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ABSTRACT 
 

An Artificial Intelligence-based optimization of structural parameters is elaborated in 

this dissertation to perform a hybrid seismic analysis of building structures. This original problem-

solving approach consists of combining advantageous of both Artificial Intelligence and 

conventional nonlinear time history analysis (NTHA), to increase further the accuracy of seismic 

response simulation. Two optimization domains are investigated: the first one targets specific 

physical parameters of the building model; the second one proposes new machine learning models 

simulating specific structural component or group of components, as surrogates to their analytical 

counterparts.  Both optimization outputs are then deployed in hybrid seismic analyses of several 

building models to check their respective efficiencies in improving the accuracy of the seismic 

response simulation. To this end, synthetic, experimental, and field data are used as references. 

In evaluation of seismic safety of buildings, system parameter identification is crucial. 

Although many mathematical models exist to evaluate the physical properties of building 

structures, the tremendous number of involved parameters maintains a certain degree of 

uncertainty. In this research, a system parameter optimization procedure is developed using 

Response Surface Method and Bayesian Optimization Technique. The developed program was 

successfully tested on real buildings in the Aichi prefecture at eastern Japan, with a view to 

incorporate it in the existing online seismic diagnosis system. The accuracy and the promptness 

of the optimization procedure make it efficient for a real-time system identification. 

Simulating the structural behavior of typical seismic isolators under a wide spectrum of 

realistic loading conditions is still not accurately achieved by a single analytical model. Deep 

learning networks predicting the non-linear hysteretic behavior of specific triple pendulum 

bearing (TPB), lead rubber bearing (LRB), and a full seismic isolation layer, are developed, tested, 

and eventually deployed in the proposed hybrid seismic analysis. Experimental datasets were 

derived from a shake-table test program of an isolated five-story building specimen, performed at 

the Hyogo Engineering Research Center (E-Defense) of Miki, Japan. Data measured during 34 

different table motions are processed to construct a TPB/LRB dataset of 158/55 samples. 

Conventional NTHAs were performed to generate synthetic data for the case study of full 

isolation layer. Comparisons with reference experimental/synthetic data showed that the proposed 

hybrid analysis could simulate accurately the seismic response of studied buildings. The 

generalization capability of developed surrogate machine learning models on the substantial 

datasets used in this study, revealed the benefit of applying machine learning to solve complex 

structural engineering problems. 
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CHAPTER 1: INTRODUCTION 

1.1. Background and problem statement 

While the behavior of most conventional building structural components is well 

understood by physics, constitutive laws of nonconventional ones may still be not fully 

understood. This includes cases of new materials, new devices, unusual geometries, and all other 

circumstances where many assumptions and/or calibrations are necessary to validate non-

generalized analytical models. Discrepancies between simulated and actual seismic responses of 

building structures with such components may be large and lead to over/underestimate the design, 

as highlighted recently for some cases of seismically isolated buildings [1]. Furthermore, some 

secondary structural elements (repartition/infill walls, false ceiling…), construction imperfections, 

aging of materials, and/or posterior structural damage…; may be disregarded in the structural 

model because of the inability to model them. Aforementioned anomalies are shortcomings of the 

conventional seismic analysis of building structures.  

Artificial intelligence (AI) is all algorithms aiming to train machines to perform 

repetitive and/or difficult tasks that may induce some errors if handled by humans. It was initiated 

in the 1950ˈs and has currently many subsets (Fig. 1) such as natural language processing (NLP), 

speech recognition, robotics, machine vision, and machine learning (ML).  

 

Figure 1: Overview of Artificial Intelligence branches. 
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The application of AI and ML in structural and earthquake engineering is flourishing 

within the research community in the past two decades [2, 3]. The availability of structural data, 

the continuous advances in computational resources and ML algorithms, and the 

complexity/difficulty of some engineering problems have contributed to its implementation in 

several fields such as structural response prediction [4, 5], system identification [6, 7], and 

damage assessment [8, 9]. While few applications aim to optimize specific structural parameters, 

most of the others tend to predict the damage state or the structural response of the building as a 

whole. These applications are therefore limited to the type of structures used during the training 

process, and disregard all well-established analytical models based on the laws of Physics. Reason 

why AI applications are still regarded as a  ̎black box  ̎by many researchers and practitioners.  

As a consequence, worldwide seismic codes and current commercial structural 

softwares have not yet included any provisions regarding the use of data-driven methods in 

structural design; thus, limiting the application of AI in the structural engineering practice. 

Physics-based methods remain legitimately the most reliable and common approach for seismic 

design of structures. However, both Physics-based and data-driven approaches have their 

respective pros and cons. Physics is more reliable, but it has its limits. AI can solve very complex 

and difficult problems, but its  ̎ black box ̎ image makes it untrustworthy. Is it better to stick to 

conventional analysis and limit our problem-solving capability, or use AI to go beyond the limits 

of the current Physics-based knowledge and provide solutions to more complex problems ? 

1.2. Objective of the study and thesis outline 

This study aims to tackle  aforementioned limitations of conventional seismic analysis 

and AI applications in building response prediction problems, by combining simultaneously 

advantageous of both Physics-based and data-driven procedures. Both approaches are considered 

as complementary rather than dissociated. Physics is legitimately taken as a reference, and its 

limitations are surpassed by using AI algorithms. This original problem-solving approach is 

elaborated in this study to check its applicability and efficiency in the open research area of 

simulating the seismic time-history response of building structures. Such a hybrid approach would 

lead to more accurate analyses; thus, contributing to an efficient evaluation and/or mitigation of 

earthquake damage.  

This dissertation consists of three main parts: i) AI-based optimization of structural 

parameters of existing buildings using field data, ii) design of ML models (MLMs) of some 

structural components as surrogates to their analytical counterpart, and iii) the incorporation of 
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elaborated MLMs into the proposed hybrid seismic analysis for a numerical and experimental 

validations.  

Chapter II evaluates the performance of two optimization algorithms in tuning story 

stiffness parameters of pre-defined lumped mass models (LMMs) of three existing buildings in 

Aichi prefecture in Japan. This optimization aims to increase the reliability of the real-time 

seismic diagnostic system of target essential buildings. Response surface method (RSM) and 

Bayesian optimization technique (BOT) are investigated, and their respective efficiencies are 

analyzed and compared in term of accuracy and computation time. To this end, recorded 

acceleration data during the Osaka Earthquake of 18th June 2018, are used as a reference. The 

favorite optimization technique is selected for subsequent implementation in the internet cloud.  

Chapter III elaborates and applies a comprehensive framework to design MLMs capable 

of predicting the structural behavior of target component or group of components. Seismic 

isolation devices are selected as case studies and recurrent neural networks (RNNs) are developed 

to simulate their complex hysteretic behavior. Synthetic data generated by nonlinear time history 

analyses (NTHAs) and experimental data of a well-designed test program, are processed, and 

deployed to train and test the surrogate MLMs. Their efficiency is evaluated in terms of accuracy, 

uncertainty, and elaboration time.  

Chapter IV introduces and evaluates the original hybrid seismic analysis developed in 

this study, taking advantages of both analytical models and MLMs. Python scripts are elaborated 

to incorporate designed MLMs into the time integration method to perform hybrid analyses of 

many isolated buildings subjected to a wide spectrum of earthquake ground motions. The isolation 

layer response and the peak story displacements/accelerations are computed and compared with 

reference values of conventional analyses or experimental records. The capability of the hybrid 

analysis to outperform the conventional one is discussed based on the studied cases.  

Chapter V recapitulates the major findings of this study and summarizes the conclusions. 

Limitations of the proposed hybrid approach are discussed, and further improvements and related 

studies are proposed for future research works.  

Appendices presented at the end of this dissertation provide developed Python scripts 

for both conventional and hybrid seismic analyses of LMMs, followed by 34 graphs of two-

dimensional force-displacement hystereses of specific isolation layers of the experimental test 

program performed at E-Defense in August 2011.   
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CHAPTER 2: LMM UPDATING USING LIMITED SENSORS DATA 

2.1. Introduction 

In the event of a major earthquake, one of the key issues for emergency management 

officials is to know whether or not the vital facilities, those that provide emergency assistance 

such as hospitals and fire stations and government buildings, are safe enough for a continuous 

and secure use immediately after a seismic event. To support emergency actions of Aichi 

prefecture in Japan , a real-time seismic diagnostic system has been established at TUT to provide 

designated officials with necessary safety information about target building structures [10, 11]. 

