing into multiple
G01 or G02/03 segments. Therefore, this study presents a technique to simultaneously fit
the complex workpieces comprising G01 and G02/G03 and spline(G05) segments while
formulating the time-optimal trajectories.
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1.3.2 Outline

The thesis can be organized into two parts, namely decoupled trajectory generation and cou-
pled trajectory generation approaches. Chapter 3 and 4 focus on the formulation of decoupled
OCPs, assuming the via-points or the geometric path is given. Chapter 5 presents coupled
approaches, where the contour reshaping is considered simultaneously with time-optimal tra-
jectory generation. This section describes the brief description of the following chapters as
follows:

■ Chapter 3 proposes a kinematically constrained reparameterization approach for indus-
trial machines. The given via-points are firstly represented as a parametric curve by
interpolation and approximation algorithms, and the sixth order B-spline reparameter-
ization function is adopted for the nonlinear relationship between the curve parameter
and time. The significant trade-offs between total motion time and smoothness of the
trajectory (jerk square integral) are formulated as a BOOP, using the combination of
the D&C algorithm with the NNC method, where each Pareto optimal solution is calcu-
lated by the Sequential Quadratic Programming (SQP). The kinematic constraints are
proposed based on the spline convex hulls and the maximum geometric derivatives along
the path. The effectiveness is discussed with the conventional linear reparameterization
method with simulations and experiments with an industrial bi-axial FDS.

■ Chapter 4 presents time-optimal trajectory generation of a predefined geometric path for
CNC machines, provided by the CAD software. The OCP is transformed into the pa-
rameter domain to avoid time dependency, and the cubic B-spline is used to parameterize
pseudo-states of the trajectory. The kinematic constraints in Chapter 3 are modified to
check the spline convex hulls and the locally affected variable geometric derivatives along
the path. Therefore, it is practical for complex geometric paths, where the derivatives are
frequently changed along the parameter interval [0, 1]. The comparison is implemented
with the jerk-constrained smooth time-optimal trajectory generation approach, which
uses discrete constraints on grid points for calculation. The simulation and experimen-
tal results with an industrial bi-axial FDS show that the proposed method provides a
smooth time-optimal trajectory while satisfying the kinematic constraints for all horizons
regardless of the problem grids.

12



1.3. Thesis contributions and outline

■ Chapter 5 discusses two coupled approaches for optimal trajectory generation. The first
approach is for the time-optimal trajectory generation and the contour reshaping of the ge-
ometric paths for CNC machines, consisting of the straight-line (G01), circles (G02/G03),
and splines (G05) segments. The cubic B-spline is used to parameterize each segment tra-
jectory, and the fitting error is proposed as the closest distance between the discretized
via-points of the given G-code segments and the initialized B-spline. The smooth tran-
sition between segment trajectories is provided by velocity and acceleration continuity.
The OCP is divided into several subproblems, which are solved by the simultaneous op-
timization method, namely a rolling horizon. The optimization results are demonstrated
with a complex profile considering different limits on fitting accuracy.

The second coupled trajectory generation is the smooth trajectory generation for indus-
trial planar manipulators when receiving an object with a high impact force. This motion
is investigated with the reduced impact catching of a flying object whose landing positions
and velocities are accurately estimated by the vision system. The end-effector catches the
object with a similar velocity, and the OCP is formulated to minimize the residual im-
pact force after the catch. The optimization results are discussed with the three-degree
of freedom planar manipulator.

■ Chapter 6 summarizes the key findings of this thesis and clarifies the expected future
works.

The chapters are organized as illustrated in Fig. 1.4.
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Chapter 2

Preliminaries

2.1 Spline parameterization of an optimal control problem

Splines are widely used for the control parameterization of motion trajectories due to their
continuity, flexibility, and the exact representation of complex profiles with few variables [25, 64].
In this thesis, trajectories are parameterized in terms of B-splines, which provide at least
continuity in the acceleration profile. In Chapter 3 and 4 (decoupled OCPs), the B-spline
represents the parameter and pseudo-state values of the geometric path, whereas the B-spline
represents the geometric positions in Chapter 5 (coupled OCPs). This section describes the
definition of a spline-based trajectory and its important properties used in OCP formulation.

2.1.1 Spline trajectory

Concerning the decoupled and coupled OCPs, the motion trajectory can be parameterized in
terms of B-splines for generating the smooth trajectory. The continuity of B-splines is dependent
on the order of the curve k (degree, p = k− 1). Therefore, the kth order B-spline curve consists
of a piecewise linear combination of polynomial functions as follows:

s(u) =
n∑

i=0

Bi,k(u) ci, umin ⩽ u ⩽ umax, (2.1)
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where s(u) represents the B-spline with parameter u, umin and umin are the user-defined min-
imum and maximum parameter values, respectively, cj denotes the control point, n is the
number of control points, and the knot vector of the B-spline consists of (n + k + 1) knots
that are k-times clamped at both ends. For simplicity, the knot points are not considered as
optimization variables in this thesis. The non decreasing knot vector for (2.1) is defined as
follows:

U = [ umin, ..., umin︸ ︷︷ ︸
k-times

, uk, uk+1, ..., un, umax, ..., umax︸ ︷︷ ︸
k-times

], (2.2)

Depending on the distribution of the knot vector in (2.2), the basis function is defined by the
Cox-de Boor recursion formula [64] as follows:

Bj,1(u) =

1 , for uj ⩽ u < uj+1.

0 , otherwise.

Bj,k(u) =
(u− uj)Bj,k−1(u)

(uj+k−1 − uj)
+

(uj+k − u)Bj+1,k−1(u)

(uj+k − uj+1)
.

(2.3)

An illustration of B-spline parameterization is provided in Fig. 2.1. The rth derivative of the
B-spline with respect to parameter u is determined as follows:

sr(u) =
n∑

i=0

Br
i,k(u) ci, r = {1, 2, ..., k − 1}, (2.4)

with its rth derivative of the basis function given by

Br
j,k(u) = (k − 1)

[
Br−1

j,k−1(u)

uj+k−1 − uj
−
Br−1

j+1,k−1(u)

uj+k − uj+1

]
. (2.5)

From (2.5) and (2.4), the first derivative of a B-spline can be rewritten by

s′(u) =
n−1∑
i=0

Bi,k−1(u) c
′, (2.6)
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Fig. 2.1: Parameterization of the geometric path by a B-spline (k = 4) with the control points
and basis functions in parameter u ∈ [0, 1].

with

c′i =
(k − 1)

uj+k − uj+1

(ci+1 − ci), i = {0, 1, ..., n− 1}, (2.7)

where c′i is the control point of the first derivative of the B-spline function, which corresponds
to the knot vector as follows:

U ′ = [ umin, ..., umin︸ ︷︷ ︸
(k−1)-times

, uk, uk+1, ..., un, umax, ..., umax︸ ︷︷ ︸
(k−1)-times

], (2.8)

Similarly, the higher order derivatives of the B-spline curve can be determined in a recursive
manner as follows:

sr =
n−r∑
i=0

Bi,k−r(u) c
r
i , (2.9)
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with

cri =


ci , for k = 0,

k − r
(ui+k − ui+r)

(cr−1
i+1 − cr−1

i ) , for k > 0.
(2.10)

and the corresponding knot vector as follows:

U r = [ umin, ..., umin︸ ︷︷ ︸
(k−r)-times

, uk, uk+1, ..., un, umax, ..., umax︸ ︷︷ ︸
(k−r)-times

], (2.11)

2.1.2 Spline properties

The most powerful property of B-splines used for trajectory generation is the convex hull
property [11, 65]. The convex hull property states that the spline function is always contained
in the convex hull, determined by its control points. According to the local modification scheme,
the change of the control point ci will only affect the spline function on the interval [ui, ui+k+1).
Therefore, these properties are used to satisfy the semi-infinite constraints for optimal trajectory
generations. For example, the semi-infinite constraint

smin ⩽ s(u) ⩽ smax, (2.12)

is guaranteed if the following finite set of constraints are satisfied:

smin ⩽ ci ⩽ smax, i = {0, 1, 2, ..., n}. (2.13)

where smin and smax are the maximum and minimum limits of the spline function, respectively.
Compared to the classical optimization approaches, which use the discrete constraints on grid
points for calculation, constraints using the convex hull property give a faster computation time
with a guaranteed solution for constraint satisfaction for all horizons (See Fig. 2.2). A similar
concept is applied to the derivatives of the splines. Therefore, the semi-infinite constraint for
the rth derivative of B-spline

srmin ⩽ sr(u) ⩽ srmax (2.14)
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Fig. 2.2: Comparison of discrete constraints at grid points and control points along the
trajectory.

is satisfied if the following condition by its control points are met:

srmin ⩽ cri ⩽ srmax, i = {0, 1, 2, ..., n− r}. (2.15)

where srmin and srmax are the minimum and maximum limits on the rth derivative of the B-spline,
respectively. Eq. (2.14) is generally used for kinematic constraints satisfaction (e.g., velocity,
acceleration, and jerk) of the coupled OCPs. One of the drawbacks of using constraints by
the spline convex hull property introduces some conservatism (i.e., the actual values are far
from the maximum allowable limits). This conservatism can be reduced by the degree elevation
or knot insertion algorithms in the literature [66, 67]. However, the constraints for decoupled
approaches are still challenging because the generated velocity, acceleration, and jerk values
depend on both the predefined path’s derivatives and the control spline function itself. This
thesis focuses on the kinematic constraint satisfaction on decoupled OCPs in Chapter 3 and 4.

2.2 Geometric curve fitting of given via-points

The geometric paths are given as a set of via-points in the Cartesian space, which are usually
provided by the high-level path planning algorithms (e.g., A* algorithm or hybrid A* algo-
rithms considering the obstacle avoidance scheme) or by discretization of a CAD profile by
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CAM systems. In decoupled approaches of this thesis, global interpolation or approximation
algorithms are used to predefine the given via-points as a parametric curve as below.

2.2.1 Global interpolation

Given a set of r via-points {d0,d1, ...,dr}, the global interpolation algorithm [11] calculates the
control points which makes the B-spline curve passing through all these via-points. In this case,
we assume that the parameter u lies within the range [0, 1]. The number of control points of the
fitted B-spline curve equals the number of via-points, i.e., n = r. Using (2.1), (n + 1) number
of linear equations are defined at assigned parameter values ũi, i = {0, 1, ..., n} as follows:

s(ũi) =
n∑

i=0

Bi,k(ũi) ci = di, (2.16)

where s represents the three-dimensional geometric position. In matrix form, it can be repre-
sented for each mth direction by the following:

BCm = Dm,

B =


B0,k(ũ0) B1,k(ũ0) . . . Bn,k(ũ0)

B0,k(ũ1) B1,k(ũ1) . . . Bn,k(ũ1)
...

... . . . ...
B0,k(ũn) B1,k(ũn) . . . Bn,k(ũn)

 ,Cm =


c0,m

c1,m
...

cn,m

 ,Dm =


d0,m

d1,m
...

dn,m

 ,
(2.17)

The choice of ũi effects the shape of the geometric path [68]. Here, the centripetal method is
used to choose the assigned parameter values as follows:

ũ0 = 0, ũn = 1,

ũi = ũi+1 +

√
|di − di−1|

D
, i = {1, 2, ..., n− 1},

(2.18)

with

D =
n∑

i=0

√
|di − di−1| (2.19)
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Fig. 2.3: Global interpolation of given 10 via-points by a B-spline with 10 control points.

To define the basis functions in (2.17), the knot vector U must be determined. Uniform distri-
bution of the knot vector can be selected; however, this may generate a singular matrix B in
(2.17) with the use of assigned parameters ũi in (2.18). Therefore, it is recommended to choose
the knot vector by the averaging method as follows:

u0 = ... = uk−1 = 0, un+2 = ... = un+k+1 = 1,

uj+k−1 =
1

(k − 1)

j+k−2∑
i=j

ũi, j = {1, 2, ..., n− k + 1}.
(2.20)

Thereafter, the control points for each axis can be calculated by solving Cm = B−1Dm. An
illustration of the global interpolation of a given via-points is given in Fig. 2.3. When the
data size of given via-points is very large, the interpolation of each via-point may occur the
fluctuation of the fitting curve; hence, in this case, it is recommended to use an approximation
of given via-points instead.

2.2.2 Global approximation

The global approximation algorithm finds a B-spline curve, which passes exactly through the
first and last via-points and near the remaining via-points by minimizing the error distance
between them. [11, 69, 70] The given set of via-points {d0,d1, ...,dm} are approximated by kth

21



Chapter 2. Preliminaries 2.2. Geometric curve fitting of given via-points

order B-spline with (n+ 1) control points, where n < m as follows:

s(u) =
n∑

i=0

Bi,k(u) ci, 0 ⩽ u ⩽ 1. (2.21)

In this case, the first and last control points are simply computed as c0 = d0 and cn = dm, and
the remaining control points are computed in the sense of least squares as follows:

m−1∑
i=1

|di − s(ũi)|2, (2.22)

where ũi is the assigned parameter according to (2.18) and (2.19). Following the derivation in
[11], the matrix form can be represented for the mth direction as follows:

(BT B)Cm = Qm

B =


B1,k(ũ1) B2,k(ũ1) · · · Bn−1,k(ũ1)

B1,k(ũ2) B2,k(ũ2) · · · Bn−1,k(ũ2)
...

... . . . ...
B1,k(ũr−1) B2,k(ũr−1) · · · Bn−1,k(ũr−1)

 ,Cm =


c0,m

c1,m
...

cr−1,m

 ,

Qm =


B1,k(ũ1) q1,m + B1,k(ũ2) q2,m + · · · +B1,k(ũr−1) qr−1,m

B2,k(ũ1) q1,m + B2,k(ũ2) q2,m + · · · +B2,k(ũr−1) qr−1,m

...
Bn−1,k(ũ1) q1,m + Bn−1,k(ũ2) q2,m + · · · +Bn−1,k(ũr−1) qr−1,m


qi,m = di,m −B0,k(ũi) d0,m −Bn,k(ũi) dr,m, i = {1, 2, · · · , r − 1}.

(2.23)

To guarantee every knot span includes at least one ũi which makes the matrix (BT B) positive
definite, the internal knots are defined as follows:

uk+j−1 = (1− α) ũi−1 + α ũi−1, j = {1, 2, · · · , n− k + 1},

i = int(jd), d =
r + 1

n− k + 2
α = jd− 1.

(2.24)
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2.3. The optimal control problem formulation

Fig. 2.4: Global approximation of given 60 via-points by a B-spline with 10 control points.