Fig. 2 summarizes the flowchart of this seismic diagnostic system. The acceleration data recorded 

during a seismic event at specific floors of the designated buildings, is uploaded in the internet 

cloud and processed immediately in predefined analysis models using the software STERA-3D 

[12]. The first seismic evaluation is carried out by analyzing the response of the building lumped 

mass model (LMM), whose properties are deducted beforehand from a non-linear push-over 

analysis of a frame model established based on structural drawings. The safety of the building is 

determined based on the response values and results of this first seismic evaluation is reported by 

email to designated officials withing few minutes. If the response of the first seismic evaluation 

exceeds the predefined threshold of structural and non-structural damage, the second stage 

seismic evaluation is performed using the frame model to estimate the amount of damage at the 

component level. The report of the second seismic analysis is sent by email within few hours. 

Similar remote structural health monitoring (SHM) has already been deployed in earthquake 

prone countries such as the United States [13], and Japan [14]. However, the seismic diagnosis 

procedures may differ based on system identification techniques, wavelet analyses, fragility 

curves and many others. 

 

Figure 2: Flowchart of the real-time seismic diagnostic system of Aichi prefecture. 
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The accuracy of simulated response is affected by many sources of uncertainties (non-

structural elements, evolution of material properties with time, soil-structure interaction…) which 

are extremely difficult to evaluate for integration into an analysis model; therefore, simulated 

acceleration response may differ significantly from observed acceleration records. To overcome 

this shortcoming, the identification of building physical parameters (mass, stiffness, and damping) 

is commonly used for model updating in SHM [15, 16]. To update the LMM for more accurate 

first stage seismic evaluation, this Chapter presents the procedure developed to optimize target 

structural parameters based only on two acceleration records at the level of the basement and an 

upper floor of the building. Two optimization procedures, the response surface method (RSM) 

and the Bayesian optimization techniques (BOT), are investigated and their respective 

performances are evaluated and compared through the analysis of target existing buildings 

subjected to real earthquake ground shaking events. The scope of this Chapter is to perform a 

quick and efficient optimization of system physical parameters using very limited number of 

available acceleration records.  

2.2.Target building and earthquake events 

Three buildings existing in Toyohashi City of Aichi prefecture in Japan, are considered 

in this study. The Toyohashi City Hall East Building (TCH-EB), the Toyohashi City Hall West 

building (TCH-WB), and the Toyohashi Fire Station Building (TFSB). Each of them is 

instrumented with two LAN seismometers: one at the basement level and the second at an upper 

story level. The acceleration waves recorded during the Osaka earthquake of June 18th, 2018 [17], 

are used in this study. The three buildings behaved mainly within the elastic range since recorded 

motions were of low intensity. A fourth Model Building (MB) has been considered to perform 

the optimization process in case of non-linear behavior. It is a fictive four-story LMM subjected 

to the N-S component of El Centro Earthquake of May 18th, 1940. The simulated acceleration 

wave at the 3rd floor is considered as the target acceleration wave. Table 1 recapitulates 

aforementioned information about all studied cases : 

Table 1: Summary of studied buildings.  

Designation Nature No. of stories Lower sensor level Upper sensor level 

TCH-EB  
Existing 

SRC buildings 
 
 

15 
1st basement 

(record of 18.06.18) 
12th floor 

(record of 18.06.18) 

TCH-WB 10 
1st basement 

(record of 18.06.18) 
7th floor 

(record of 18.06.18) 

TFSB 7 
1st basement 

(record of 18.06.18) 
6th floor 

(record of 18.06.18) 

MB 
Model steel 

building 
4 

Ground floor 
(El Centro1940 NS) 

3rd floor 
(simulated) 
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2.3.Target structural parameters 

The frame models of studied buildings are made from the structural drawings provided 

by building officials. Non-linear pushover analyses are performed by STERA-3D to compute the 

capacity curve of each story in order to generate the equivalent LMM which has a tri-linear 

hysteresis model for story drift and shear force relationship. The damping matrix [C] is considered 

proportional to the initial stiffness matrix [K], and thus assumed to be invariant during an analysis. 

Fig. 3 shows an example of a converted n-story building structure to its LMM having three main 

parameters at each level: the story mass m, the initial story stiffness k, and the story damping 

factor c. Complementary parameters are omitted in this figure for a simplified view. The LMM is 

considered fixed-base with no soil-structure interaction. The stars represent the positions of a 

typical installation of LAN seismometers; one at the lowest floor level and the second at an upper 

level (n-1 floor in the figure). 

 
Figure 3: Lumped mass model of a n-story building. 

Using the parameters of the L.M.M. and the recorded input acceleration at each building 

basement, the time history acceleration response at the target level can be computed and compared 

with the target (recorded or simulated) acceleration wave at the same level. Thus, we define the 

objective function as the acceleration error given by Eq. (1): 

𝑒𝑟𝑟𝑜𝑟 =
ට∑ ൫𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛௧௔௥௚௘௧ − 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛௦௜௠௨௟௔௧௘ௗ൯

ଶ
ௗ௔௧௔

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
(1)
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The optimization problem consists of determining an optimal combination of the 

varying parameters that minimizes the objective function. The acceleration error is computed at 

only one level, therefore the uniqueness of the optimal combination of the LMM parameters may 

be compromised. Two optimization procedures are considered in this Chapter: the RSM as a 

traditional method, and the BOT as a newly developed technique examined in this study for its 

effectiveness. 

System parameters with high uncertainty are selected, then their variation ranges are 

defined as a percentage of their corresponding LMM values. For the existing buildings (TCH-EB, 

TCH-WB, and TFSB), initial story stiffnesses of all stories are selected as the parameters to be 

optimized. Floors masses and the damping ratios are assumed to be fixed values. The optimization 

of damping is targeted in further studies. For the nonlinear model (MB), the story yield strength 

is also selected for optimization. Table 2 shows the nature of selected parameters and their initial 

variation range. 

Table 2: Nature and variation range of selected parameters for optimization. 

Designation Seismic behavior 
Parameters to optimize Variation range 

(% of initial LMM value) Nature Number 

TCH-EB Linear 
Initial story 
stiffnesses 

15 [0.8, 2.0] 

TCH-WB Linear 
Initial story 
stiffnesses 

10 [0.8, 2.0] 

TFSB Linear 
Initial story 
stiffnesses 

7 [0.8, 2.0] 

MB 
Non-linear 

bilinear model 

Initial story 
stiffnesses 

4 [0.8, 2.0] 

Story yield 
strengths 

4 [0.5, 1.5] 

 

2.4.Optimization algorithms 

2.4.1. Response surface method 
In the response surface method [18, 19, 20], the response quantity Y is expressed as the 

2nd order polynomial function of N design variables R1, R2…,RN where Y is the predicted response, 

Xi is the standardized variable, Li is half of the range of the variable and Mi is the midpoint of the 

range of variable, 

𝑌 = 𝑏଴ + ෍ 𝑏௜𝑋௜

ே

௜ୀଵ

+ ෍ 𝑏௜௝𝑋௜𝑋௝

ே

ଵஸ௜ழ௝

+ ෍ 𝑏௜௜𝑋௜
ଶ

ே

௜ୀଵ

(2) 
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𝑋௜ =
𝑅௜ − 𝑀௜

𝐿௜

(3) 

𝐿௜ =
𝑅௜,௠௔௫ − 𝑅௜,௠௜௡

2
(4) 

𝑀௜ =
𝑅௜,௠௔௫ + 𝑅௜,௠௜௡

2
(5) 

The Central Composite Design is commonly used to decide the experimental variables. 

The variables are selected as 1) two levels of each variable, Xi=-1,1, 2) two points Xi=-α,α on 

each axis, and 3) the center point. In total M=2N+2N+1 points. Fig. 4 shows the experimental 

variables in case of three design variables. 

 

Figure 4: Experimental variables in case of Central Composite Design. 
Eq. (2) can be written in a matrix form as, 

{𝑌} = [𝑋]{𝑏} (6) 

{𝑌} = {𝑌ଵ, 𝑌ଶ, … 𝑌ெ}் (7) 

[𝑋] =

⎣
⎢
⎢
⎢
⎡1 𝑋ଵ ଵ ⋯ 𝑋ଵ ே 𝑋ଵ ଵ 𝑋ଵ ଶ ⋯ 𝑋ଵ ேିଵ 𝑋ଵ ே 𝑋ଵ ଵ

ଶ
⋯ 𝑋ଵ ே

ଶ

1 𝑋ଶ ଵ ⋯ 𝑋ଶ ே 𝑋ଶ ଵ 𝑋ଶ ଶ ⋯ 𝑋ଶ ேିଵ 𝑋ଶ ே 𝑋ଶ ଵ

ଶ
⋯ 𝑋ଶ ே

ଶ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 𝑋ெ ଵ ⋯ 𝑋ெ ே 𝑋ெ ଵ 𝑋ெ ଶ ⋯ 𝑋ெ ேିଵ 𝑋ெ ே 𝑋ெ ଵ

ଶ
⋯ 𝑋ெ ே

ଶ
⎦
⎥
⎥
⎥
⎤

(8) 

{𝑏} = ൛𝑏଴, 𝑏ଵ, ⋯ , 𝑏ே , 𝑏ଵ,ଶ, ⋯ , 𝑏ேିଵ,ே, 𝑏ଵ,ଵ, ⋯ , 𝑏ே,ேൟ
்

(9) 

The parameter vector {b} is obtained by,  

{𝑏} = [𝑋]ା{𝑌} (10) 

Where [X]+ is the pseudo-inverse matrix of [X].  

If [X] is a rectangular matrix (N×m), its singular value decomposition is,  
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[𝑋] = [𝑈][𝛴][𝑉]் (11) 

Where, [U] (N×N) and [V] (m×m) are orthogonal matrices, 

[𝑈][𝑈]் = [𝑈]்[𝑈] = [𝐼] (12) 

[𝑉][𝑉]் = [𝑉]்[𝑉] = [𝐼] (13) 

 [∑]is a rectangular matrix (N×m) with singular values in diagonal elements, 

[𝛴] =

⎣
⎢
⎢
⎢
⎡
𝜆ଵ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆௠

⋮ ⋮
0 ⋯ 0 ⎦

⎥
⎥
⎥
⎤

(14) 

Its pseudo-inverse matrix is obtained as,  

[𝑋]ା = [𝑉][𝛴]ା[𝑈]் (15) 

Where, [∑]+ is a rectangular matrix (m×N) as, 

[𝛴]ା =

⎣
⎢
⎢
⎢
⎡

1

𝜆ଵ
⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋮

0 ⋯
1

𝜆௠
⋯ 0

⎦
⎥
⎥
⎥
⎤

(16) 

From the response surface, the variables X1,X2…,XN to minimize the response surface 

are obtained by, 

𝜕𝑌

𝜕𝑋௜
= 𝑏௜ + ෍ 𝑏௜௝𝑋௝ + 2

ே

ଵஸ௜ழ௝

𝑏௜௜𝑋௜ = 0,  𝑖 = 1,2, ⋯ , 𝑁 (17) 

In a matrix form, 

⎩
⎪
⎨

⎪
⎧

−𝑏ଵ

−𝑏ଶ

⋮
−𝑏ேିଵ

−𝑏ே ⎭
⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡
2𝑏ଵଵ 𝑏ଵଶ ⋯ ⋯ 𝑏ଵே

2𝑏ଶଶ ⋱ 𝑏ଶே

⋱ ⋱ ⋮
⋱ 𝑏ேିଵ,ே

𝑠𝑦𝑚. 2𝑏ேே ⎦
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

𝑋ଵ

𝑋ଶ

⋮
𝑋ேିଵ

𝑋ே ⎭
⎪
⎬

⎪
⎫

 

𝑜𝑟

 {−𝑏} = [𝐵]{𝑋} (18)

 

Therefore, the optimum variables are obtained by using the pseudo-inverse matrix of 

[B], 
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{𝑋} = [𝐵]ା{−𝑏} (19) 

Fig. 5 shows the response surface and the optimum variables in case of two variables. 

In this study, the response quantity Y corresponds to the error in Eq. (1) and variables R1, R2…,RN 

correspond to structural parameters to be optimized. 

 

Figure 5: Response surface and optimum variables. 

2.4.2. Bayesian optimization technique 
The Bayesian optimization technique used in this study is provided in the free open-

source GPyOpt Python module [21, 22], developed by the Machine Learning Group at the 

University of Sheffield. It can predict promptly and with high accuracy the optimal values that 

minimize the defined objective function.  

For each building, a Python script is developed to predict the optimized values of the 

selected parameters, using only the input (lower sensor) and the target (higher sensor) acceleration 

waves. A first evaluation of the acceleration error (1st training data) is made for a given set of the 

varying parameters. A multivariate Gaussian Process (GP) [23] is then generated based on this 

prior knowledge and on an appropriate kernel or covariance matrix. This GP represents a first 

evaluation of the objective function throughout the domains of the parameters to optimize. The 

selection of the next evaluation point (the second set of varying parameters) is made by an 

appropriate acquisition function [24]. The evaluation of the acquisition function depends more 

often on both the distributed mean and variance of the prior GP. Its peak position defines the new 

set of varying parameters used to compute the next acceleration error (2nd training data). The 

posterior GP is then defined, and the same process is repeated as many times as specified in the 

program. Fig. 6 shows the flowchart of the Bayesian optimization process.  

Fig. 7 presents a simple one-dimensional problem to evaluate the global minima of the 

function given in Eq. (20), within the range x=[7,20]. After only 10 evaluation points, the 
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parameter x that minimizes the true function (top of Fig. 7), is well estimated by the position of 

the acquisition function peak (bottom of Fig. 7) at a value neighboring 11. The mean distribution 

of the final GP fits quite well the true function with some high uncertainties where less points are 

selected. From this simple example, it is understood that the BOT is aimed to converge quickly 

to the global minima rather than to evaluate the objective function in the hole domain. The 

selection of the appropriate GP kernel and the acquisition function are optimized in the GPyOpt 

Python module. 

 

Figure 6: Bayesian optimization process. 

𝑓(𝑥) =
sin (𝑥)

𝑥
(20) 

 

Figure 7: Bayesian optimization of 1-dimensional objective function.  
Even though a higher number of iterations (about 50) was considered in the present 

study, the execution time of the Python script was no more than 2 minutes in all cases. This speed 
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of calculation represents the strength of this tool that can be adopted for a quick update of the 

LMM parameters; thus, to obtain a reliable seismic evaluation within a short duration after an 

event.  

2.5. Toyohashi city hall buildings 

2.5.1. Buildings overview 
The Toyohashi City Hall is composed of two different buildings. The east (west) 

building was constructed in 1993 (1979) and contains 15 (10) stories above the ground level. Both 

structures consist of steel reinforced concrete (SRC) frames. Fig. 8 and Fig. 9 show an overview 

of these existing buildings. The 1st mode damping ratio of both structures is assumed to be equal 

to h=2.0%. 

 

Figure 8: Toyohashi City Hall, East Building (TCH-EB) 
 

 

Figure 9: Toyohashi City Hall, West Building (TCH-WB) 
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2.5.2. Input ground motion 
A LAN seismometer is installed at the basement level of the west building. Recorded 

acceleration on June 18th, 2018, Osaka earthquake (Fig. 10) is considered as an input wave for 

both buildings.  

 

Figure 10: TCH, 1st basement floor, Recorded acceleration (2018.06.18). 
 