Thereafter, the control points are determined by calculating Cm = (BT B)−1Qm. Approxi-
mation of a given via-points by global approximation algorithm is illustrated in Fig. 2.4.

2.3 The optimal control problem formulation

In this thesis, the OCPs are formulated as a single-objective or a Multi-objective Optimization
Problems (MOOPs). In MOOPs, the generated solution must be Pareto-optimal, where there
exists no other feasible solution that improves the value of at least one objective without
deteriorating the other objectives [71, 72]. The set consisting of Pareto-optimal solutions is
called the Pareto front. The general MOOP is defined as follows:

min
µ
{F1(µ), F2(µ), ..., Fn(µ)}, n ⩽ 2. (2.25)

subject to

h(µ) = 0, (2.26)

g(µ) ⩽ 0, (2.27)

µmin ⩽ µ ⩽ µmax, (2.28)

where, µ is the optimization variable vector, h(µ) is the equality constraint vector, g(µ) is
the inequality constraint vector, and µmin and µmax are the upper and lower bounds of µ,
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Fig. 2.5: Demonstration of the NNC method for bi-objective case.

respectively. There are several approaches for obtaining the optimal solutions of MOOP. The
widely used method is the weighted sum method, where each objective function is multiplied
by a weighting factor, then sums up all to form an aggregated scalar objective function [71, 73,
74]. However, this method does not give a well-distributed set of Pareto solutions and cannot
generate solutions in concave Pareto regions. This section describes the process of revealing the
Pareto front between contradictory objectives by the combination of NNC method and D&C
algorithm.

2.3.1 Normalized normal constraint method

The NNC is a method for generating the Pareto front by minimizing a normalized objective
and incorporating the remaining objectives as additional constraints [75]. Considering a BOOP
(n = 2), the anchor points (the optimal vertices) are determined by minimizing each of the
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objective function, independently as follows:

f1,min = min
µ

J1(µ), f2,min = min
µ

J2(µ) (2.29)

subject to (2.26)-(2.28). Thereafter, the anchor points are mapped into the normalized objective
space as F̃ ∗

1 (0, 1) and F̃ ∗
2 (1, 0) shown in Fig. 2.5. The line joining the two anchor points is

called the Utopia line. The objective functions are normalized as follows:

F̃1 =
F1 − f1,min

f1,max − f1,min
, F̃2 =

F2 − f2,min

f2,max − f2,min
, (2.30)

with
f1,max = tmax, f2,max = F2(µ1,min),

µ1,min = argmin
µ

F1.
(2.31)

Therefore, the bi-objective optimization problem is reformulated by the NNC as follows:

min
µ
F̃2, (2.32)

subject to (2.26)-(2.28), and:

nT [ϑ− F̃ (ω)] ⩽ 0, (2.33)

with

n = F̃ ∗
2 − F̃ ∗

1 = [1,−1]T ,

ϑ = [F̃1, F̃2]
T ,

F̃ (ω) = (1− ω) F̃ ∗
1 + ω F̃ ∗

2 , 0 ⩽ ω ⩽ 1,

(2.34)

where, ω is the weighting factor adjusted to give the solutions with a specified trade-off.

2.3.2 Divide and conquer algorithm

The Pareto front must include a limited number of non-dominated solutions, which possess
a significant trade-off between conflicting objectives. Decision-makers are more interested in
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Fig. 2.6: Demonstration of the D&C algorithm for the bi-objective case.

steep segments of the Pareto front, i.e., knees, due to the high trade-off level compared to the
flat segments. Filtering methods were used to keep the solutions with significant trade-offs from
the dense Pareto fronts [76, 77]. However, these methods suffer from producing insignificant
solutions ahead; therefore, they are computationally expensive. Hashem et al. [78] proposed
the D&C algorithm that breaks down the problem into two sub-problems until each one satisfies
a single solution with a specified trade-off. This algorithm can be combined together with one
of the optimization methods, (e.g., NNC [75] or Normal Boundary Intersection (NBI) [79]) to
explore the significant Pareto optimal solutions with an adaptive manner.

The working principle for the two-dimensional case is illustrated in Fig. 2.6. First, The algo-
rithm divides the Pareto front into two segments by setting a weight that divides the Utopia
line in half. After that, the Pareto optimal solution is calculated. The algorithm continues sub-
dividing the previous segments and calculating the mid-point solutions until the new solution
becomes insignificant compared to the previous solution. The user determines the significance
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criterion of the algorithm. For instance, the new point Pnew(Pnew,1, Pnew,2) is considered signif-
icant relative to previous point Pold(Pold,1, Pold,2) if the following constraint is satisfied:

min{(|Pnew,1 − Pold,1|, |Pnew,2 − Pold,2|)} ⩾ Plimit, (2.35)

where Plimit is the user-defined trade-off tolerance.
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Chapter 3

Kinematically Constrained

Reparameterization for Optimal Time and

Jerk Motion

This chapter presents a kinematically constrained spline-based reparameterization approach for
the trajectory generation of industrial machines while maintaining the geometric shape. This
method is targeted for optimal industrial product designs which require an exact representation
of the geometric path, e.g., CAD design. It is a decoupled approach to parameterizing the
trajectory in terms of splines and formulates an OCP as a BOOP. The properties of splines are
exploited to ensure kinematic constraint satisfaction for all times. Two objectives are considered
herein: total time and jerk square integral of the trajectory. The Pareto front comprising the
trade-off solutions, which represent the contradictory nature of both objectives, is explored. The
results are compared with the widely used linear reparameterization method by simulations and
experiments.

In this chapter, a parametric curve with jerk continuity is used to represent the given via-
points in the Cartesian space; therefore, the predefined geometric path is obtained. As in
[80], the reparameterization function in terms of the B-spline is adopted to have a nonlinear
relationship between the curve parameter and motion time. Considering the total time as
an unknown parameter, the computation for the jerk square integral of the reparameterized
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trajectory is very expensive; hence the trapezoidal method is used to estimate the jerk value
at each partitioning interval. A finite set of inequality constraints are determined based on
the convex hull of the reparameterization function derivatives and the maximum parametric
curve derivatives to satisfy the kinematic limits along the trajectory. Moreover, adding equality
constraints at the start and end of the reparameterization function allows smooth start- and
end-transitions (i.e., zero initial and final velocities and accelerations). For the BOOP, the
process of revealing the Pareto front comprising trade-off solutions between time and jerk is
implemented by applying the D&C [78, 81, 82] with the NNC method [75, 83], where each
solution is computed using the SQP [84]. This achieves an efficient representation of the Pareto
front and determines the constrained reparameterization of the trajectory with a significant
trade-off.

The rest of this chapter is organized as follows: Section 3.1 describes the related works with
the proposed method; Section 3.2 briefly describes the representation of the given via-points
as a predefined geometric path by interpolation or approximation algorithms and trajectory
reparameterization by a B-spline; Section 3.3 proposes the method for limiting the kinematic
constraints for the reparameterized trajectory; Section 3.4 states the bi-objective optimization
scheme for time and jerk, followed by the application of the NNC method and the D&C algo-
rithm; Section 3.5 presents the effectiveness of the proposed method as validated by simulation
and experimental results; and Section 3.6 draws the summary of this chapter.

3.1 Related works

In Section 1.2.3, several OCPs concerning with motion time and jerk of the trajectory are
discussed. Also, techniques to solve the OCPs are addressed. Most importantly, to simulta-
neously satisfy geometric positions of given via-points and desired smoothness of a contour
profile, a smooth interpolation or approximation function with sufficient continuity is required
to parameterize the motion trajectory of industrial machines.

Splines are piecewise polynomial functions widely used to generate smooth trajectory primitives
to ensure acceleration or jerk continuity [85]. The spline representation in terms of a compact
basis form known as B-spline gives a more simple computation and a precise representation of
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smooth free-form curves and surfaces [25]. The interpolation or approximation of via-points is
independent of the B-spline order. For general usage of splines, the required geometric path
is usually generated in a parametric form, and the specific reparameterization of the curve is
applied to modify the motion trajectories [14, 28, 86, 87]. However, these methods initially
require computing the arc length of the parametric curve to determine the required time and
velocity profile. The curve parameter is then updated in each time step. As a drawback, the
excitation of the machine vibration may occur due to the inaccurate mapping between the curve
parameter and the arc displacement.

The geometric path of a robot usually consists of a set of points, called via-points, in the
Cartesian space, where the tasks to perform and obstacles to avoid are determined. In this case,
trajectory planning takes an input of the geometric path, kinematic, and dynamic limitations
to industrial machines and generates an output as a reference trajectory either in a joint or
Cartesian space. Therefore, the optimal trajectory generation of a geometric path is generally
translated into an OCP while considering the equality and inequality constraints of industrial
machines. Spline-based trajectory generation problem is formulated as an OCP using the spline
properties for constraint satisfaction.

Regarding the spline-based OCPs, mostly, the optimal trajectories were generated based on
changing the geometric shape to achieve the desired smoothness or time criteria. One exception
is the work of Hashemian et al. [80], which presented a method for minimizing the total jerk
of the trajectory while maintaining the geometric shape at a predefined time. In this method,
the geometric path was reparameterized in time by a B-spline, and the nonlinear relationship
between the curve parameter and time was formulated by jerk minimization. However, time
must be considered as a priori, and the kinematic constraints along the trajectory were not
addressed.

3.2 Geometric path representation and trajectory repa-

rameterization

B-splines are widely used for the geometric modeling of curves and surfaces due to their flex-
ibility. The construction and properties of the B-splines are discussed in detail [11]. Given
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via-points, the following two types of curve fitting methods are considered to represent the
geometric path: interpolation, where the curve passes through all via-points, and approxima-
tion, where the curve passes near the via-points by minimizing the error between them. The
parametric B-spline of order k consisting of piecewise polynomial functions of degree k− 1 and
n+ 1 control points is determined as follows:

s(u) =
n∑

j=0

Bj,k(u) pj, 0 ⩽ u ⩽ 1, (3.1)

with a non-decreasing knot vector

U = [ 0, ..., 0︸ ︷︷ ︸
k-times

, uk, uk+1, ..., un, 1, ..., 1︸ ︷︷ ︸
k-times

], (3.2)

where, s(u) represents the position of the geometric path with parameter u; pj denotes the
three-dimensional position control point; and the knot vector U consists of n + k + 1 knots
that are k-times clamped at both ends. The first and last position control points coincide
with the first and last via-points, respectively. The distribution of the inner knots in (3.2)
reflects the interpolation or approximation curve to be fitted [11]. The global interpolation
and approximation algorithms refer to Section 2.2. The unknown position coefficients for the
parametric curve can be solved in (3.1) by knowing the basis functions and the via-points to be
interpolated or approximated. Thereafter, the parametric curve derivatives can be calculated
according to (2.9). In this study, the sixth-order parametric B-splines are used to represent the
geometric paths to generate trajectories with a continuous jerk.

After the geometric path is defined as a parametric curve s(u), a particular reparameterization
method is generally adopted for obtaining motion trajectories with respect to time. Reparam-
eterization refers to velocity, acceleration, and jerk vectors modification without changing the
geometric shape. More specifically, the curve parameter u is expressed in terms of time t by
a strictly monotonic increasing function u(t). Therefore, the curves s(u) and s̃(u(t)) are geo-
metrically the same in position, but are kinematically different functions. Reparameterization
of the geometric path is demonstrated in Fig. 3.1. The velocity, acceleration, and jerk of the
reparameterized trajectory can be expressed in terms of time by the chain rule as follows:

ṽ(t) = ṡ(u) u̇(t), (3.3)

32



3.2. Geometric path representation and . . .

ã(t) = s̈(u) [u̇(t)]2 + ṡ(u) ü(t), (3.4)

j̃(t) =
...
s (u) [u̇(t)]3 + 3 s̈(u) ü(t) u̇(t) + ṡ(u)

...
u (t), (3.5)

where ṽ(t), ã(t), and j̃(t) are the respective velocity, acceleration, and jerk of the reparam-
eterized trajectory, ṡ(u), s̈(u), and ...

s (u) are the first, second, and third derivatives of the
geometric path with respect to parameter u, and u̇(t), ü(t), and ...

u (t) are the pseudo velocity,
acceleration, and jerk with respective to time t. The reparameterized trajectory is required to
satisfy the upper and lower bounds on kinematic limits along the trajectory as follows:

vmin ⩽ ṽ(t) ⩽ vmax (3.6)

amin ⩽ ã(t) ⩽ amax (3.7)

jmin ⩽ j̃(t) ⩽ jmax (3.8)

where vmin, amin, and jmin, and vmax, amax, and jmax are lower and upper bounds on velocity,
acceleration, and jerk of the trajectory, respectively.

3.2.1 Representation of reparameterization function by B-spline

The reparameterization function for the parametric curve is adopted herein in terms of a piece-
wise continuous function by a B-spline [80]. The qth order B-spline reparameterizaion function
with m+ 1 control points is given as follows:

u(t) =
m∑
i=0

Bi,q(t) c
pos
i , 0 ⩽ t ⩽ tf, (3.9)

with its knot vector
T = [ 0, ..., 0︸ ︷︷ ︸

q-times

, tq, tq+1, ..., tm, tf, ..., tf︸ ︷︷ ︸
q-times

], (3.10)

where cpos
i represents the scalar position coefficient of the reparameterization function, and tf

denotes the unknown total time. The knot vector T is clamped q-times at 0 and tf, hence, the
first and last position coefficients of the reparameterization function coincide with the first and
last curve parameter values, cpos

0 = 0 and cpos
m = 1, respectively. The other position coefficients

33



Chapter 3. Kinematically Constrained . . . 3.2. Geometric path representation and . . .

s(u)

s(u) = s(u(t)) s(u(t))

umax

u(t)

umin

umax

umin

umaxumin Parameter u

Parameter u

tmin tmaxParameter t

x

y

x

y

t

u

~ ~

Fig. 3.1: Reparameterization of the geometric path.

lie between 0 and 1, and the inner knots in (3.10) are assumed to be uniformly distributed
between the interval [0, tf]. Therefore, the unknown total time and position coefficients of the
reparameterization function are determined through the bi-objective optimization procedure
presented in Section 3.4.