2.5.3. Initial story stiffness optimization: East Building  
E-W component: 

Table 2.3 shows the results of optimized initial story stiffnesses by RSM and BOT and 

their ratio to the initial values of the LMM. Fig. 11 compares the recorded acceleration wave at 

the 12th floor with the simulated wave by the initial LMM, and with the optimized waves from 

RSM and BOT. The initial LMM fails to provide accurate results as aimed. The optimization 

process leads to more accurate response simulation, especially the BOT when comparing both 

acceleration errors (top left of Fig. 11) and wave shapes.  

N-S component: 

Table 4 shows the results of optimized initial story stiffnesses by RSM and BOT and 

their ratio to the initial values of the LMM. Most ratios are greater than 1.0, which appears to be 

due to the contribution of non-structural elements. Comparisons between the recorded 

acceleration wave, the simulated wave by the initial LMM, and the optimized waves at the 12th 

floor are shown in Fig. 12. The initial LMM fails to provide accurate results as aimed. The 

optimization process gives better results when comparing both acceleration errors, especially the 

BOT. 
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Table 3: TCH-EB, EW direction, Initial story stiffnesses optimization. 
Toyohashi City Hall East Building – EW direction (h=2%) 

Story Weight (kN) 
Initial Story Stiffness (kN/mm) 

Initial LMM 
RSM BOT 

Optimized Ratio Optimized Ratio 
15th 2794 221 219 0.99 376 1.70 
14th 10746 871 861 0.99 954 1.10 
13th 15047 1501 1461 0.97 2123 1.41 
12th 12040 1693 1734 1.02 2024 1.20 
11th 12099 1953 1992 1.02 1353 0.69 
10th 12103 2123 2155 1.02 2591 1.22 
9th 12115 2410 2431 1.01 1606 0.67 
8th 12804 2635 2089 0.79 1730 0.66 
7th 16789 3301 3219 0.98 3836 1.16 
6th 15092 3500 3068 0.88 4619 1.32 
5th 15092 3811 3473 0.91 3354 0.88 
4th 15144 4262 4098 0.96 4114 0.97 
3rd 20617 6453 6571 1.02 5327 0.83 
2nd 16752 16168 16257 1.01 19556 1.21 
1st 14851 11286 11452 1.01 15762 1.40 

 

 

Figure 11: TCH-EB, 12th floor, Acceleration response, E-W component. 
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Table 4: TCH-EB, NS direction, Initial story stiffnesses optimization. 
Toyohashi City Hall East Building – NS direction (h=2%) 

Story Weight (kN) 
Initial Story Stiffness (kN/mm) 

Initial LMM 
RSM BOT 

Optimized Ratio Optimized Ratio 
15th 2794 89 123 1.38 102 1.15 
14th 10746 414 570 1.38 652 1.57 
13th 15047 1466 2896 1.98 2479 1.69 
12th 12040 1795 3589 2.00 3142 1.75 
11th 12099 1988 3964 1.99 4569 2.30 
10th 12103 2104 3031 1.44 3352 1.59 
9th 12115 2283 4539 1.99 4388 1.92 
8th 12804 2378 4729 1.99 4198 1.77 
7th 16789 2722 4008 1.47 3594 1.32 
6th 15092 2842 4234 1.49 4037 1.42 
5th 15092 3020 6017 1.99 6545 2.17 
4th 15144 2070 4140 2.00 3591 1.73 
3rd 20617 1626 2783 1.71 2974 1.83 
2nd 16752 1804 3054 1.69 2736 1.52 
1st 14851 2162 3548 1.64 4088 1.89 

 

 

Figure 12: TCH-EB, 12th floor, Acceleration response, N-S component. 
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2.5.4. Initial story stiffness optimization: West Building 

E-W component: Table 5 shows the results of optimized initial story stiffnesses by RSM and BOT 

and their ratio to the initial values of the LMM. Most ratios to initial LMM values are greater than 

1.0, which appears to be due to the contribution of non-structural elements. Fig. 13 compares the 

recorded acceleration wave at the 7th floor with the simulated wave by the initial LMM, and with 

the optimized waves from RSM and BOT. The initial LMM values over-estimates the true 

response. Both optimization techniques give better and almost same acceleration wave although 

the optimized story stiffnesses are different.  

N-S component: Table 6 shows the results of optimized initial story stiffnesses by RSM and BOT 

and their ratio to the initial values of the LMM. Fig. 14 compares the recorded acceleration wave 

at the 7th floor with the simulated wave by the initial LMM, and with the optimized waves from 

RSM and BOT. The initial LMM values over-estimates slightly the true response. Both 

optimization techniques gave better and almost same acceleration wave although the optimized 

story stiffnesses are different. 

Table 5: TCH-WB, EW direction, Initial story stiffnesses optimization. 
Toyohashi City Hall West Building – EW direction (h=2%) 

Story Weight (kN) 
Initial Story Stiffness (kN/mm) 

Initial LMM 
RSM BOT 

Optimized Ratio Optimized Ratio 
10th 4113 17560 21339 1.22 21956 1.25 
9th 11767 92284 114573 1.24 121909 1.32 
8th 11767 11323 13415 1.18 10835 0.96 
7th 19144 9706 10759 1.11 11736 1.21 
6th 19672 9297 14237 1.53 12916 1.39 
5th 19156 9282 10162 1.09 10795 1.16 
4th 19160 9695 12318 1.27 11571 1.19 
3rd 21433 10740 13785 1.28 16197 1.51 
2nd 21433 11783 14797 1.26 12588 1.07 
1st 33567 13115 16493 1.26 18241 1.39 
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Figure 13: TCH-WB, 7th floor, Acceleration response, E-W component. 

 

Table 6: TCH-WB, NS direction, Initial story stiffnesses optimization. 
Toyohashi City Hall West Building – NS direction (h=2%) 

Story Weight (kN) 
Initial Story Stiffness (kN/mm) 

Initial LMM 
RSM BOT 

Optimized Ratio Optimized Ratio 
10th  4113 15034 15587 1.04 21478 1.43 
9th  11767 55162 57196 1.04 53254 0.97 
8th  11767 17769 18448 1.04 37918 2.13 
7th  19144 13573 14139 1.04 16004 1.18 
6th  19672 12129 12700 1.05 23721 1.96 
5th  19156 11678 12302 1.05 10477 0.90 
4th  19160 12501 13374 1.07 18563 1.48 
3rd  21433 13221 14001 1.06 9317 0.70 
2nd  21433 14597 15428 1.06 13243 0.91 
1st  33567 15482 16304 1.05 22728 1.47 

 

 

Figure 14: TCH-WB, 7th floor, Acceleration response, N-S component. 
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2.6. Toyohashi fire station building 

2.6.1. Building overview 
The Toyohashi Fire Station Building was constructed in 1993 and contains seven stories 

above the ground level. Its structure consists of steel reinforced concrete frames. Fig. 15 shows 

an overview of the buildings. The damping ratio of the first mode is assumed to be equal to 

h=2.0%. 

 

Figure 15: Toyohashi Fire Station Building (TFSB). 

2.6.2. Input ground motion 
A LAN seismometer is installed at the 1st basement level of the TFSB. Recorded 

acceleration on June 18th, 2018, Osaka earthquake (Fig. 16) is considered as an input wave for the 

optimization process.  

 

Figure 16: TFSB, 1st basement, Recorded acceleration (2018.06.18). 
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2.6.3. Initial story stiffness optimization 

E-W component: Table 7 shows the results of optimized initial story stiffnesses by RSM and BOT 

and their ratio to the initial values of the LMM. All ratios to LMM are greater than 1.0, which 

appears to be due to the contribution of non-structural elements. Fig. 17 compares the recorded 

acceleration wave at the 6th floor with the simulated wave by the initial LMM, and with the 

optimized waves from RSM and BOT. The initial LMM fails to provide accurate results as aimed. 

The optimization processes provided better and quite similar results, with a preference for the 

BOT, when comparing both acceleration errors (top left of Fig. 17).  