3.2.2 Convex hull property by B-spline

The convex hull property of B-spline states that the piecewise segment of the curve lies within
the convex hull of its coefficients. Therefore, the segment of the reparameterization func-
tion u(t), t ∈ [ti, ti+1] must exist within the convex hull formed by the position coefficients
cpos
i−q+1, ..., c

pos
i and the change in these points locally affects the function shape. The reparame-

terization function u(t) is a B-spline; thus, the pseudo velocity, acceleration, and jerk are also
B-splines, and they must be determined separately to define the kinematic constraints for the
trajectory. The pseudo velocity is reconstructed as follows by discarding the first and last values
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of the knot vector in (3.10):

u̇(t) =
m−1∑
i=0

Bi,q−1(t) c
vel
i , (3.11)

with

cvel
i =

(q − 1)

ti+q − ti+1

(cpos
i+1 − c

pos
i ), i = {0, 1, ...,m− 1}. (3.12)

Similarly, the acceleration of the reparameterization function is given by

ü(t) =
m−2∑
i=0

Bi,q−2(t) c
acc
i , (3.13)

with

cacc
i =

(q − 2)

ti+q − ti+2

(cvel
i+1 − cvel

i ), i = {0, 1, ...,m− 2}. (3.14)

The jerk function is defined as follows:

...
u (t) =

m−3∑
i=0

Bi,q−3(t) c
jerk
i , (3.15)

with

cjerki =
(q − 3)

ti+q − ti+3

(cacc
i+1 − cacc

i ), i = {0, 1, ...,m− 3}. (3.16)

where, cveli , cacc
i , and cjerki represent the control points of pseudo velocity, acceleration, and jerk,

respectively. Fig. 3.2 depicts the formation of those pseudo-velocity, -acceleration, and -jerk
control points, which are the convex hull vertices of (3.11), (3.13), and (3.15), respectively.

3.3 Constrained kinematic reparameterization

The initial and final velocity and acceleration of the trajectory must be zero to obtain a smooth
transition at the start and end of the trajectory. Hence, the boundary conditions for velocity
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Fig. 3.2: Determination of pseudo-velocity, -acceleration, and -jerk control points in terms of
position control points of the reparameterization function to define a finite set of constraints.

and acceleration are added as equality constraints of the reparameterized trajectory in (3.3)
and (3.4) as follows:

ṽ(0) = ṡ(0) cvel
0 = 0.

ṽ(tf) = ṡ(1) cvel
m−1 = 0.

ã(0) = s̈(0)
[
cvel
0

]2
+ ṡ(0) cacc

0 = 0.

ã(tf) = s̈(1)
[
cvel
m−1

]2
+ ṡ(1) cacc

m−2 = 0.

(3.17)

Moreover, the inequality constraints of the velocity, acceleration, and jerk must be determined
such that the reparameterized trajectory satisfies the kinematic limits. Here, the change in the
pseudo-velocity, -acceleration, and -jerk affects the kinematic values of the trajectory. Therefore,
the inequality constraints are proposed based on the pseudo-velocity, -acceleration, and -jerk
control points and the maximum derivatives of the parametric curve. If the maximum and
minimum kinematic limits are assumed to be symmetric for all axes, a finite set of velocity
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constraints are proposed to satisfy (3.6) as follows:

ṽi ⩽ vlim, i = {0, 1, ...,m− 1}, (3.18)

with

ṽi = |ṡ(u)|max |cveli |, (3.19)

where |ṡ(u)|max is the maximum absolute first derivative of parametric curve and vlim denotes
the absolute velocity limit for the trajectory.

Pseudo-velocity and -acceleration control points are required to define the acceleration con-
straints. Since the pseudo-acceleration control point cacc

i is the rate of change of two velocity
control points, cvel

i and cvel
i+1, there are two combinations for each ith control point of pseudo-

acceleration, which are required to satisfy (3.7) as follows:

ãi,l ⩽ alim, i = {0, 1, ...,m− 2}, l = {0, 1}, (3.20)

with

ãi,l = |s̈(u)|max |cveli+l|2 + |ṡ(u)|max |cacc
i |, (3.21)

where |s̈(u)|max is the maximum absolute second derivative of parametric curve, and alim denotes
the absolute acceleration limit. Similarly, the pseudo-jerk control point cjerki is the rate of change
of cacc

i and cacc
i+1, which again consist of three velocity control points, namely cveli , cvel

i+1, and cveli+2,
respectively. Therefore, four combinations for each ith control point of pseudo-jerk are required
to satisfy (3.8) as follows:

j̃i,l ⩽ jlim, i = {0, 1, ...,m− 3}, l = {0, 1, 2, 3}, (3.22)
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with

j̃i,l =



| ...s (u)|max |cvel
i+l|3 + 3 |s̈(u)|max |cacc

i | |cveli+l|

+ |ṡ(u)|max |cjerki |, for l ⩽ 1,

| ...s (u)|max |cvel
i+l−1|3 + 3 |s̈(u)|max |cacc

i+1| |cveli+l−1|

+ |ṡ(u)|max |cjerki |, otherwise,

(3.23)

where | ...s (u)|max and jlim represent the maximum absolute third derivative of the parametric
curve and the absolute jerk limit of the trajectory, respectively.

3.4 Bi-objective optimization approach

3.4.1 Objective functions and constraints

This section formulates an OCP as the bi-objective optimization problem for time and jerk of
the reparameterized trajectory. The objective functions are adopted with two contradictory
terms: the total time and the jerk square integral of the reparameterized trajectory. Moreover,
the kinematic constraints of the trajectory described in Section 3.3 are considered as equality
and inequality constraints for the optimization. Therefore, the problem is formulated as follows:

min
ϕ
{F1, F2}, (3.24)

where

F1 = tf,

F2 =

∫ tf

0

∥∥∥j̃(t)∥∥∥2

2
dt,

ϕ = [tf, c
pos
0 , cpos

1 , ..., cpos
m ] ,

(3.25)
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subject to
cpos
0 = 0, cpos

m = 1,

cpos
0 ⩽ cpos

1 ⩽ ... ⩽ cpos
m−1 ⩽ cpos

m ,

0 < tf ⩽ tmax,

ṽ(0) = 0, ṽ(tf) = 0,

ã(0) = 0, ã(tf) = 0,

ṽi ⩽ vlim, i = {0, 1, ...,m− 1},

ãi,l ⩽ alim, i = {0, 1, ...,m− 2}, l = {0, 1},

j̃i,l ⩽ jlim, i = {0, 1, ...,m− 3}, l = {0, 1, 2, 3},

(3.26)

where ∥.∥2 is the Euclidean norm, and tmax is the maximum time limit defined by the user.
Jerk is the third derivative of position; thus, the orders for the parametric curve and the
reparameterization function must be chosen as sixth or higher to have a continuous jerk profile.
In other words, the F2 computation is very expensive. Here, the jerk square integral of the
reparameterized trajectory is estimated by the trapezoidal method as follows:

∫ tf

0

∥∥∥j̃(t)∥∥∥2

2
dt ≈

N∑
h=1

∥∥∥j̃(th−1)
∥∥∥2

2
+
∥∥∥j̃(th)∥∥∥2

2

2N
tf, (3.27)

where j̃(th) is the jerk value at each time step th, and N is the number of partitions of the
function.

3.4.2 Generation of Pareto optimal solutions

For the BOOP, optimal solutions are presented as the trade-off solutions between total time
and jerk square integral by the Pareto front. Pareto optimality conditions can be found in
[74, 88]. The extrema of the objective set in (3.24) are formulated by minimizing each objective
independently as follows:

f1,min = min
ϕ
F1, f2,min = min

ϕ
F2, (3.28)
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subject to (3.26).

The solutions in (3.28) are mapped into the normalized objective space formulated by

F̃1 =
F1 − f1,min

f1,max − f1,min
, F̃2 =

F2 − f2,min

f2,max − f2,min
, (3.29)

with
f1,max = tmax, f2,max = F2(ϕ1,min),

ϕ1,min = argmin
ϕ

F1.
(3.30)

The anchor points F̃ ∗
1 and F̃ ∗

2 , which are the extreme coordinates in a normalized plane, are
represented as (0, 1) and (1, 0), respectively by solving (3.29) and (3.30). Therefore, the opti-
mization problem in (3.24) is reformulated as follows by the NNC method:

min
ϕ
F̃2, (3.31)

subject to (3.26), and:

nT [ϑ− F̃ (ω)] ⩽ 0, (3.32)

with

n = F̃ ∗
2 − F̃ ∗

1 = [1,−1]T ,

ϑ = [F̃1, F̃2]
T ,

F̃ (ω) = (1− ω) F̃ ∗
1 + ω F̃ ∗

2 , 0 ⩽ ω ⩽ 1,

(3.33)

where ω is the weighting factor adjusted to give the solutions with a specified trade-off.

Thereafter, the D&C algorithm is used to find a set of Pareto-relevant solutions Θ with a
minimum significant trade-off tolerance between consecutive trade-off solutions. The best trade-
off solution ϑ∗ is chosen by the following condition

ϑ∗ = argmin
ϑ
||Θ||2, (3.34)

corresponding to the weighting factor ω∗.
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Fig. 3.3: Overview of the B-spline reparameterization from the curve parameter u to motion
time and bi-objective optimization with kinematic constraints.

Fig. 3.3 depicts an overview of proposed B-spline reparameterization and bi-objective opti-
mization method.

3.5 Execution of algorithm

3.5.1 Calculation conditions

In this section, the proposed kinematically constrained reparameterization with a bi-objective
optimization for time and jerk is investigated with two geometric paths: S-shaped and GEMINI
airfoil profiles. Thereafter, the benefit of the B-spline reparameterization over the linear repa-
rameterization is discussed with an S-shaped profile. The optimization problems in Section 3.4
are solved using the SQP (“fmincon” function) in a MATLAB® environment of Core i7-7500U
Central Processing Unit (CPU) and 8GB Random Access Memory (RAM) laptop computer
with a Windows 10 64-bit operating system.
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Fig. 3.4: Geometric path representation of the S-shaped profile by a sixth-order parametric
B-spline interpolating nine via-points.

3.5.2 S-shaped profile

Given nine via-points in an x-y plane, the geometric path is interpolated by the sixth-order
parametric B-splines with nine control points. Fig. 3.4 illustrates the positions of the predefined
geometric path as a parametric curve of the S-shaped profile. For this example, the velocity,
acceleration, and jerk limits of optimization are set as vlim = [80, 80] mm/s, alim = [500, 500]

mm/s2, and jlim = [20000, 20000] mm/s3, respectively. The maximum time limit for the trajec-
tory is defined as tmax = 6 s.

The reparameterization function is chosen as the sixth-order B-spline function with 16 control
points. The number of partitions N = 1000 is used to estimate the jerk square integral. The
minimum trade-off tolerance for the D&C algorithm is set as 0.01. Fig. 3.5 represents the
Pareto front consisting of significant solutions between total time and jerk square integral. The
solution for the optimal time is achieved with the highest possible jerk value that satisfies
the kinematic limits of the trajectory. Similarly, the solution with the lowest jerk value is
found at tf = tmax. The best trade-off solution occurs at time tf = 3.63 s with the weighting
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Fig. 3.5: Pareto front representing the optimization results of the S-shaped profile.

Fig. 3.6: Relation between parameter u and motion time in terms of B-spline reparameteriza-
tion function for time-optimal, best trade-off, and jerk-optimal results of the S-shaped profile.
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Fig. 3.7: Satisfaction of velocity, acceleration, and jerk limits for x- and y-axis of the S-shaped
profile.

factor ω∗ = 0.51, and approximately 75% of the highest jerk value can be reduced by using
approximately 60% of tmax.

Three conditions of the relation between parameter u and motion time are provided to inves-
tigate the effect of the B-spline reparameterization on bi-objective optimization; time-optimal,
jerk-optimal, and best trade-off shown in Fig. 3.6. The generated motion can be faster or slower
depending on the reparameterization function to optimize the trajectory. The parameter u is
transversed slowly at the start and end of the motion for all cases to avoid abrupt changes in
velocity and acceleration values, which achieves smooth start- and end-transitions. For the rest
of the motion in the time-optimal case, the reparameterization function finds the fastest way for
traversing parameter u from 0 to 1. For the jerk-optimal case, the function gives more flexible
reparameterization of the trajectory by modifying its position coefficients to provide the lowest
jerk value at tmax. The reparameterization function finds an optimal solution, which considers
time and jerk equally as the best trade-off case.
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Fig. 3.7 presents a comparison of the velocity, acceleration, and jerk in x- and y-axis for
time-optimal, best trade-off, and jerk-optimal trajectories. With the proposed method, the
initial and final velocity and acceleration of the trajectory become zero. Moreover, the velocity,
acceleration, and jerk limits are satisfied in each axis along the trajectory of the S-shaped
profile.

3.5.3 GEMINI profile

For the second example, the GEMINI profile with a chord length of 100mm, which consists of
79 points, are downloaded from the UIUC airfoil database [89]. These points are adopted as the
via-points. The sixth-order parametric B-spline with 12 control points is used to approximate
the geometric path (Fig. 3.8). In this case, the curve does not exactly pass through all the
via-points, but the geometric path is approximated in the sense of least squares with the total
error of [123.34, 8.17] mm2. For this trajectory, the axial velocity, acceleration, and jerk limits
are determined as vlim = [150, 150] mm/s, alim = [1000, 1000] mm/s2, and jlim = [30000, 30000]

mm/s3, respectively. The maximum time limit is set as tmax = 8 s.

The reparameterization function, number of partitions, and minimum trade-off tolerance for the
D&C algorithm are same to those in the previous example (Section 3.5.2). Fig. 3.9 shows the
Pareto front representation between total time and jerk square integral of the GEMINI profile
consisting of significant trade-off solutions. The best trade-off solution is found at tf = 4.52 s

with the weighting factor of ω∗ = 0.52 and has approximately 43% of the time saving potential
compared to the jerk-optimal case and approximately 81% of the jerk saving potential compared
to the time-optimal case. Fig. 3.10 illustrates the satisfaction of the velocity, acceleration, and
jerk limits of the GEMINI airfoil profile in x- and y-axis, respectively. Zero start- and end-
velocities and accelerations are also satisfied by the proposed method.

3.5.4 Comparison

The simulation results were compared with an S-shaped profile to investigate the effect of the
B-spline reparameterization over the linear reparameterization on the bi-objective optimization.
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Fig. 3.8: Geometric path representation of the GEMINI airfoil profile by a sixth-order para-
metric B-spline approximating 79 via-points.

Fig. 3.9: Pareto front representing the optimization results of the GEMINI airfoil profile.
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Fig. 3.10: GEMINI airfoil profile kinematic limits satisfaction for the x- and y-axis.

In linear reparameterization, the curve parameter is expressed as the constant scaling function
of time as follows [7, 25]:

u = λ t, t ∈ [0, tf], (3.35)

where λ is a scaling factor of motion time t. In this case, the velocity, acceleration, and jerk
vectors are obtained by multiplying the respective rth derivatives of the parametric curve with
λr. The value λ is defined as follows:

λ = min

{
vlim

|ṡ(u)|max
,

√
alim

|s̈(u)|max
, 3

√
jlim

| ...s (u)|max

}
, (3.36)

Eq. (3.36) is considered to assure maximum velocity, acceleration, and jerk limits; however,
this method does not guarantee a smooth trajectory, which has the lowest possible jerk value,
especially at the start and end. To achieve zero starting and ending velocities and accelerations,
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Fig. 3.11: Simulation results of the geometric path representation for proposed and linear
reparameterization of the S-shaped profile.

the additional position coefficients and knots are required to impose the first and second deriva-
tives of the geometric path to be zero at both ends such that the geometric path representation
deviates from the proposed one, as shown in Fig. 3.11.

Fig. 3.12 shows the Pareto front representation for total time and jerk square integral of the
proposed and linear reparameterization. All the trade-off solutions of the B-spline reparameter-
ization are superior to those of the linear reparameterization. Compared with the best trade-off
cases, the proposed method is approximately 3% faster, and the value of the jerk square integral
is approximately 75% lesser than the linear reparameterization. Fig. 3.13 depicts a comparison
of motion time, velocity, acceleration, and jerk for x- and y-axis of the respective best trade-off
trajectories. By the proposed method, the peak values of jerk are reduced, especially at the
start and the end of the trajectory, mainly due to the flexibility of the B-spline reparameter-
ization function obtained by the optimization of the position coefficients and the total time.
Besides, the boundary conditions for the zero velocities and accelerations are satisfied without
changing the geometric shape, consequently leading to a smoother trajectory with a lower jerk
value and faster time.

48



3.5. Execution of algorithm

Fig. 3.12: Simulation results of the Pareto front (trade-off solutions between total time and
jerk square integral) for proposed and linear reparameterization of the S-shaped profile.

Fig. 3.13: Simulation results of motion time, velocity, acceleration, and jerk in x- and y-axis
for proposed and linear reparameterization of the S-shaped profile.
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y

x

AC Servomotors

with Built-in Encoders

Ball Screw

Fig. 3.14: Industrial biaxial feed drive system.

Fig. 3.15: Experimental verification of x- and y-axial velocities with reference (simulation)
values for proposed and linear reparameterization of the S-shaped profile.
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3.5.5 Experimental validation

To validate the performance of the proposed method, experiments were conducted with an
industrial biaxial feed drive system shown in Fig. 3.14. It consists of two Alternating Cur-
rent (AC) servomotors which transmit the motion in x- and y-directions via ball screws. The
axial limits of the feed drive system are set to vlim = [80, 80] mm/s, alim = [500, 500] mm/s2,
and jlim = [20000, 20000] mm/s3. The best trade-off trajectories of linear and proposed repa-
rameterization compared in Section 3.5.4 were imported as reference trajectories to the feed
drive system via a desktop computer of Intel(R) Core i7-3770K CPU, 3.50 GHz, 8GB RAM,
and Ubuntu 15.04 64-bit operating system in a Xenomai 3.0 real-time framework. The con-
ventional Proportional-derivative (PD) controller with viscous friction compensation was used
to track the reference trajectories with the proportional and derivative gains of 10000 s−2 and
200 s−1, respectively. Position measurements were obtained with rotary encoders of 76.29 nm

resolution at a sampling time of 0.2 ms.

The experiments were conducted seven times to guarantee the repeatability of the results. Ve-
locity estimation was conducted by numerical differentiation of position measurements. Fig.
3.15 depicts the velocities for x- and y-axis of the linear and proposed method compared to
their reference values. It was observed that the reference trajectories were trackable by the
control system, and the time of the proposed method was faster than the linear reparameteri-
zation. Since the acceleration and jerk estimations were noisy, a comparison of tracking error
was conducted for both cases instead because the lower jerk trajectory produced the smaller
tracking errors [41]. By observing the results in Fig. 3.16, it is obvious that the tracking errors
of the proposed method is lower than those of the linear reparameterization for both axes.
Fig. 3.17 provides the mean absolute tracking errors in x- and y-axis of linear and proposed
reparameterization for each iterative result. Due to the lower jerk trajectory of the proposed
method, the mean absolute tracking errors in the x- and y-axis were reduced approximately
17.62% and 25.52%, respectively. Moreover, variations of the x- and y-axial tracking errors from
the mean were approximately 17.37% and 25.66% smaller than the linear reparameterization.
Therefore, these results validated that the proposed trajectory generation with kinematically
constrained B-spline reparameterization provided better motion conditions in both time and
jerk of industrial machines.
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Fig. 3.16: Experimental tracking errors in x- and y-axis for linear and proposed reparame-
terization of the S-shaped profile.

Fig. 3.17: Experimental mean absolute tracking error and standard deviation in x- and y-axis
for linear and proposed reparameterization of the S-shaped profile.
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3.6 Summary

This chapter proposes a decoupled spline-based approach for kinematically constrained repa-
rameterization. The sixth-order parametric B-spline was used to represent the given via-points
as a predefined geometric path, and the sixth-order B-spline reparameterization function was
adopted for the optimization without changing the geometric shape. This technique considered
both time and jerk minimization of the trajectory by the reparameterization function modi-
fication. The kinematic constraints were proposed herein based on the maximum geometric
derivatives and the convex polygon formed by the pseudo-velocity, -acceleration, and -jerk con-
trol points. Therefore, the optimal solution guarantees the satisfaction of the kinematic limits
for all times.

The Pareto front comprising significant trade-off solutions between total time and jerk square
integral was revealed by the NNC method and the D&C algorithm, and each solution was com-
puted by the SQP. The best trade-off solution was chosen subsequently. The proposed method
was investigated with different geometric paths and limits, and simulations were implemented
herein. The comparison with the linear reparameterization proved that the proposed method
generated a smoother trajectory with a 75% lower jerk value and 3% faster time without chang-
ing the geometric shape. Due to a smoother trajectory, experiments results with an industrial
FDS validates that the proposed method reduces the tracking errors by approximately 22%

smaller than the linear reparameterization method. Therefore, the proposed optimal trajectory
generation considering time and jerk is practically applicable to industrial machines.
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Chapter 4

Smooth Time-Optimal Trajectory

Generation with Guaranteed Kinematic

Constraints

In this chapter, a decoupled approach for smooth and time-optimal trajectory generation of a
predefined geometric path for CNC machines is proposed in the parameter domain. Chapter
3 presented a BOOP in the time domain, which considered the total motion time as one of
the optimization variables, and the optimal time for each piecewise segment was achieved by
subdividing the optimized total motion time equivalently. The kinematic constraints were
determined based on the constant values of the highest geometric derivatives. As a drawback,
the generated trajectory could not utilize the maximum ability of machine limits if the geometric
path was complex (i.e., derivative values are frequently changed along the path). In other words,
the conservatism of kinematic constraints was high. For those reasons, this chapter focuses on
time-OCP in the parameter domain, in which time dependency is excluded in the problem
formulation. A strategy for reducing the conservatism of kinematic constraints is proposed,
and the comparative study is made with a jerk-limited STOTG method by simulations and
experiments. This approach can be extended to the BOOP for considering a trade-off solution
between motion time and jerk of the trajectories as in Chapter 3.
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In this chapter, the proposed method uses the nonlinear transformation of variables [90], and
time dependency is excluded in the problem formulation; therefore, time-optimal solutions
for each piecewise segment are independently achieved. The cubic B-spline parameterizes the
motion trajectory for acceleration and jerk continuity. Here, the velocity, acceleration, and jerk
constraints are proposed based on the state control vectors and the maximum variable geometric
derivatives in the locally affected parameter interval. As a result, the proposed method applies
to complex geometric paths, and the resulting trajectory satisfies the kinematic constraints
along the entire horizon. The control points of the pseudo-velocity square are considered as
optimization variables, and the optimal solution is computed by SQP [84, 91]. Since comparing
the results with our previous study (time-jerk optimal) [92] is difficult due to the different
adoptions of an OCP, the results are compared with the related study [35], which is the jerk-
constrained smooth and time-optimal trajectory generation in the parameter domain.

The rest of this chapter is organized as follows. Section 4.1 explains the related works concerning
the proposed method. Section 4.2 briefly describes the formulations of time-optimal trajectories
in previous studies. Section 4.3 adopts the control parameterization by the cubic B-spline.
Section 4.4 explains the proposed approach for kinematic constraint satisfaction, followed by
the reformulation of the smooth and time-optimal trajectory. Finally, Section 4.5 discusses the
effectiveness of the proposed method by simulation and experimental results with different grid
sizes, kinematic limits, and geometric paths, and Section 4.6 summarizes this chapter.

4.1 Related works

In Section 1.2.3.1, the literature review has been made on the time-optimal trajectory genera-
tions of CNC machines and robotic manipulators. Regarding a convex optimization approach,
Verscheure et al. [90, 93] proposed a nonlinear transformation of variables to generate time-
optimal trajectories in the parameter domain considering upper and lower bounds on the ve-
locity, acceleration, and torque. Unlike [31], time variable was not explicitly included in the
formulation of an OCP. However, considering only acceleration or torque constraints in an
OCP may induce the vibration of the machine tool and large tracking errors [32]. Therefore,
advanced controllers such as iterative learning [94], sliding mode [95], and model predictive
control [9] were considered for compensating the errors.
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An alternative approach for generating a smooth and time-optimal trajectory is the addition of
jerk constraints in the trajectory formulation. In [38], the cubic spline was used to parameterize
the motion trajectory along a specified path, and the smooth and time-optimal trajectory was
formulated satisfying the pseudo-constraints. In [96, 97], the optimality condition was stated as
follows: the time-optimal feed rate is maximum for all parameters; that is, at least one of the
velocity, acceleration, or jerk limits is active (reach the maximum limits) at almost all points
along the trajectory. In [35], Zhang et al. introduced an additional state for the jerk constraints,
formulated a time-OCP considering pseudo and axial jerks as optimization variables, and proved
that the active kinematic constraints are approximately bang–bang throughout the motion.

Regarding the abovementioned approaches, the solutions of time-optimal trajectories were
mostly generated using the direct transcription method [54, 98], where the problem is dis-
cretized over the time or parameter horizon, and is solved numerically using nonlinear pro-
gramming techniques. The constraints are imposed at specific grid points of the horizon. A
user can determine the number of grids. For complex geometric paths, the derivatives are
frequently changed over the parameter horizon. To satisfy the velocity, acceleration, and jerk
limits, up to the third derivative of the path must be considered as kinematic constraints in the
time minimization. Therefore, the drawback is that the violation of kinematic constraints may
occur in-between the determined grid points when the number of grids is small. To overcome
this problem, algorithms such as the pointwise discretization [99] can be used, where the prob-
lem number of grids is increased iteratively until the constraints are satisfied. However, this is
not straightforward for the users. Increasing the number of grids introduces additional variables
and constraints, thus inducing a more complicated problem. Hence, conservative approaches
are introduced using the convex hull property by spline parameterization.

Concerning coupled conservative approaches, Gasparetto et al. [7, 45, 46] proposed a method for
bi-objective time-jerk trajectory generation, satisfying kinematic constraints by the convex hulls
of B-splines. Similarly, Mercy et al. [30] proposed conservative constraints for minimizing the
motion time of CNC machines considering the accuracy of the generated workpiece. The optimal
solution for the nonlinear systems with a guaranteed constraint satisfaction was proposed based
on the convex hull of splines [100]. For the decoupled conservative approach, Paing et al. [92]
represented a given intermediate points by the sixth-order B-splines and generated a time-jerk
optimal trajectory considering the kinematic constraints in the time domain.

57



Chapter 4. Smooth Time-Optimal . . . 4.2. Problem formulation

4.2 Problem formulation

The geometric path of the workpiece represents the three-dimensional position of the tool path
for CNC machines, which is usually provided in the parametric form s(u) = [X(u), Y (u), Z(u)]T ,
where u ∈ [0, 1] is the curve parameter. If the predefined geometric path is second-order
continuous or higher, the velocity, acceleration, and jerk in time horizon are defined as in
(3.3)-(3.5).

To generate time-optimal trajectories, the minimum total motion time, which satisfies the upper
and lower kinematic limits of machines, must be considered. The initial and final boundary
conditions for velocity and acceleration are added for the smooth transition at the start and
end of the motion trajectory. Therefore, the original OCP for minimizing the total motion time
is described as follows [97]:

min
u̇(t),ü(t),

...
u (t)

∫ tf

0

1 dt, (4.1)

subject to

u(0) = 0, u(tf) = 1, (4.2)

ṽ(0) = v0, ṽ(tf) = vf, (4.3)

ã(0) = a0, ã(tf) = af, (4.4)

vmin ⩽ s′ u̇ ⩽ vmax , (4.5)

amin ⩽ s′′ u̇2 + s′ ü ⩽ amax , (4.6)

jmin ⩽ s′′′ u̇3 + 3 s′′ ü u̇+ s′
...
u ⩽ jmax . (4.7)

where v0 and vf are the initial and final velocities, and a0 and af are the initial and final accel-
erations, respectively. The nonlinear transformation of variables for velocity and acceleration
are used; therefore, the states are determined as follows [90, 93]:

α(u) = u̇2, β(u) = ü, (4.8)
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and their derivatives with respect to parameter u:

α′(u) = 2 ü, β′(u) =
1

2
α′′(u). (4.9)

To consider the jerk constraints, the additional state is defined as follows [35]:

γ(u) =

...
u

u̇
= β′(u), (4.10)

By defining (4.8)–(4.10), the objective function in (4.1) can be rewritten by changing the inte-
gration variable from t to u as follows:

T =

∫ tf

0

1 dt =

∫ u(tf)

u(0)

1√
α(u)

du =

∫ 1

0

1√
α(u)

du. (4.11)

If the upper and lower kinematic limits in (4.5)–(4.7) are assumed to be symmetric in all axes,
the OCP for minimizing the total motion time can be reformulated in the parameter domain,
defined as follows [35]:

min
α(u)

∫ 1

0

1√
α(u)

du, (4.12)

subject to

α(u) > 0, α′(u) = 2 β(u), γ(u) = β′(u), (4.13)

α(0) = α0, α(1) = αf, (4.14)

β(0) = β0, β(1) = βf, (4.15)

[s′]2 α(u) ⩽ v2
lim, (4.16)

|s′′ α(u) + s′ β(u)|⩽ alim, (4.17)

|s′′′ α(u) + 3 s′′ β(u) + s′ γ(u)|
√
α(u) ⩽ jlim. (4.18)

where α0 and αf represent the initial and final state values of α(u), β0 and βf are the initial
and final state values of β(u), respectively. The initial and final velocity and acceleration of the
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trajectory are satisfied by the equality constraints of the states in (4.14) and (4.15). Thereafter,
the time-optimal solution for (4.12) is formulated by imposing a finite set of inequality kinematic
constraints in (4.16)–(4.18) at specific grid points of the trajectory.