Table 7: TFSB, EW direction, Initial story stiffnesses optimization. 
Toyohashi Fire Station Building – EW direction (h=2.5%) 

Story Weight (kN) 
Initial Story Stiffness (kN/mm) 

Initial LMM 
RSM BOT 

Optimized Ratio Optimized Ratio 
7th 10587 667 1165 1.75 975 1.46 
6th 11833 1011 1585 1.57 1379 1.36 
5th 12412 1370 2183 1.59 2121 1.55 
4th 13043 1605 2716 1.69 2897 1.80 
3rd 12470 1974 3395 1.72 3707 1.88 
2nd 12482 2424 4063 1.68 3445 1.42 
1st 14570 3988 6267 1.57 7856 1.97 

 

N-S component: Table 8 shows the results of optimized initial story stiffnesses by RSM and BOT 

and their ratio to the initial values of the LMM. All ratios to LMM are greater than 2.0, which 

appears to be due to the contribution of non-structural elements. Fig. 18 compares the recorded 

acceleration wave at the 6th floor with the simulated wave by the initial LMM, and with the 

optimized waves from RSM and BOT. The initial LMM fails to provide accurate results as aimed. 

LMM update using initial story stiffnesses optimized by the BOT, could simulate more accurately 

the acceleration response at the 6th floor. The RSM provided similar results for this case study.  

Table 8: TFSB, NS direction, Initial story stiffnesses optimization. 
Toyohashi Fire Station Building – NS direction (h=2.5%) 

Story Weight (kN) 
Initial Story Stiffness (kN/mm) 

Initial LMM 
RSM BOT 

Optimized Ratio Optimized Ratio 
7th 10587 756 2156 2.85 1512 2.01 
6th 11833 1077 3813 3.54 4706 4.37 
5th 12412 1476 4490 3.04 3452 2.34 
4th 13043 1751 5412 3.09 6471 3.70 
3rd 12470 2128 6662 3.13 5422 2.55 
2nd 12482 2497 7862 3.15 9582 3.84 
1st 14570 3960 12579 3.18 14690 3.71 
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Figure 17: TFSB, 6th floor, Acceleration response, E-W component. 
 

 

Figure 18: TFSB, 6th floor, Acceleration response, N-S component. 
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2.7. Model building 

2.7.1. Building model 
The model building is a 4-story LMM. The story hysteresis model is considered bi-

linear with a post-stiffness ratio of 10%. The damping ratio of the first mode is assumed to be 

equal to h=3%. The purpose of this study is to check the efficiency of the BOT in case of nonlinear 

structural behavior. A one-dimensional time history analysis is carried out.  

2.7.2. Input ground motion 
The N-S component of El Centro Earthquake of May 18th, 1940, is considered as input 

ground motion, as shown in Fig. 19. 

 

Figure 19: El Centro Earthquake of May 18th, 1940, Acceleration, N-S component. 
 

2.7.3. Initial story stiffness and yield strength optimization 
Table 9 shows the results of optimized initial story stiffnesses and the story yield 

strengths stiffnesses by RSM and BOT and their ratio to the initial values of the LMM. All 

optimized values are almost equal to those of  initial LMM because there are no sources of 

uncertainties such as the case of real buildings (non-structural elements, soil-structure interaction, 

material properties…). This result confirms the power of the proposed optimization tool.   

Table 9: Model Building, Story stiffness and yield strength optimization. 

Model Building (MB) (h=3%, Post-yield stiffness ratio=10%) 

Story Weight (kN) 
Initial Story Stiffness (kN/mm) Story yielding strength (kN) 

Initial LMM 
BOT 

Initial LMM 
BOT 

Optimized Ratio Optimized Ratio 
4th 4894 2772 3085 1.11 1848 2076 1.12 
3rd 3669 4473 5109 1.14 2982 3479 1.17 
2nd 3691 5139 5846 1.14 3426 3400 0.99 
1st 3762 4103 3563 0.87 4103 4121 1.01 
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Fig. 20 compares the hysteresis loops, Fig. 21 the shear history and Fig. 22 the 

displacement response at each floor from both initial LMM and updated one by BOT. The shear 

and displacement errors are computed similarly to Eq.(1). The optimized waves fit very well with 

the simulated waves. Given the fact that all the optimized results are deduced only by knowing 

acceleration response at the 3rd floor, the BOT proves again its capacity to provide accurate results 

in a very short time and with limited data. 

 

Figure 20: Model Building, Story hysteresis loops. 
 

 

Figure 21: Model Building, Story shear history. 
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Figure 22: Model Building, Story displacement response.  

2.8. Conclusion 

Optimization of structural parameters of building models is essential to improve the 

accuracy of the real-time seismic diagnosis system of Aichi prefecture in Japan, established at 

TUT. Two optimization methods, Response Surface Method (RSM) and Bayesian Optimization 

Technique (BOT), were investigated to update the initial LMMs of target existing buildings using 

very limited acceleration records.  

Acceleration responses of updated LMMs fit very well with recorded wavs of studied 

buildings. The BOT showed constantly higher accuracy than RSM and less computational time. 

In case of TCH-EB, BOT took around 2 minutes to perform 50 iterations in a common laptop, 

whereas RSM took more than 10 hours.  

Moreover, the BOT could also perform well the non-linear case study. The developed 

Python script is considered as a program to be implemented in the seismic diagnosis system for 

online LMM updating; thus, for a more reliable 1st stage seismic evaluation.   
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Chapter 3: DEEP LEARNING MODELS OF STRUCTURAL COMPONENTS 

3.1.Introduction 

The hybrid seismic analysis [25] described further in Chapter IV, combines advantages 

of both mechanics-based and data-driven methods The seismic response of a building structure is 

simulated based on both analytical models and machine learning models (MLMs) simultaneously. 

The MLM of the target substructure (namely the seismic isolation layer) is designed/trained/tested 

using synthetic data, then implemented within an explicit time-integration method to make 

predictions at each time-step of computation. Seismic responses of three isolated building models 

subjected to four different ground motions, showed very good agreements with reference analyses. 

With the scope to validate the hybrid analysis experimentally, this Chapter focuses on the 1st and 

fundamental step of developing the surrogate models. Synthetic and measured data in full-scale 

isolated building specimens tested at E-Defense in August 2011 [26], are used in this Chapter to 

design MLMs capable of predicting the structural behavior of model isolation systems, and of 

specific seismic isolation devices, namely triple pendulum bearing (TPB) and lead rubber bearing 

(LRB) respectively.  

3.2.Target structural components 

3.2.1. Triple pendulum bearing device (TPB) 
TPBs are passive seismic isolation devices that decouple a building structure from its 

foundations through sliding over concave surfaces. The instantaneous supported weight and 

coefficient of frictions control the amount of dissipated kinematic energy (friction damping), 

while the recentering mechanism is ensured by the curved geometry of the sliding surfaces. 

Originally developed and tested with a single concave sliding surface [27, 28], it has been adapted 

to contain double [29, 30], triple [30], and multiple [31] pendulum systems to withstand different 

levels of ground shaking. The inner structure of a TPB device is shown in Fig. 23.  

 

Figure 23: TPB: (a) undeformed state; (b) deformed state; (c) conventional model. 
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It has four stacked sliding plates and a rigid inner slider, all made from a steel alloy with 

appropriate longevity and resistance. From bottom to top, the radii of curvature (coefficients of 

friction respectively) of the sliding surfaces are referred as R1, R2, R3, and R4 (μ1, μ2, μ3, and μ4 

respectively). The effective radius of a sliding surface Reff is defined as the radius of curvature 

minus the radial distance h to the center of the inner slider, Reffi=Ri-hi. Commonly used TPBs are 

fabricated with Reff1=Reff4>Reff2=Reff3 and, in theory, μ2=μ3<μ1<μ4 resulting to three distinct 

pendulum systems. Depending on the initial frictional resistance and the displacement capacity 

of each sliding surface, Fenz and Constantinou [30] formulated piecewise linear models to map 

the normalized horizontal force Fh/Fv to the relative displacement between the outer plates u, 

based on the free body diagrams of TPB components. This one-dimensional model has been 

revised by Sarlis and Constantinou [32] to include the effect of eccentric axial forces and inertia 

forces at each TPB component. Becker and Mahin [33] formulated a non-linear kinematic model 

that captures the bi-directional behavior of a TPB device without any restriction on frictional and 

geometric properties. Aforementioned analytical models alongside with others [34, 35], showed 

satisfactory results under the same constraints. However, reported validations by experimental 

data of single TPB device are very limited quantitively and qualitatively. Most of tests are 

performed on scaled TPB devices subjected to unrealistic loading conditions such as sine waves 

and/or constant axial load and/or one-dimensional motion. In actual conditions, TPBs are 

expected to undergo more complex three-dimensional loading and the dependency of the 

frictional coefficient on the instantaneous velocity, temperature, and axial pressure [36, 37] is 

more complicated than some proposed empirical formulas. To the best knowledge of the authors, 

no exhaustive experimental validation of a device analytical model has been reported so far.  