4.3 Control parameterization by cubic B-splines

In this study, a direct transcription method is used to solve the OCP described in (4.12)–(4.18);
therefore, grid points {0, 1, 2, 3, . . . , N} are determined to discretize the problem in u ∈ [0, 1]

as follows [35, 90, 93]:
0 = d0 < d1 < d2 < . . . < dN−1 < dN = 1. (4.19)

To establish continuity in the acceleration and jerk of a given second- or third-order continuous
geometric path, the state α(u) should be cubic or higher degrees. Here, the cubic B-spline
function with the order (q = 4) comprising of N + 3 control points, which makes N piecewise
polynomial segments, is used to parameterize the motion trajectory as follows [25]:

α(u) =
N+2∑
i=0

Bi,q(u) cα,i, 0 ⩽ u ⩽ 1, (4.20)

with a non-decreasing knot vector

û = [ 0, . . . , 0︸ ︷︷ ︸
q-times

, d1, d2, . . . , dN−1, 1, . . . , 1︸ ︷︷ ︸
q-times

], (4.21)

where Bi,q(u) is the basis function, and ĉα = [cα,0, cα,1, . . . , cα,N+2]
T represents the control input

vector in this study. The knot vector in (4.21) is q-times repeated at the start and end; therefore,
the initial and final states values α(0) and α(1) coincide with the control inputs cα,0 and cα,N+2,
respectively. For simplicity, the knots in (4.21) are not considered as optimization variables but
are assumed to be uniformly distributed over the parameter interval [0, 1]. Using (4.8)–(4.10),
the derivatives of the state β(u) and γ(u) are determined as follows:

β(u) =
1

2

N+2∑
i=0

B′
i,q(u) cα,i. (4.22)
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Fig. 4.1: Control parameterization of the states α, β, and γ and the convex hull comprising
the inputs (control points) of the proposed method.

γ(u) =
1

2

N+2∑
i=0

B′′
i,q(u) cα,i. (4.23)

Fig. 4.1 shows the control parameterization of the states. Since the state α is piecewise cubic,
the states β and γ are piecewise quadratic and piecewise linear, respectively.

4.4 Guaranteed kinematic constraint approach

In Section 4.3, the inputs are defined as the control points ĉα, and the states are the piecewise
continuous functions α(u), β(u), and γ(u); therefore, the outputs are the velocity, acceleration,
and jerk of the trajectory, which must satisfy the kinematic limits along the parameter interval
u ∈ [0, 1]. Here, the kinematic constraints are proposed based on the control points of the
states, which are known as the convex hull points. The convex hull property of the B-splines
states that a spline function must exist within the convex hull formed by its control points [11].
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Therefore, we determine the control points of the respective states as follows [7]:

ĉβ = [cβ,0, cβ,1, . . . , cβ,N+1]
T , (4.24)

with
cβ,i =

(q − 1)

2(ui+q − ui+1)
(cα,i+1 − cα,i), i = {0, 1, . . . , N + 1}. (4.25)

Similarly, it is defined that

ĉγ = [cγ,0, cγ,1, . . . , cγ,N ]
T , (4.26)

with
cγ,i =

(q − 2)

2(ui+q − ui+2)
(cβ,i+1 − cβ,i), i = {0, 1, . . . , N}. (4.27)

where ĉβ and ĉγ are the control vectors of the states β(u) and γ(u), respectively. According
to the local modification scheme of B-splines [11], the change of input cα,i affects only the
parameterization function α(u) in the interval [ui, ui+q); therefore, we change only the highest
geometric derivatives in the locally affected intervals for the proposed constraints. The velocity
constraint in (4.16) is substituted with a finite set of proposed constraints as follows:

ṽi ⩽ v2lim, i = {0, 1, . . . , N + 2}, (4.28)

with

ṽi = λ21,i cα,i, (4.29)

λ1,i = max{max |s′(u)|}, u ∈ [ui, ui+q), (4.30)

where λ1,i is the ith highest absolute scalar first derivative of the predefined geometric path
between the locally affected interval by the control input cα,i.

The example is illustrated in Fig. 4.2 with the control inputs cα,0 and cα,1. Due to the repeated
knots at the start, the input cα,0 locally affects the function α(u), u ∈ [d0, d1), whereas the input
cα,1 affects u ∈ [d0, d2). Therefore, to satisfy the velocity constraints, the highest first geometric
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Fig. 4.2: An example for choosing the control inputs and the first derivatives of the predefined
geometric path for the proposed velocity constraint.

derivatives λ1,0(u), u ∈ [d0, d1) and λ1,1(u), u ∈ [d0, d2) are changed together with the control
inputs cα,0 and cα,1, respectively.

According to (4.25), cβ,i is the rate of change of the inputs cα,i and cα,i+1. To satisfy the
acceleration constraints in (4.17), two acceleration constraints are checked for each ith iteration
as follows:

ãi,k ⩽ alim, i = {0, 1, . . . , N + 1}, k = {0, 1}, (4.31)

with

ãi,k = φ2,i cα,i+k + φ1,i |cβ,i|, (4.32)

φ1,i = max{max |s′(u)|}, u ∈ [ui, ui+q+1), (4.33)

φ2,i = max{max |s′′(u)|}, u ∈ [ui, ui+q+1), (4.34)

where φ1,i and φ2,i are the updated ith absolute scalar first and second derivatives of the
geometric path, which demonstrate the highest values between the locally affected interval by
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the inputs cα,i and cα,i+1.

To generate smooth trajectories, jerk constraints are proposed in this study. Considering (4.27),
cγ,i is the rate of change of cβ,i(cα,i, cα,i+1) and cβ,i+1(cα,i+1, cα,i+2). To satisfy (4.18), four jerk
constraints are checked for each ith iteration, defined as follows:

j̃i,k ⩽ jmax, i = {0, 1, . . . , N}, k = {0, 1, 2, 3}, (4.35)

with

j̃i,k =



√
cα,i+k(ψ3,i cα,i+k + 3ψ2,i |cβ,i|

+ ψ1,i |cγ,i|), for k ⩽ 1,

√
cα,i+k−1(ψ3,i cα,i+k−1 + 3ψ2,i |cβ,i+1|

+ ψ1,i |cγ,i|), otherwise.

(4.36)

ψ1,i = max{max |s′(u)|}, u ∈ [ui, ui+q+2), (4.37)

ψ2,i = max{max |s′′(u)|}, u ∈ [ui, ui+q+2), (4.38)

ψ3,i = max{max |s′′′(u)|}, u ∈ [ui, ui+q+2), (4.39)

where ψ1,i, ψ2,i, and ψ3,i are the updated ith absolute scalar first, second, and third deriva-
tives of the geometric path, which are the highest between the locally affected interval by the
inputs cα,i, cα,i+1, and cα,i+2. The lower bounds of the inputs are greater than zero, and the
proposed kinematic constraints determine the upper bounds of the inputs. The pseudo-code
for calculating kinematic constraints of (4.28)–(4.39) is provided in Algorithm 1.

Moreover, the initial and final boundary values of the velocity and acceleration must be deter-
mined to achieve the smooth start and end transitions of the trajectory. According to B-splines
property, the first and last control points coincide with their respective state values at 0 and 1;
therefore, the equality constraints are determined as follows:

cα,0 = α0, cα,N+2 = αf. (4.40)

cβ,0 = β0, cβ,N+1 = βf. (4.41)
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To efficiently estimate the objective function in (4.12), the midpoints of (4.21) are calculated
as follows:

d̃i =


0, for i = 0,

1

2
(di−1 + di) , for i = {1, 2, . . . , N},

1, for i = N + 1.

(4.42)

Therefore, the proposed smooth and time-optimal OCP with velocity, acceleration, and jerk
constraints can be formulated as follows:

min
ĉα

N+1∑
i=1

(d̃i − d̃i−1)√
α(d̃i)

, (4.43)

subject to ĉα > 0 and (4.28)–(4.41).

4.5 Application results

4.5.1 Calculation conditions

In this section, to evaluate the performance of the proposed method, time-optimal trajectories
are computed for several geometric paths and kinematic limits. Different grid sizes are used
to discretize the problem, and the OCPs are solved by the SQP (“fmincon” function) in a
MATLAB® environment of a Core i7-7500U CPU and 8GB RAM laptop computer with a
Windows 10 64-bit operating system. Next, the resulting trajectories are compared with the
STOTG, which uses discrete kinematic constraints on grid points for calculation [35]. We focus
on the comparison of kinematic constraint satisfaction along the trajectory, total motion time,
and computation time of the algorithms. Different grid sizes, kinematic limits, and geometric
paths are used to formulate the OCPs to clarify the effectiveness of the proposed method. Also,
the strategy for reducing the conservatism of kinematic constraints is described. The STOTG
uses the pseudo and the axial jerks of the trajectory as optimization variables, whereas the
proposed method uses state control points as optimization variables, which are the convex hull
points of the pseudo-velocity square.
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Algorithm 1 Calculation of proposed inequality constraints for velocity, acceleration, and jerk
Input: ĉα ▷ control inputs
Output: Φ ▷ A set containing proposed inequality kinematic constraints

1: procedure kinematicConstraints

2: Φ← {}
3: for i = 0; i ⩽ N + 2; i++ do

4: Define the interval [ui, ui+q)

5: Calculate λ1,i ▷ From (4.30)
6: Calculate ṽi ▷ From (4.28) and (4.29)
7: Φ← ṽi

8: end for

9: for i = 0; i ⩽ N + 1; i++ do

10: Define the interval [ui, ui+q+1)

11: Calculate φ1,i and φ2,i ▷ From (4.33) and (4.34)
12: for k = 0; k ⩽ 1; k ++ do

13: Calculate ãi,k ▷ From (4.31) and (4.32)
14: Φ← ãi,k

15: end for

16: end for

17: for i = 0; i ⩽ N ; i++ do

18: Define the interval [ui, ui+q+2)

19: Calculate ψ1,i, ψ2,i, and ψ3,i ▷ From (4.37)–(4.39)
20: for k = 0; k ⩽ 3; k ++ do

21: Calculate j̃i,k ▷ From (4.35) and (4.36)
22: Φ← j̃i,k

23: end for

24: end for

25: Return Φ

26: end procedure
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Fig. 4.3: Geometric positions of the star-shaped profile.

4.5.2 Application to the star-shaped geometric path

In the first example, the second-order continuous star-shaped profile is selected from [35], and
Fig. 4.3 shows the given geometric profile. The absolute limits for velocity, acceleration, and jerk
are defined as vlim = 80 mm/s, alim = 500 mm/s2, and jlim = 10000 mm/s3, respectively. The
initial and final states of the trajectory are selected as α0 = αf = 0.001 s−1 and β0 = βf = 0 s−2.
The grid size for solving the problem is chosen as N = 30.

Fig. 4.4 illustrates the comparison of velocity, acceleration, and jerk, including the grid point
values for each axis of the proposed method and STOTG. Both trajectories satisfy the initial
and final state values and achieve smooth transitions at the start and end of the trajectory.
The constraints for velocity, acceleration, and jerk are satisfied at the grid points for both cases.
Also, the optimal trajectories satisfy velocity and acceleration constraints along the predefined
geometric path, although the STOTG violates the jerk constraint. This behavior occurs when
only discrete constraints are considered on grid points; therefore, constraint violations may still
occur between the grid points.
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In the proposed method, kinematic constraints are applied based on the state control points
(convex hull points) and the highest variable derivatives of the predefined geometric path in the
locally affected parameter interval. Therefore, the proposed method guarantees the kinematic
constraint satisfaction for all u ∈ [0, 1]. Fig. 4.5 illustrates the absolute velocities of both
algorithms in parameter horizon [0, 1]. As the axial jerk value exceeds the limits, the absolute
velocity of the STOTG becomes approximately 33.75% higher than that of the proposed method
in-between the two grid points (highlighted in yellow). However, in the proposed method, the
axial jerk values are bounded by the limits, thereby inducing a smoother velocity profile.

The motion times are obtained according to the objective functions of the respective OCPs.
For a lower number of grids, the obtained motion time of the STOTG is slower than that of
the proposed method. Since the parametric distance is large, the optimized pseudo-velocity is
small, especially at the start and end of the trajectory. As a result, the total motion times
of the proposed method and STOTG are 2.21 s and 2.31 s, respectively. The computation
times for the proposed method and STOTG are 0.45 s and 0.8 s, respectively, for this problem.
Therefore, the proposed method provides an approximately 4.32% faster trajectory and 43.75%

lower computation time than the STOTG without violating the jerk constraints.

4.5.3 Application to the butterfly-shaped geometric path

In the second example, a more complex third-order continuous butterfly-shaped geometric path
was predefined using the sixth-order B-splines with the 101 control points in the x- and y-
directions. Fig. 4.6 shows the predefined geometric path. The symmetric axial limits for
velocity, acceleration, and jerk for the trajectory are set as vlim = 80 mm/s, alim = 1000 mm/s2,
and jlim = 20000 mm/s3, respectively. The initial and final states are chosen the same as the
previous example in Section 4.5.2.

Different grid sizes of 50 and 150 are used to formulate the OCP, and the total motion time,
computation time, and kinematic constraint satisfaction of the resulting trajectories are com-
pared. Fig. 4.7 shows the axial velocity, acceleration, and jerk of both algorithms with a grid
size of 50. In this case, the STOTG violates acceleration and jerk constraints between the
determined grid points, whereas the proposed method guarantees constraint satisfaction of the
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Fig. 4.4: Simulation results of velocity, acceleration, and jerk and the values at the grid points
for each axis of the proposed method and STOTG with a grid size of N = 30.

Fig. 4.5: The absolute velocities of the proposed method and STOTG for the star-shaped
profile with a grid size of N = 30 (Simulation results).
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Table 4.1: Comparison of the computation time (tcomp), total motion time (tf), and kinematic
constraint satisfaction for the proposed method and STOTG with grid sizes of N = 50 and
N = 150 for the butterfly-shaped geometric path (Simulation results).

N Method tcomp tf Kinematic constraints

50
Proposed 1.76 s 6.08 s Satisfied

STOTG 8.82 s 4.44 s
Not Satisfied

(Acceleration and Jerk)

150
Proposed 85.6 s 5 s Satisfied

STOTG 206.85 s 4.45 s
Not Satisfied

(Jerk)

trajectory for all parameter intervals. The kinematic values satisfy the maximum limits due to
the conservatism of proposed constraints.

Fig. 4.8 shows the axial kinematic values along the trajectory with a grid size of 150 for
the proposed method and STOTG. The finer discretization of the problem introduces more
optimization variables and constraints, thus increasing the computation time of both algo-
rithms. Table 4.1 provides the computation time, total motion time, and kinematic constraint
satisfaction of the resulting trajectories according to the various grid sizes of the OCP. The
computation times of the proposed method and STOTG increase approximately 49 times and
23 times, respectively, with an increased grid size of 150. Observably, the STOTG consumes a
larger computation time than the proposed method for each grid size due to a larger number of
optimization variables (i.e., pseudo and axial jerks of the trajectory). By comparing the results
in Figs. 4.7 and 4.8, the kinematic constraint violations along the trajectory were reduced
in the STOTG, especially in the axial acceleration and jerk because more discrete constraints
were imposed along the trajectory. Therefore, the STOTG increases its accuracy of kinematic
constraints when the number of grids is increased. Moreover, increasing optimization variables
in STOTG makes the OCP more flexible, thus the motion times of 50 and 150 grids are similar.
The proposed method is more robust to the number of grids for kinematic constraints. In other
words, the proposed method guarantees the constraint accuracy between grid points.

Increasing the number of grids in the proposed method introduces more state control points,
which are the optimization variables of the OCP, and become more flexible in handling different
derivatives of the geometric path in the problem formulation. The resulting kinematic values
become closer to the maximum limits (See Fig. 4.8); therefore, the conservatism of kinematic
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Fig. 4.6: Geometric path of the butterfly-shaped profile comprising 101 control points by the
sixth-order B-splines.

constraints is reduced. According to the optimality condition [96, 97], at least one of the velocity,
acceleration, or jerk constraints must be active (reach the limits) in time-optimal trajectories.
By observing the results in Fig. 4.9, the proposed jerk constraints are active at almost all
points along the trajectory. For each iteration, one of the combinations of the jerk values in
(4.36) reaches the absolute maximum limit. Therefore, the proposed trajectory satisfies the
optimality condition and is time-optimal. Moreover, it also guarantees the jerk continuity for
the third-order continuous geometric path.

Fig. 4.10 shows the absolute velocities of the proposed method and the STOTG with 50 and
150 grids. The proposed method exhibits a smoother velocity profile to satisfy the kinematic
limits for all horizons. For the STOTG, the maximum absolute velocities with 150 grids become
lower than those of 50 grids because constraint violation is reduced in the axial acceleration
and jerk values. For the proposed method, the absolute velocities with an increased number
of grids become higher owing to the reduced conservatism of the algorithm. Hence, the total
motion time of the proposed method with 150 grids is approximately 17.72% faster than that
of 50 grids.
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Fig. 4.7: Simulation results of velocity, acceleration, and jerk for each axis of the proposed
method and STOTG with a grid size of N = 50.

Fig. 4.8: Simulation results of velocity, acceleration, and jerk for each axis of the proposed
method and STOTG with a grid size of N = 150.
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Fig. 4.9: Demonstration of the active jerk constraints in simulation by the proposed method
(Jerk limit is assigned to 20000mm/s3).

Fig. 4.10: Comparison of absolute velocities of the proposed method and STOTG with grid
sizes of N = 50 and N = 150 (Simulation results).

4.5.4 Experimental verification for smoothness

In this section, the experimental results of time-optimal trajectories of the proposed and STOTG
algorithms are compared for smoothness verification using the industrial bi-axial FDS (Fig.
3.14). The motion is driven by two AC servomotors in the x- and y-directions via ball-screws,
which create a workspace of 170 × 200mm. The maximum axial symmetric limits of velocity,
acceleration, and jerk of the FDS are 80mm/s, 1000mm/s2, and 20000mm/s3, respectively.
The velocity and acceleration limits are determined from the specifications of motors (maximum
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Fig. 4.11: Real-time interpolated trajectories of the proposed method and STOTG (Jerk
limits are not satisfied in STOTG for the x- and y-axes).

velocity and torque) using the dynamic model of the FDS [52]. Jerk limit can be considered as
a user-defined tolerance for the smoothness of the trajectory [35].

Time-optimal trajectories of the butterfly-shaped geometric path with a grid size of 150 from
Section 4.5.3 were used as reference trajectories and were interpolated into real-time trajectories
by the Newton–Raphson iterative method [6] (See Fig. 4.11). Observably, the STOTG violated
jerk limits in the time horizon, whereas the proposed method satisfied them. The reference
trajectories were discretized for each sampling time and stored as the linear interpolation data
with variable feed rates. These data were fed to the FDS, controlled by a desktop computer
with an Intel(R) Core i7-3770K CPU, 3.50 GHz, 8GB RAM, and a Ubuntu 15.04 64-bit oper-
ating system in a Xenomai 3.0 real-time framework. The reference positions were tracked by
the same conventional PD controller with friction compensation, which used the proportional
and derivative gains of 7,225 s−2 and 170 s−1, respectively. The rotary encoders of 76.29 nm

resolution were used to measure the axial positions at the sampling period of 0.2ms.
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Fig. 4.12: Comparison of simulation and experimental absolute velocities of the proposed
method and STOTG.

Fig. 4.13: Experimental tracking errors for x- and y-axis for the proposed method and
STOTG

.

The experiments were conducted 10 times to guarantee the repeatability of the results, and the
axial velocities were estimated by the numerical differentiation of the position measurements.
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Fig. 4.14: Experimental absolute axial tracking errors of the proposed method and STOTG.

Fig. 4.12 shows the experimental absolute velocities of the proposed method and STOTG.
Experimental results were similar with simulation results, and both trajectories were trackable
by the PD controller. The simulation results of Section 4.5.3 showed that the STOTG violated
the jerk limits, whereas the proposed method satisfied the jerk limits for the entire horizon.
Therefore, the total motion time of the proposed method was approximately 11% slower than
that of the STOTG. Comparing the axial acceleration and jerk values was difficult owing to
the experimental noise. The trajectory with a higher jerk value induces larger vibrations in
actuators affecting the tracking performance of control algorithms [41]. The tracking errors of
the proposed method and STOTG are provided for all axes in Fig. 4.13. To clearly demonstrate
which method has a smaller tracking error, the absolute values of the axial tracking errors were
compared for both algorithms (Fig. 4.14). The mean absolute tracking errors of the proposed
method in the x- and y-directions were approximately 13.07% and 11.29% smaller than those
of the STOTG, respectively. Moreover, the standard deviations of the absolute tracking errors
from the mean were reduced by approximately 13.43% in the x-direction and 8.99% in the
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y-direction compared to those of the STOTG. These experimental results confirm that the
acceleration and jerk values of the proposed method are lower than those of the STOTG and
generate a smoother time-optimal trajectory that guarantees kinematic constraint satisfaction
for all the entire horizon.

4.6 Summary

In this chapter, a decoupled spline-based smooth and time-optimal trajectory generation of a
predefined geometric path for CNC machines was proposed in the parameter domain. The time
dependency of the problem was avoided using a nonlinear transformation of variables, and the
optimal times for each piecewise segment were achieved. The trajectory was parameterized
using the cubic B-spline, which provided acceleration continuity for a second-order continu-
ous geometric path and jerk continuity for a third-order continuous geometric path. A direct
method was used to solve the time-OCP in the parameter horizon. We validated the accuracy
of proposed kinematic constraints, time optimality, and trajectory smoothness with different
problem grid sizes, kinematic constraints, and complex geometric paths. Simulations and ex-
perimental results showed the effectiveness of the proposed method over the start-of-the-art
jerk-limited STOTG in [35].

Time-optimal trajectory generation of a complex predefined path is challenging due to frequent
changes in derivative values. Therefore, this chapter introduces the constraint representation
using spline convex hulls that limit the locally affected derivatives along the path. Compared
to [35, 90, 93, 96, 97], users can select a preferable grid size of an OCP, and the proposed
method provides a guaranteed solution for all kinematic constraints. Therefore, it is simple and
straightforward for users. Increasing the problem grid size reduces the conservatism of kinematic
constraints; therefore, the trajectories move closer to the maximum allowable kinematic limits
of the machine for faster motion. A bi-axial FDS with a conventional PD controller provides
a smoother trajectory with approximately 12% smaller tracking errors than the results in [35].
Thus, this trajectory generation method can be used to improve the tracking accuracy of the
CNC systems, where the original controller is difficult to be changed.
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Chapter 5

Coupled Approaches to Optimal

Trajectory Generations with Geometric

Constraints

This chapter presents coupled optimal trajectory generation approaches for CNC machine and
industrial manipulator. Since decoupled approaches in Chapter 3 and 4 require the exact
contour for trajectories, coupled OCPs are formulated considering the accuracy of the workpiece
as a constraint.

The first part of this chapter describes a simple and effective approach for time-optimal trajec-
tory generation of CNC machines, considering not only straight-line (G01) and circle (G02/G03)
segments but also spline contour (G05) segments for a more complex profile. The cubic B-spline
parameterizes the motion trajectory, and the fitting error is proposed as the orthogonal distance
between the discretized via-points and the initialized curve of each G-code segment. Moreover,
initial and final states, the velocity and acceleration continuity between segment trajectories,
and the machine kinematic limits satisfaction are considered as equality and inequality con-
straints of an OCP. Thereafter, time-optimal solutions are formulated using the SQP [84].

The second part of this chapter proposes the coupled smooth trajectory generation for industrial
manipulators in highly dynamic applications. With the development of robotic vision and
sensor fusion technologies, research has focused on the potential of robots that can interact
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with humans in a safe and friendly manner in daily activities. Catching and throwing may be
used in the future not only for daily activities but also in the factory instead of conventional
transportation, such as an industrial robot/ belt conveyor/ gantry crane if the camera system
becomes more efficient and reliable. This process provides more flexible transportation in any
direction, any distance and variable speed with sufficient soft catching of an industrial product.
So, this study is aimed at the industrial application as the other chapters. Planar manipulators
are widely used for many purposes due to their simplicity. In this study, a three-degree of
freedom planar manipulator is chosen to perform the non-prehensile object catching where the
end-effector catches an object with a similar velocity to perform a soft catching in horizontal
x and y-directions. Since velocity matching is required within a short time, choosing a simple
and low degree of freedom manipulator for highly dynamic applications is suitable. Trajectory
planning is performed in the joint space utilizing the sixth order B-spline curve, and the knot
insertion is applied to match the required joint velocities for catching. Besides, minimization
of the total impact force in x and y-directions to the object is proposed as an OCP considering
kinematic constraints of the manipulator in the joint space.

The chapter is organized as follows: Section 5.1 briefly describes the related works for cou-
pled OCPs; Section 5.2 presents the problem formulation of time-optimal trajectory for CNC
machines; followed by the optimization results in Section 5.3. Problem formulation of smooth
trajectory optimization for reduced impact catching is presented in Section 5.4, and optimiza-
tion results are discussed in Section 5.5. Summary for this chapter is included in Section 5.6.

5.1 Related works

CNC machines play an important role in the modern manufacturing industry for the productiv-
ity and precision of the workpieces [1, 101]. Due to the high demands of complicated workpieces,
the geometric path is created in the CAD software and converted into several G-code segments
such as straight lines (G01), circles (G02/G03), and spline contours (G05). These G-code
segments are usually represented by the smooth piecewise continuous functions, and the trajec-
tory planning is considered to track the required workpiece contour considering kinematic and
dynamic limitations of the machines and generate reference trajectories for CNC controllers
[102, 103].
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Methods for minimum time trajectory generation have been investigated in the literature to
increase the productivity. Concerning the coupled approaches, Nshama et al. [52] proposed
bi-objective trajectory generation for the linear segments considering the tolerance at cornering
motions. Lu et al. [51] separated a given curve into several linear segments, which were
represented by the S-curve trajectories with axial constraints. In [104], the high-speed cornering
motion of CNC machines was presented along with the tool path contour error under axial
acceleration limits. Due to the continuity, flexibility, and exact representation of complicated
profiles, splines are extensively applied to parameterize the primitive motion trajectory of an
OCP [25]. Gasparetto and Zanotto [7, 45] proposed a time-jerk trajectory generation of robot
manipulators, satisfying kinematic limits by the convex hull property of B-splines. In [8], a
smooth cornering approach for two linear segments with a required tolerance is implemented
by NURBS parameterization. Mercy et al. [30] proposed a method for time-optimal trajectory
generation for the workpiece consisting of straight-line and circle segments. However, spline
contour segments were not addressed in the formulation of an OCP.

In modern manufacturing industries, the application of industrial robots become widespread
due to a larger workspace, low installation cost, and higher flexibility [105]. If a robotic system
can be designed to catch a flying object softly, many applications may be expected in human
activities such as agriculture, livestock farming, housework and office work, because a robot
or a human operator can move objects to a catching robot in the absence of any conventional
transportation systems such as a conveyor or a mobile structure. In literature, there were
several investigations about robotic catching which mostly focused on catching with a form or
force-closure grasp [106, 107]. Concerns with non-prehensile catching, which is catching without
a form or force-closure grasp, Burridge et al. [108] proposed three different modes: juggling,
catching, and palming to catch a ball with a planar paddle. Uchiyama et al. [109] presented
a control method of a three-degree of freedom manipulator to softly catch a falling raw egg
with a small impact force in the vertical plane. Bätz et al. [110] predicted the ball’s trajectory
by the recursive least squares and achieved object catching by the balancing control method
in three-dimensional space. Schill et al. [111] generated an initial dynamic contact between a
moving object and a manipulator where the imprecise object’s state is addressed.
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5.2 Smooth time-optimal trajectory generation for CNC

machines

5.2.1 Problem formulation

The geometric path of CNC machines consists of the three-dimensional position of the workpiece
s(t) = [X(t), Y (t), Z(t)]T , where t is the motion time. The geometric path is generally divided
into several G-code segments, such as straight-line segments (G01), circle segments (G02/G03),
and spline contour segments (G05), and are fitted by the piecewise continuous functions to have
the continuity in acceleration or jerk of the trajectory. Moreover, the velocity, acceleration, and
jerk values must satisfy the upper and lower kinematic limits of CNC machines as follows:

vmin ⩽ ṡ(t) ⩽ vmax,

amin ⩽ s̈(t) ⩽ amax,

jmin ⩽
...
s (t) ⩽ jmax.