3.2.2. Lead rubber bearing device (LRB) 
As shown in Fig. 24, LRB is an elastomeric bearing composed of laminated rubber for 

vertical load support and restoring mechanism, and a central lead plug for energy dissipation; all 

in one single unit. Yielding of the lead plug dissipates the seismic energy through generation of 

heat and its mechanical properties are recovered few minutes later [38, 39, 40], justifying the 

choice of this material. Since its invention in the 1970's by a research team headed by W. H. 

Robinson [41], smooth bilinear models are still commonly used in practice to describe the 

hysteretic behavior. More sophisticated models have been developed to incorporate other features 

such as the strength degradation [42, 43, 44], the strain hardening at large shear deformations [45], 

and the unloading effects [46]. As it is the case for TPB models, most of experimental validations 

are performed under less representative conditions of scaled LRB devices and/or sinusoidal 

loading and/or constant axial load and/or one-dimensional motion. More realistic experimental 

tests on full-scale LRB devices [47, 48, 49] highlighted the influence of the shear strain, the strain 
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rate, and the coupling of three-dimensional loading on the force-displacement characteristics. 

Other hysteretic shapes such as pinching around zero-displacement and strength/stiffness 

degradations have been observed as well. Many physical phenomena behind the behavior of LRB 

have already been identified including, but not limited to, the heating of the lead core [39, 40], 

the buckling in compression [50], the rubber cavitation in tension [51], and the torsional 

deformation in two-dimensional motion [52]. As of today, the development of a generalized 

analytical model capturing the real behavior of LRBs under representative conditions is still an 

unfulfilled task.  

 

Figure 24: LRB: (a) undeformed state; (b) deformed state; (c) conventional model. 

3.2.3. Model isolation system 
Three MLMs simulating three artificial isolation layers are designed in this Chapter. 

Each isolation layer is formed by Natural Rubber Bearing (NRB), Lead Rubber Bearing (LRB), 

and Oil Damper (Oil), as shown in Fig. 25. The combination of both NRB and LRB devices is 

assumed to perform a bilinear hysteresis behavior. The force developed in the Oil Damper device 

is assumed to depend only on the relative velocity of its edges. The three buildings were designed 

according to Japanese engineering practice [53] and modeled using the software STERA_3D [3]. 

Tables 10 provides all properties of the three isolation layers.  

 

Figure 25: Overview of studied isolation layers and its constitutive devices. 
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Table 10: Simulated isolation layers properties 
Isolation Level No. 1 2 3 

Oil Damper 
C1 (kN.s/mm) 2.194 1.617 1.237 

C2/C1  0.067 0.067 0.067 
Vr (mm/s) 320 320 320 

LRB+NRB 
K1 (kN/mm) 175.5 129.4 99 

K2/K1  0.046 0.042 0.031 
Fy (kN) 1755 1294 990 

ML model designation MLM1 MLM2 MLM3 
 

3.3.Available structural data 

3.3.1. Experimental data: E-Defense test program of August 2011 
TPB (LRB respectively) deformation and loading data measured in 20 (14 respectively) 

different runs of the aforementioned E-Defense test program, are used in this Chapter to develop, 

and to test a deep learning model capable of predicting the two-dimensional shear time history of 

the single device. Derived datasets represent realistic loading conditions that include the influence 

of a full-scale superstructure and a variety of strong ground motions with different amplitudes, 

durations, and frequency contents. An experimental validation of these surrogate models on such 

an extensive and representative data would be challenging, unique, and very promising towards 

an implementation in the hybrid seismic analysis [25].  

Shake-table tests were conducted on a full-scale building specimen isolated 

consecutively by a group of nine identical TPB devices, then by a combination of four identical 

LRB and cross linear bearing (CLB) devices. Fig. 26 shows an overview of the 5-story steel 

moment frame superstructure and a typical TPB and LRB connection assembly. Additional 

eccentric weight, in the form of steel plates, was added at the roof level to induce intentionally 

torsional vibrations. The total weight of the building was about 5300 kN. The two support 

configurations are presented in Fig. 27. The isolation layer was instrumented by load cells beneath 

each isolation device, accelerometers at top connecting plates, three horizontal displacement 

transducers (wire pots) along each direction, and six laser transducers for vertical displacement. 

All records are with the same sampling frequency of 1000 Hz, which is enough to capture 

nonlinearities. A comprehensive and detailed description of both specimens can be found in 

references [49, 55].  
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Figure 26: Overview of tested specimen [49, 55]: (a) Superstructure; (b) TPB; (c) LRB. 
 

 

Figure 27: Support configurations: (a) TPB  system; (b) LRB/CLB system. 

All table motions considered in this study to develop the TPB and LRB MLMs are listed 

in Table 11 and Table 12 respectively, following the test program sequence. Four accelerometers 

recorded the table motion at the corners. These records are first filtered (Butterworth bandpass 

filter [0.1, 20] Hz), then averaged to evaluate the peak table acceleration (PTA) of each component 
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and to draw the corresponding horizontal velocity response spectra (Sv) as illustrated in Fig. 28 

and Fig. 29. Data recorded at the isolation level, covering a wide range of amplitudes, frequency 

contents, and durations, were processed to generate datasets for training and testing the MLMs.  

Table 11: TPB isolation system: Realized table motions used in this study. 
TM 
No. 

Designation Reference motion 
Scale 
factor 

PTA (gal) Duration 
(sec.) X Y Z 

1 Sin65 
Sinusoidal (1D) 

65% 98 - - 
35 

2 Sin100 100% 138 - - 

3 WSW80 1987 Superstition Hills-Westermorland 
(3D) 

80% 163 149 105 40 

4 ELC130 1940 Imperial Valley-El Centro (3D) 130% 286 453 259 40 

5 RRS-3D 1994 Northridge-Rinaldi Rec. Sta. (3D) 88% 541 1186 1195 20 

6 SYL100 1994 Northridge-Sylmar (3D) 100% 666 1120 502 22 

7 TAB50 1978 Tabas-Tabas Sta. (3D) 50% 568 449 321 35 

8 LGP70 1989 Loma Prieta-Los Gatos (3D) 70% 443 504 546 25 

9 TCU50 
1999 Chichi-TCU065 (XY) 

50% 441 273 - 
60 

10 TCU70 70% 631 373 - 

11 IWA100 2011 Tohoku-Iwanuma (XY) 100% 394 562 - 180 

12 TAK100 1995 Kobe-Takatori (3D) 100% 769 900 260 40 

13 KJM100 1995 Kobe-JMA Kobe (3D) 100% 669 867 398 35 

14 RRS-2D 1994 Northridge-Rinaldi Rec. Sta. (XY) 88% 509 1167 - 20 

15 TCU80 1999 Chichi-TCU065 (XY) 80% 730 413 - 60 

16 TAB80 1978 Tabas-Tabas Sta. (3D) 80% 838 810 537 35 

17 TAB90 
1978 Tabas-Tabas Sta. (XY) 

90% 903 971 - 
35 

18 TAB100 100% 906 1101 - 

19 SCT100 1985 Mexico City-SCT (XY) 100% 173 103 - 60 

20 TAK115 1995 Kobe-Takatori (3D) 115% 920 1063 270 40 
PTA: Peak table acceleration. 

 

 

Figure 28: TPB system: Velocity response spectra of used table motions (h=5%). 
 

 

 

Table 12: LRB/CLB isolation system: Realized table motions used in this study. 
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TM 
No. 