(5.1)

where ṡ(t), s̈(t), and ...
s (t) are the velocity, acceleration, and jerk of the trajectory, respectively.

Moreover, the velocity and acceleration must be zero at the start and end of the trajectory,
satisfying the initial and final tool positions as follows:

s(0) = q0, s(Ttot) = qf ,

ṡ(0) = 0, ṡ(Ttot) = 0,

s̈(0) = 0, s̈(Ttot) = 0.

(5.2)

where Ttot =
∑N

i=0 ti represents the total motion time of theN+1 segment trajectories, q0 and qf

are the initial and final tool-tip positions, respectively. For smooth transitions between segment
trajectories, the equality constraints for position, velocity, and acceleration are determined as
follows:

si(ti) = si+1(0), i = {0, 1, 2, ..., N − 1},

ṡi(ti) = ṡi+1(0), i = {0, 1, 2, ..., N − 1},

s̈i(ti) = s̈i+1(0), i = {0, 1, 2, ..., N − 1}.

(5.3)
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For the accuracy of the generated workpiece, each G-code segment is discretized into a number
of m points so-called via-points, and the tool positions should satisfy the following geometric
constraint at the specific via-points of the workpiece as follows:

gmin ⩽ si(tk,i) ⩽ gmax, k = {0, 1, 2, ...,m},

i = {0, 1, 2, ..., N}.
(5.4)

where gmin and gmax are the minimum and maximum geometric limits, respectively. If the
upper and lower kinematic limits are considered symmetric for all axes, the original OCP for
minimizing the total motion time is formulated as follows:

min
s(.), t0,...,tN

N∑
i=0

ti, (5.5)

subject to (5.2)-(5.4), and

|ṡi(t)| ⩽ vlim, ∀ t ∈ [0, ti], i = {0, 1, 2, ..., N}. (5.6)

|s̈i(t)| ⩽ alim, ∀ t ∈ [0, ti], i = {0, 1, 2, ..., N}. (5.7)

| ...s i(t)| ⩽ jlim, ∀ t ∈ [0, ti], i = {0, 1, 2, ..., N}. (5.8)

where vlim, alim, and jlim are the symmetric velocity, acceleration, and jerk limits of the CNC
machine, respectively.

5.2.2 Parameterization by cubic B-splines

This paper focuses on the time-optimal trajectory generation of CNC machines, whose contours
are considered as straight line, circle, and spline segments in the x- and y-directions. In order
to fit the discretized via-points for each segment Di = [d0,i,d1,i,d2,i, ...,dm,i]

T , and satisfy the
velocity and acceleration constraints in (5.2) and (5.3), the cubic B-spline function with the
order (q = 4) is used to represent the trajectory for each segment as follows:

si(u) =
m+4∑
j=0

Bj,q(u) c
pos
j,i , ∀u ∈ [0, 1], i = {0, 1, 2, ..., N}, (5.9)
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where si(u) is the position with the dimensionless parameter u, Bj,q(u) is the basis function,
and cpos

j,i represents the vector position control points of the trajectory. Thereafter, the knot
vector for (5.9) can be constructed as follows:

u = [ 0, ..., 0︸ ︷︷ ︸
q-times

, u1, u2, ..., um−1, 1, ..., 1︸ ︷︷ ︸
q-times

]. (5.10)

At the start and end of the knot vector in (5.10), the knots are q-times clamped; therefore, the
first and last control points cpos

0,i and cpos
m+4,i are equal to the position values at u = 0 and u = 1,

respectively. The inner knots are considered as uniformly distributed between the interval [0, 1].

5.2.3 Initialization and determination of the fitting error

In order to fit the G-code segments described in Section 5.2.1 by the cubic B-spline, we need to
determine the error between the fitted curve and the discretized via-points for each segment. In
this study, the fitting error is considered as the closest distance, where the initialized curve is
orthogonal to each via-point. These fitting errors will be considered as constraints of an OCP
in Section 5.2.4.

Firstly, discretized via-points are assumed as control points of B-splines, repeating (q−1) times
at both ends, and the initialization of the curve is implemented. After that, the orthogonal
distance to each via-point is computed by solving the following nonlinear equation as in [23]:

(dk,i − pi(u)) · p(1)
i (u) = 0,

k = {0, 1, 2, ...,m}, i = {0, 1, 2, ..., N}.
(5.11)

where pi(u) and p
(1)
i (u) are the position and first derivative of the initialized curve, respec-

tively. Equation (5.11) is solved numerically by the Newton’s iteration method and the curve
parameters which satisfy the solutions are determined as δi = [δ0,i, δ1,i, δ2,i, ..., δm,i]

T .

Therefore, the kth fitting error for each ith segment for the OCP is defined as follows:

ϵk,i = ||dk,i − s(δk,i)||2. (5.12)
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Start

End

Fig. 5.1: Demonstration of discrete fitting errors for each G-code segment (Through optimiza-
tion, the geometric path s(u)) is closer to the discretized via-points by satisfying the fitting
errors constraints).

where ||.|| is the Euclidean norm. The fitting error ϵk,i is considered as the discrete constraints
in time OCP formulation in Section 5.2.4. Demonstration for geometric path initialization and
optimization considering the discrete fitting errors are shown in Fig. 5.1.

5.2.4 Spline-based time-optimal trajectory generation

The generation of time-optimal trajectories must satisfy the upper and lower kinematic limits
of CNC machines for all horizons. Here, the constraints on velocity, acceleration, and jerk of
the trajectory are determined using the convex hull property of B-splines [11]. A B-spline curve
and its derivatives are contained within the convex hulls, determined by its control points;
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therefore, we determine the respective control points for each ith segment trajectory as follows:

cvel
j,i =

(q − 1)

(uj+q − uj+1)
(cpos

j+1,i − cpos
j,i ), j = {0, 1, ...,m+ 3}. (5.13)

cacc
j,i =

(q − 2)

(uj+q − uj+1)
(cvel

j+1,i − cvel
j,i ), j = {0, 1, ...,m+ 2}. (5.14)

cjerk
j,i =

(q − 3)

(uj+q − uj+1)
(cacc

j+1,i − cacc
j,i ), j = {0, 1, ...,m+ 1}. (5.15)

where cvel
j,i , cacc

j,i , and cjerk
j,i denote the control points for velocity, acceleration, and jerk of each

segment, respectively. For fluent transitions between segment trajectories, the following conti-
nuity constraints are adopted as in [30]:

si(1) = si+1(0),

ṡi(1) · ti+1 = ṡi+1(0) · ti,

s̈i(1) · t2i+1 = s̈i+1(0) · t2i .

(5.16)

Therefore, the OCP for smooth and time-optimal trajectory generation considering fitting errors
as geometric constraints is formulated as follows:

min
ϕ

N∑
i=0

ti, (5.17)

where
ϕ = {cpos

0,i , ..., c
pos
m+4,i, t0, ..., tN}. (5.18)
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subject to
s0(0) = q0, sN(1) = qf ,

ṡ0(0) = 0, ṡN(1) = 0,

s̈0(0) = 0, s̈N(1) = 0,

|cvel
j,i | ⩽ vlim · ti, j = {0, 1, ...,m+ 3}, i = {0, 1, ..., N},

|cacc
j,i | ⩽ alim · t2i , j = {0, 1, ...,m+ 2}, i = {0, 1, ..., N},

|cjerk
j,i | ⩽ jlim · t3i , j = {0, 1, ...,m+ 1}, i = {0, 1, ..., N},

ϵk,i ⩽ ϵlim, k = {0, 1, ...,m}, i = {0, 1, ..., N},

si(1) = si+1(0), i = {0, 1, ..., N},

ṡi(1) · ti+1 = ṡi+1(0) · ti, i = {0, 1, ..., N},

s̈i(1) · t2i+1 = s̈i+1(0) · t2i , i = {0, 1, ..., N}.

(5.19)

where ϵlim is the absolute limit of fitting error of the geometric path.

5.3 Optimization results and discussion

5.3.1 Calculation conditions

In order to prove the performance of the proposed method, simulation is conducted in this
section. For solving the OCP described in Section 5.2.3, the rolling horizon approach [112] is
used, where the solutions for the first n segments are computed, and the horizon is shifted to
n+1 segments. The time-optimal solutions are calculated using the SQP, (“fmincon” function)
in a MATLAB® environment in a laptop computer with a Windows 10 64-bit operating system
with the processor of Intel(R) Core(TM) i7-7500U CPU @2.70 GHz and memory of 8GB. The
proposed method considers the fitting error constraints only at the discretized via-points of the
given G-code segments.

For the application of the algorithm, we choose the letter profile TUT, representing the acronym
of the Toyohashi University of Technology, which consists of 6 straight-line segments, 3 circle
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1 1 1

1 1

1

3 3

2 2 2

21 3

Fig. 5.2: TUT geometric profile consisting of straight-lines, circles, spline contour segments.

segments, and 2 spline contour segments as shown in Fig. 5.2. Each G-code segment is dis-
cretized into 10 via-points, and the cubic B-spline with 14 control points is used to represent
each segment trajectory of the TUT profile. The symmetric velocity, acceleration, and jerk
limits are set as vlim = [80, 80]mm/s, alim = [500, 500]mm/s2, and jlim = [10000, 10000]mm/s3,
respectively. Three segments (n = 3) are used for simultaneous optimization by the rolling
horizon approach. The initial guess for solving the OCP is the same as the control points of
initialized curve in Section 5.2.3. In this study, various fitting error constraints ϵlim = 0.2mm

and ϵlim = 1µm are chosen for formulating the trajectory to investigate the relation between
the total motion time and the accuracy of the workpiece.

5.3.2 Application results

Fig. 5.3 illustrates the x- and y-axial positions of the optimal paths with the various fitting
errors ϵlim = 0.2mm and ϵlim = 1µm, respectively. It is observed that both optimal paths can
approximate the contour of the given TUT profile, satisfying initial and final boundary positions,
including the fitting error constraint of the path for each via-point. The given geometric profile
has no fluent connection between G-code segments, resulting in the discontinuity in velocity and
acceleration of the trajectory. On the other hand, the proposed method satisfies the smooth
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Fig. 5.3: Comparison of optimal paths and the cornering positions with different fitting errors.

transitions of the path between segment trajectories by the modification of position control
points which considers not only fitting error limits but also kinematic limits of the machines.
The optimal solution with the error constraint 1µm is more accurate than the solution with
0.2mm. The resulting path passes through the corner points and all via-points within the
designated accuracy, and is closer to the give G-code segments.

Fig. 5.4 shows that the proposed method can fit the straight-line (G01), circle (G02/G03), and
spline contour (G05) segments compared to the via-points of the given profile while assuring the
time-optimality of the generated trajectory. The time-optimal solution usually finds the shorter
distance of the path with a small curvature; therefore, the algorithm can accurately fit the G01
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Fig. 5.4: Fitting for (a) straight-line (G01), (b) circle (G02/G03) and (c) spline (G05) contour
segments of the TUT profile with different fitting errors of 0.2mm and 1µm at the via-points.

segments. For G02/G03 and G05 segments, the optimal paths are slightly deviated from the
via-points and in-between the via-points, depending on the limitation of the constraints of the
problem. Although increasing via-points in an OCP can preserve the finer approximation of
the given path, more optimization variables and constraints may increase the computational
complexity of the problem.
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Table 5.1: Comparison of motion times for several G-code segments (tG01, tG02/G03, and
tG05) and the total motion time (tf) according to different fitting error constraints (ϵlim).

ϵlim tG01 tG02/G03 tG05 tf

0.2mm 0.802 s 0.674 s 0.953 s 8.933 s

1µm 0.836 s 0.747 s 1.008 s 9.581 s

Fig. 5.5: Satisfaction of velocity, acceleration, and jerk limits on the x-axis of the TUT profile
with the fitting errors of 0.2mm and 1µm.

In order to investigate the relationship between the motion time and the accuracy of the work-
piece, the motion times according to different fitting error constraints are compared in Table
5.1. The optimal path with the accuracy of 0.2mm has more flexibility dealing with the control
points of B-splines than the path with 1µm accuracy; therefore, the respective motion times of

91



Chapter 5. Coupled Approaches to Optimal . . . 5.3. Optimization results and discussion

Fig. 5.6: Satisfaction of velocity, acceleration, and jerk limits on the y-axis of the TUT profile
with the fitting errors of 0.2mm and 1µm.

the straight-line, circle, and spline contour segments are faster approximately 4%, 9.77%, and
5.45%, respectively. Therefore, as a result, the total motion time of 0.2mm accuracy is 6.76%

faster than the path with 1µm accuracy under the same kinematic limits.

Figs. 5.5 and 5.6 describe the x- and y-axial velocity, acceleration, and jerk of the optimal paths
with the fitting error of 0.2mm and 1µm, respectively. It is observed that the velocity, accel-
eration, and jerk values of the optimal trajectory with 0.2mm accuracy are closer to machine
kinematic limits than the trajectory with 1µm; therefore, resulting in a faster trajectory. Both
trajectories satisfy zero velocity and acceleration at the start and end of the trajectory, and the
kinematic limits are satisfied for all horizons due to the convex hull property of B-splines. The
continuity in axial velocities and accelerations are also satisfied along the trajectory.
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Initial Catch Final
(xec , yec)

Object Vision system

3-DOF planar manipulator

z

x
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(xef , yef)(xei , yei)

height

Fig. 5.7: Demonstration of reduced impact catching of a flying object.

5.4 Smooth reduced impact trajectory generation for in-

dustrial manipulators

5.4.1 Problem formulation

Throwing and catching are fundamental motions for human beings, and may be applied for
advanced human and robot collaborative tasks. Since catching motion is more difficult than
throwing for a robot, this study deals with reduced impact catching of a flying object by a planar
manipulator. The catching position and velocity of the object are accurately estimated by the
vision system, and are assumed as known parameters. An accurate prediction of the object’s
trajectory allows the manipulator to move from its initial position (xei , yei) to the catching
position (xec , yec) within the predicted catching time tc. In order to perform soft catching, the
manipulator has to move to the target with the similar velocity of the object before the object
falls. After the initial contact with the object, the end-effector is decelerated in the direction
of (ẋec , ẏec) till the magnitude of the end-effector’s velocity becomes zero at the final position
(xef , yef) as shown in Fig. 5.7.
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Therefore, the final x and y-positions of the end-effector are defined in terms of the unknown
deceleration time td as follows:

xef(td) = xec +
1
2
ẋec td ,

yef(td) = yec +
1
2
ẏec td ,

(5.20)

Although the catching motion has to be performed in the Cartesian space, trajectory planning
is normally carried out in the joint space of the robot. Therefore, the given positions and
velocities of the end-effector are transformed into corresponding joint positions and velocities
by using the inverse kinematics.