Designation Reference motion 
Scale 
factor 

PTA (gal) Duration 
(sec.) X Y Z 

1 Sin-1 Sinusoidal (1D) 100 % - 270 - 20 
2 VOG75-1 

Synthetic ground motions (3D) [49] 

75 % 365 229 209 

30 

3 VOG100 100 % 486 319 289 

4 VOG125 125 % 617 422 358 

5 VOG150 150 % 759 522 424 

6 VOG175 175 % 902 620 477 

7 DIA80 
Synthetic ground motions (XY) [49] 

80 % 854 618 442 
30 

8 DIA95 95 % 1050 754 - 

9 ELC130 1940 Imperial Valley-El Centro (3D) 130 % 283 453 272 40 

10 IWA100 2011 Tohoku-Iwanuma (XY) 100 % 396 554 17 180 

11 RRS-2D 1994 Northridge-Rinaldi Rec. Sta. (XY) 
88 % 

487 1107 - 
20 

12 RRS-3D 1994 Northridge-Rinaldi Rec. Sta. (3D) 487 1114 1171 

13 VOG75-2 Synthetic ground motion (3D) [49] 75 % 362 231 212 30 

14 Sin-2 Sinusoidal (1D) 100 % - 274 - 20 
PTA: Peak table acceleration. 

 

Figure 29: LRB/CLB system: Velocity response spectra of used table motions (h=5%). 

Considering the rigidity of the base diaphragm and possible torsional oscillations, 

compatibility of isolators hysteresis loops of the same run is checked to exclude all devices with 

excessively irreconcilable data. This data cleaning step is necessary to keep only reliable 

sequences for the development of MLMs. Therefore, 158 (55 respectively) samples of two-

dimensional hysteresis data are selected for the TPB (LRB respectively) device. 

3.3.2. Synthetic data: Simulated by STERA-3D 
Synthetic data were generated to develop MLM1, MLM2, and MLM3 (Table 10), 

simulating the behavior of the respective isolation layers (NRB + LRB + Oil Damper). To this 

end, NTHAs are performed on equivalent 1DOFs with random natural periods and inherent 

viscous damping. Five ground motions (GMs) are used to generate the synthetic dataset. They 
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were intentionally derived from famous earthquake records with different amplitudes, frequency 

content, and duration as shown in Table 13 and Fig. 30. 

Table 13: Overview of earthquake ground motions used to generate synthetic data. 

GM 
No. 

Ground Motion Earthquake Event PGA Duration 
Acceleration Sparkline Usage in This Study 

Designation Occurrence Date (Gal) (s) 

1 Kobe 1995 NS 17 January 1995 818 5 
 

Tuning network 
architecture  

2 Kobe 1995 NS 17 January 1995 818 15 
 

Training the MLM 
Hybrid analysis (Ch. IV) 

3 Taft 1952 EW 21 July 1952 176 19 
 

Testing the MLM 
Hybrid analysis (Ch. IV) 

4 Tohoku 1978 NS 12 June 1978 258 23 
 

Testing the MLM 
Hybrid analysis (Ch. IV) 

5 El Centro 1940 NS 18 May 1940 342 27 
Testing the MLM 

Hybrid analysis (Ch. IV) 

Ch. IV: Chapter IV. 

 

Figure 30: Acceleration response spectra of GM used to generate synthetic data. 

By varying randomly the natural period and the inherent damping of the 1DOF, 50 

samples of Deformation/Shear time histories are generated for each GM and isolation layer. 

3.4.Training and testing data 

Splitting of the TPB and LRB datasets into training and testing data is not random. It is 

intentionally based on their original runs to minimize the size of the training data (which is often 

faced in real life problems), and to ensure that testing data contain different characteristics than 
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those used for training. Criteria to select the appropriate original runs for training data are 

explained further in Section 6. 

MLMs simulating model isolation layers were trained by synthetic datasets generated 

from GM2. Those generated from GM3, GM4, and GM5 were used for testing. 

3.5.Machine learning algorithms 

Artificial neural networks (ANNs) are the ML algorithms used in this study to simulate 

the complex hysteretic behavior of target isolation devices. The basic ANN algorithm is the 

multilayer perceptron (MLP) presented in Fig. 31. The network architecture consists of fully 

connected input layer, hidden layers, and eventually the output layer. Each layer is formed by 

many units/cells/neurons which perform basic linear operations combined with an appropriate 

activation function.  

 

Figure 31: Overview of the MLP algorithms and architecture. 
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The prediction problem of this study consists of the evaluation of the force-deformation 

hysteresis of target isolation devices. It deals with sequences with variable lengths. Therefore, 

RNNs [54] are selected for the regression prediction problem because they are initially designed 

to deal with sequence data, and they allow to make predictions on sequences with different lengths 

(different durations). Fig. 32 presents an overview of RNN architectures and most common 

units/cells/neurons. The study offers a new application of this class of ANNs, rather than advances 

or descriptions of their algorithms.  

 

Figure 32: Overview of RNN algorithms and architecture.  
 

3.6.Framework for developing the machine learning models 

Methodologies adopted in this study to develop RNN models are presented in Fig. 33 

(for experimental data) and Fig. 34 (for synthetic data). Python scripts were made to process the 

data and to design the models using the TensorFlow machine learning library under Python 3.6. 

All trainings are performed on a computer with 16 Intel® Xeon® W-2245 CPUs and 1 NVIDIA 

RTX 5000 GPU card. The frameworks presented hereafter are not limited to this study but may 

be used to design RNN models for similar sequence-to-sequence prediction problems. 
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3.6.1. Flowchart for experimental data 
Stage 1-Data preprocessing: For a target isolation system and a table motion, all 

needed raw data at the isolation level are first selected. It consists of records from load cells 

beneath all isolation devices, accelerometers at top connecting plates (Fig. 26), and horizontal 

displacement transducers. Corresponding waves are filtered, except the load cell data beneath 

TPB bearings to avoid omitting signal spikes that may results from pounding of its components 

when reaching displacement limits and following an uplift excursion [55, 57, 58].  Then, the data 

are preprocessed to derive the 3D loading and the X-Y displacement time histories of each 

isolation device. For consistency matter, the same derived data in references [49, 55] are used in 

this study. Considering the rigidity of the base diaphragm and possible torsional oscillations, 

compatibility of hysteresis loops of the same run is checked to exclude all devices with 

excessively irreconcilable data. This data cleaning step is necessary to keep only reliable 

sequences for the development of MLMs. At this 1st Stage, 158 (55 respectively) samples of two-

dimensional hysteresis data are selected for the TPB (LRB respectively) device. 

Stage 2-Data processing: The two datasets derived previously must be prepared for 

ML. Based on the mechanical behavior of the device and on available data, the 1st step is to 

decide the physical nature of inputs and outputs. The axial load and X-Y displacement time-

histories are undoubtedly the main features to include as an input. The isolation mechanism of a 

TPB device is based mainly on the friction proportional to the supported weight. However, the 

axial load on a LRB device has other instability effects such as buckling in compression [50] and 

cavitation in tension [51], mainly at large shear deformations. Since both LRB and CLB devices 

were combined in the support configuration (Fig. 27), a vertical load transfer to CLBs has been 

identified at large deformations during the performed tests [49]. The vertical stiffness of CLBs is 

much higher than LRBs and this load-transfer phenomenon is expected whenever these two types 

of devices are rigidly connected by a base diaphragm. Local rotations of bearings may influence 

their behavior as well, but such data are unavailable. Eventually, three features are selected as 

inputs for the TPB MLM, namely the axial force and the X-Y displacement time histories. For 

the LRB model, the X-Y displacement time histories are assumed sufficient for this problem. 

Both models output the X-Y shear time histories. Designing the network architecture is an 

extremely computational task; thus, only the first 10 seconds of each time sequence are used for 

the next Stage 3. Then, selected architectures are trained/tested with  longer sequences (30 

seconds/full durations) at Stages 4/5. All displacement and shear waves are shifted in such a way 

to vanish the initial offset, then splitting and zero-padding through time were performed on 

training data for size augmentation. Since selected features (displacement, axial force, shear) have 
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different ranges, their corresponding sequences are scaled by the maximum absolute value to 

optimize the learning behavior during the backpropagation process [59]. Eventually, input and 

output data are shaped into three-dimensional vectors: [samples, time-steps, features].   