Reduced impact catching of the flying object is performed during the predicted catching time tc
and deceleration time td. It is noticed that if tc and td gets smaller, the joints of the manipulator
have higher acceleration and deceleration that cause higher impact force of the end-effector to
the object. The impact force in x- and y-directions according to deceleration time of the
end-effector is given by

Fxd = mobj

(
ẋef − ẋec

td

)
, Fyd = mobj

(
ẏef − ẏec

td

)
, (5.21)

where ẋef and ẏef denote the final velocities of the end-effector, and mobj is the mass of the
object. Here, the optimization method is considered to minimize the total impact force in
horizontal x- and y-direction. According to (5.21), the impact forces are inversely proportional
to the deceleration time td, and therefore minimization of impact forces to the object pro-
vides the optimal deceleration time and the final end-effector’s position that must exist in the
workspace of the manipulator. Moreover, the extrema of joint velocities and accelerations along
the trajectory are bounded by their limits. The optimization problem is formulated as follows:

min
td, qj(·)

√
F 2
xd

+ F 2
yd
, j = {1, 2, 3},

subject to:

|q̇j(u)| ⩽ q̇j,max,

|q̈j(u)| ⩽ q̈j,max,

xmin ⩽ xef ⩽ xmax,

ymin ⩽ yef ⩽ ymax,

(5.22)
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where q̇j,max and q̈j,max are the maximum velocity and acceleration magnitudes of each joint,
[xmin, xmax] and [ymin, ymax] are the minimum and maximum workspace limits of the end-effector
in x and y-directions.

5.4.2 Trajectory paramterization by B-splines

Smooth trajectory generation is important for reduced impact catching operation. B-spline
curves are widely used in trajectory planning of manipulators and CNC machines due to their
continuity up to higher order derivatives of the trajectory and simple computation. Properties
of B-spline curve are discussed in detail [65]. The parametric B-spline curve for the joint position
with degree p, order k = p+1, and number of control points n+1 for the jth joint is described
as follows:

qj(u) =
n+1∑
i=1

Bi,k(u) cj,i, 0 ⩽ u ⩽ 1, j = {1, 2, 3}, (5.23)

where q1, q2 and q3 represent the joint positions which are expressed as parameter u over the
knot vector, U = [u1, u2, ..., un+k+1]

T , cj,i is the control point, and Bi,k (u) denotes the basis
function of the B-spline curve.

In order to plan a smooth catching trajectory with the continuous velocity and acceleration,
a non-periodic sixth order B-spline curve is planned to interpolate the initial, catch and final
joint positions, satisfy the required velocity for catching, and give the null velocity and ac-
celeration at the initial and final boundary conditions. Since trajectory planning of B-spline
curve is performed between the interval [0, 1], time requirements for reduced impact catching
are normalized as follows:

τ1 = 0, τ2 =
tc

tc + td
, τ3 = 1. (5.24)

According to the distribution of assigned parameters in (5.23), the knot vector of B-spline curve
is constructed. The non-periodic B-spline curve has (p+1) multiple knots at both ends, and two
intermediate knots are added to satisfy the required joint positions and velocities for catching.
Therefore the total number of knots is n+ k + 1 = 2 (p+ 1) + 2.
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The knot vector of the sixth order B-spline curve for the catching trajectory is chosen as follows:

U = [ τ1, ..., τ1︸ ︷︷ ︸
k−times

,
τ2
2
,
τ2 + τ3

2
, τ3, ..., τ3︸ ︷︷ ︸

k−times

]T (5.25)

Depending on the sequence of the knot vector in (5.25), the parametric curves for the joint posi-
tion, velocity and acceleration are defined. In order to find the control points of the trajectory,
a set of linear equations are determined at the assigned parameters in (5.24) as follows:

qj,in = cj,1,

q̇j,in = B
(1)
1,k(τ1) cj,1 +B

(1)
2,k(τ1) cj,2,

q̈j,in = B
(2)
1,k(τ1) cj,1 +B

(2)
2,k(τ1) cj,2 +B

(2)
3,k(τ1) cj,3,

qj,c = B2,k(τ2) cj,2 +B3,k(τ2) cj,3 + ...+B7,k(τ2) cj,7,

q̇j,c = B
(1)
2,k(τ2) cj,2 +B

(1)
3,k(τ2) cj,3 + ...+B

(1)
7,k(τ2) cj,7,

q̈j,f = B
(2)
6,k(τ3) cj,6 +B

(2)
7,k(τ3) cj,7 +B

(2)
8,k(τ3) cj,8,

q̇j,f = B
(1)
7,k(τ3) cj,7 +B

(1)
8,k(τ3) cj,8,

qj,f = cj,8,

(5.26)

where qj,in, q̇j,in and q̈j,in denote the initial position, velocity and acceleration, qj,c and q̇j,c

represent the catching position and velocity, qj,f, q̇j,f and q̈j,f denote the final position, velocity
and acceleration of each joint respectively.

5.5 Optimization results and discussion

To prove the performance of the optimal reduced impact catching, simulation for optimization
of the trajectory is conducted with the catching time of 0.3 s and catching x and y-position
of (0.1, 0.3)m. The velocity limits for joint 1,2 and 3 are (18.8, 62.8, 10.5) rad/s, and for
acceleration are (1600, 2142, 666) rad/s2 respectively. The workspace limits of x and y end-
effector positions are set to (± 0.4, ± 0.4)m.
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Fig. 5.8: Illustration of optimal reduced impact catching of industrial planar manipulator the
joint space and the Cartesian space.

The solution of the optimization problem is obtained by using the SQP in MATLAB® environ-
ment. Within the predicted catching time, the joints are moved from the initial positions to
the predicted catching positions with their target velocities. Next, they are moved to the final
positions within the optimal deceleration time. The joint velocity and acceleration limits are
satisfied, and the joint positions, velocities and accelerations of the optimal B-spline trajectory
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are shown in Figs. 5.8(a), 5.8(b) and 5.8(c), respectively. The final end-effector position is
within the workspace of the manipulator as shown in Fig. 5.8(d).

5.6 Summary

The first part of this chapter presents a coupled approach for time-optimal trajectory genera-
tion of CNC machines while considering discrete fitting errors as geometric constraints of an
OCP. Therefore, the proposed method enables to fit not only straight-line (G01) and circle
(G02/G03) segments but also spline contour (G05) segments. Since the fitting error constraints
are considered at the via-points of the G-code segments, the resulting geometric path can be
slightly deviated in-between the via-points depending on the limitations of constraints, and this
problem will be considered as future work. The effectiveness of the proposed method is investi-
gated by simulations with a complicated geometric profile considering different limits on fitting
errors. Smooth transitions between segment trajectories are achieved, and machine kinematic
limits are satisfied for all horizons. The simulation results proved the trade-off between the
time-optimality and accuracy of the workpiece by the cubic B-spline parameterization. There-
fore, the proposed trajectory generation method is effective for productivity with the required
accuracy of workpieces for CNC machines.

The second part of this chapter presents a coupled optimal reduced impact trajectory planning
for industrial manipulators. The optimization method is provided to minimize the total impact
force between the object and the end-effector in horizontal x- and y-directions. The optimal
deceleration time and the final position of the end-effector, which satisfies the manipulator
workspace limit, are obtained. The joint velocities and accelerations were bounded by the
limits, and the resulting trajectory satisfies the required velocity at the catching position, and
generates smooth and continuous trajectories.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

The modern manufacturing industries greatly rely on the CNC machines and industrial ma-
nipulators to enhance the productivity and quality of the workpieces. The goal is to track the
workpiece as fast as possible while considering the kinematic and dynamic limitations of the
machines and the geometric path. Previous studies addressed various approaches for optimal
trajectory generations for industrial machines; however, there is a gap in the literature for deter-
mining a guaranteed technique for kinematic constraints satisfaction for all horizons, especially
for decoupled OCPs. This thesis proposed a simple and efficient technique for kinematic con-
straint satisfaction by spline parameterization. Moreover, the method for finding the significant
trade-offs from the Pareto optimal solutions was provided for the bi-objective optimization. To
this end, coupled trajectory generation approaches were proposed for the practical usage of the
CNC machines and industrial manipulators. A separate conclusion for each chapter is drawn
as follows:

■ A kinematically constrained nonlinear reparameterization approach was considered for
the trade-off between total motion time and integral jerk square of the trajectories in
Chapter 3. Kinematic constraints along the trajectory were satisfied, considering the
spline convex hulls and the maximum geometric derivatives of the geometric path. The
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Pareto front comprising the significant trade-off solutions was explored by the application
of the NNC method and the D&C algorithm, where each solution was computed by the
SQP. The best trade-off solution was chosen the nearest to the origin due to the high
trade-off level for both objectives. The advantage of using the proposed method over
linear reparameterization was discussed with simulations and experiments. Compared to
the best trade-off solutions of both algorithms, the proposed method provided a 3% faster
and smoother (75% lesser jerk square integral value) than the linear reparameterization.
Without changing the geometric shape, the proposed method achieved the smooth starting
and ending of the trajectories. Due to the lower jerk, the mean absolute tracking errors
are reduced by approximately 22%.

■ Chapter 4 presented the time-optimal trajectory generation for CNC machines for the
complex predefined geometric paths, provided by the CAD software. This study focused
on the kinematic constraint satisfaction, which was dependent on the number of grids
for constraints by previous studies. The OCP was formulated in the parameter domain
in order to avoid the time-dependency. Our previous kinematic constraints in Chapter
3 were highly conservative due to the maximum geometric derivatives of the path. For
this reason, the kinematic constraints were proposed based on the spline convex hulls
that limited the locally affected geometric derivatives; therefore, it applied to the complex
geometric paths, whose derivatives were frequently changed within the parameter horizon.
The comparison was made with the STOTG in the parameter domain by applying various
geometric paths and problem grids. The simulation results showed that the proposed
method was more robust to the problem grids and guaranteed the kinematic constraints
for all horizons. The experimental results validated that the proposed method provides a
smoother trajectory, reducing the mean absolute tracking errors by approximately 12%.

■ Chapter 5 discussed two coupled approaches for optimal trajectory generation. The first
approach was the contour reshaping of the workpieces, consisting of the straight-line
(G01), circle (G02/G03), and spline contour (G05) segments while minimizing the to-
tal motion time by considering the kinematic and geometric constraints along the path.
The geometric constraints were proposed as the closest distance between the discretized
via-points of each G-code segment and the initialized B-spline curve. The continuity
constraints for velocity and acceleration achieved smooth transitions between segment
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trajectories. The rolling horizon approach was used to optimize multiple segment tra-
jectories simultaneously. The optimization results showed that trajectory with tight ge-
ometric constraints better approximated the geometric shape; however, it suffered from
slower motion times. Therefore, the trade-off between time-optimality and accuracy of
the workpiece was confirmed. The second approach was the smooth trajectory generation
for reduced impact motion for industrial manipulators. After catching a flying object
with a similar velocity, the OCP was formulated to reduce the impact force, which was
dependent on the deceleration time and final position of the motion. The optimization
results showed that the required velocities for the catching position are satisfied, and the
joint velocities and accelerations are bounded by the maximum limits. The optimal de-
celeration time decided the ending position of reduced impact motion with zero velocities
and acceleration, satisfying the workspace limits.

6.2 Future works

The proposed methods can be further improved or extended by considering the following facts:

■ All control parameterizations by B-splines used in this thesis consider the uniform dis-
tribution of the knot points for simplicity. If the knots are considered as optimization
variables, the optimal motion times for each piecewise segment can be computed inde-
pendently. Therefore, a faster total motion time may be achieved.

■ In Chapter 3, the conservatism of kinematic constraints is reduced by increasing the prob-
lem grids; however, as a trade-off, the computation time increases to solve the problem.
The nonlinear optimization solver SQP may fail to find a feasible solution when the prob-
lem grids are very large (e.g., N = 10000). Therefore, suitable grids within 50 ∼ 200 are
recommended depending on the geometric path. In contrast, the complexity of the large
grids OCP can be reduced by dividing the optimization horizon into several parts and
solving by the simultaneous optimization techniques, such as the rolling horizon approach
as in Section 5.2. This procedure can be left as future work.
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■ The single objective OCPs proposed in Chapters 4 and 5 can be extended to the multi-
objective OCPs considering the contradictory objectives of the motion time such as energy
consumption, the accuracy of the workpiece, and smoothness of the trajectories.

■ The generated optimal trajectory represents the motion of the tool tip position along
the geometric paths. Therefore, this studies can be applied to the optimal trajectory
generation of the tool path for the three-axis or five-axis CNC machines. If the tool
orientation is represented by the rotational axis trajectory, the proposed method can be
applied to five-axis machines as well. This application can be left as future work.

■ This thesis focuses on the spline-based optimal reference trajectory generation considering
kinematic constraints and the workpiece accuracy (in coupled approaches). However, the
machining constraints such as spindle speed, cutting width and depth, cutting force, and
the surface roughness [113, 114] are not considered in the OCP formulation. The reference
optimal trajectory can be applied for machining as in [30], but the experimental results
may deviate from the simulation (optimization results). To avoid this drawback, the
author recommends considering the abovementioned machining constraints in the OCP
formulation as a future work.

■ Considering the computational complexity, this study does not consider the dynamic
constraints in the OCP. Tracking errors are reduced by limiting or minimizing the jerk
related objectives. On the other hand, tracking error constraints by the typical controllers
can be included in the OCP formulation as in [39, 40].

■ The geometric constraints are considered at the via-points of the G-codes segments in
Section 5.2. According to the bang-bang behavior of the kinematic constraints in time-
optimal trajectories, the resulting geometric path may violate the fitting error constraints
in-between the discretized via-points. This investigation is left as future work.

■ The optimal reference trajectories are generated for the reduced impact catching of a
flying object in Section 5.4. However, the successful catching mainly depends on the
accurate estimation of the object’s trajectory by the vision system, and the movement
of the manipulator within the designated catching time. Since the time for the catching
operation is very small (approximately 0.3 s in our system), it is difficult to optimize the
trajectory online. Therefore, the author recommends to conduct trajectory optimization
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off-line, and perform the real-time modification of the trajectory as in [115], because it
saves much computational time without recomputing the entire trajectory. This is left as
a future work.
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