 

Figure 33: Framework for developing and testing MLMs with experimental data. 
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Stage 3-Tune model architecture: The architecture of a RNN consists mainly of the 

number of hidden layers (depth), the number of cells of each layer (width), and the type of the 

recurrent cell. Two RNN cell variants, namely Long Short-Term Memory (LSTM) [60] and Gated 

Recurrent Unit (GRU) [61], are commonly used since they both outperform traditional recurrent 

units and their respective performances are comparable [62, 63, 64]. For a given sequence-to-

sequence prediction problem and dataset, designing a RNN architecture is still an open issue and 

is done mainly by trial-and-error process. Furthermore, a single evaluation of the performance of 

an ANN is not enough considering the aleatory uncertainty of the training process (weight 

initialization and shuffling of data). Therefore, a wide range of GRU/LSTM candidate 

architectures are considered, then trained/evaluated 10 times each before selecting the most 

appropriate ones. A reliability analysis is performed on selected architectures by repeating the 

training/evaluation process 10, 20, 30, 40, and 50 times in order to check further its robustness. 

Statistical comparisons are performed through Box and Whisker plots. The selection is based on 

a trade-off between accuracy/precision and model simplicity. To this end, the mean square error 

(MSE) of Eq. (21) and the number of trainable parameters are used as indexes respectively. MSEs 

are dimensionless since they are evaluated on scaled data. 

𝑀𝑆𝐸 =
∑ (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒௜ − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒௜)ଶ

ௗ௔௧௔

𝑁ௗ௔௧௔

 (21) 

Stage 4-Tune learning behavior: MSEs evaluated at Stage 3 are performances of 

models trained on reduced sequences (first 10 seconds) and up to 250 epochs. However, final 

models should be trained on more representative sequences (estimated to 30 seconds for this 

problem), and the learning behavior has to be diagnosed throughout more epochs for better 

understanding of the progressive learning. Previously selected architectures are trained up to 1500 

epochs and their training and validation losses are analyzed and compared in order to decide the 

final network architecture and training hyperparameters (epochs, loss function, optimizer, batch 

size, learning rate, …).  

Stage 5-Generalization capability: As opposed to synthetic data, experimental records 

contain the epistemic uncertainty of measurement. Overfitting on training data would lead to a 

worthless MLM that can’t make good predictions on new unseen sequences. The regularization 

of the model is performed to prevent any undesirable overfitting. Dropout ratios [65] from 10% 

to 50% are applied to the hidden layer of the final architecture. Resulting models are trained with 

the same dataset and hyperparameters, then their respective performances are evaluated on both 

train and test data to check the generalization capability. The influence of different dropout ratios 

is discussed, and the one leading to the least MSE on test data is saved as the final MLM. It is 
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worth mentioning that the generalization capability of developed TPB and LRB MLMs is 

previously improved through the appropriate selection of training data at Stage 2, and the 

optimization of the MLM at Stages 3/4. By following the proposed methodology, no further 

iterations may be needed.  

3.6.2. Flowchart for synthetic data 
Stage 1: Given the displacement time history of the target isolation layer (NRB + LRB 

+ Oil Damper), the MLM would predict the corresponding shear force-time history. Samples of 

displacement/shear time histories need to be generated by performing NTHAs of the equivalent 

1DOF system having a deformation and velocity-dependent hysteresis behavior as presented in 

Table 10. Natural periods and inherent viscous damping are chosen randomly with the goal to 

reach the displacement limit of the target isolation layer (here, fixed to 25 cm). Data derived from 

GMs 1 and 2 are used to develop the MLMs (Stages 3 and 4), and those corresponding to GMs 3, 

4, and 5 are used for testing (Stage 5). The five seconds duration of GM 1 is chosen for the only 

reason to optimize the computation time of Stage 3. Even though a large artificial dataset could 

be generated, only 50 Samples are produced intentionally to simulate often-faced cases of a small 

experimental dataset. 

Stage 2: Training ANNs needs as much clean data as possible. Artificial samples 

generated in this study are supposedly clean. A data augmentation technique is performed to offer 

a solution for the intentionally generated small dataset: One-second splitting and 0-padding of 

sequences through time were enough to feed Stage 3 with 250 samples and Stage 4 with 750 

samples. These training datasets are scaled by the maximum absolute value to be within the range 

[−1,1] to avoid any exploding or vanishing gradient descent during the backpropagation process 

[59]. Then, datasets are shaped into 3-dimensional vectors: Samples, time steps, features. The test 

data are scaled and shaped similarly, but no size augmentation is needed. 

Stage 3: ANNs are stochastic models. The same architecture trained by the same data 

and with the same hyperparameters leads to different predictions. The randomness of both 

network weights initialization and splitting to training and validation data generates an aleatory 

uncertainty. All candidate architectures are trained many times, and their final performances are 

summarized in a Box and Whisker plot to select the most appropriate one based on accuracy and 

precision. Ten acts of training (runs) per case are performed for the first level screening to choose 

between the two most common types of RNN cells: LSTM [60] and GRU [61]. Then, 20 runs of 

training per case are performed for the second level screening to select the network architecture. 

In order to test further the reliability of the final network, batches of 10, 20, 30, 40, and 50 

independent acts of training were performed to analyze the scattering of its final performances. 
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The range of candidate architectures and the number of training repetitions are limited only by 

the computation resources; the reason why sequences corresponding to 5 s duration (derived from 

GM1) are trained up to 500 epochs for this stage is to obtain a good balance between model 

reliability and computation effort. Model performance is evaluated by computing the MSE of Eq. 

(21) between normalized reference values and predicted ones. 

 

Figure 34: Framework for developing and testing MLMs with synthetic data. 
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Stage 4: Given the same data and the same network architecture, hyperparameters such 

as the loss function [66] (the performance assessment metric), the optimizer [67] (the algorithm 

used to update the network weights), the batch size (the amount of data loaded for each weights 

update), and the number of training epochs, may influence the learning behavior of the model. A 

sensitivity analysis to hyperparameters is performed, followed by a deep diagnosis of the learning 

behavior through training epochs. The objective of this stage is to decide the appropriate 

hyperparameters among widely used ones and to train the final MLMs on full-length sequences 

derived from GM2. The same performance assessment metric of Stage 3 (MSE) is used for that 

purpose. 

Stage 5: Developed MLMs are tested on a new unseen dataset derived from GMs 3, 4, 

and 5. MSEs are computed for the three test sub-datasets containing 50 samples each. For the 

visualization of each model performance, shear time history predictions of a few random test 

samples are unscaled, then combined with their respective displacement time histories to draw 

the corresponding nonlinear cyclic hysteresis loops. In order to keep the same unit of the original 

waves, the Root Mean Square Error (RMSE) of unscaled sequences (ShearOps versus ShearPredicted) 

is evaluated as follows: 

𝑆ℎ𝑒𝑎𝑟 𝑅𝑀𝑆𝐸 (𝑘𝑁) = ඨ
∑ ൫𝑠ℎ𝑒𝑎𝑟ை௣ௌ,௜ − 𝑠ℎ𝑒𝑎𝑟௉௥௘ௗ௜௖௧௘ௗ,௜൯

ଶ
௧௜௠௘

𝑁௧௜௠௘ ௦௧௘௣௦
 (22) 

3.7.Surrogate models for specific LRB and TPB devices 

3.7.1. Appropriate selection of training data 
Both the size and the quality of training data are crucial to design an efficient MLM. 

Since available data in civil engineering practice is often limited, a minimalist selection of training 

data is carried out intentionally to develop the final models. The size is then augmented by 

splitting and zero-padding through time (Stage 2). Samples should cover the widest range possible 

of influencing parameters: for the problem treated in this study, deformation, velocity, axial force 

(only for TPB), and shear force are considered. Even though the strain rate is not an input for ML, 

a well-designed RNN could infer such an information from the displacement sequence. 

To highlight aforementioned issues, six different sets of training data are selected 

deliberately for each isolator type, to train the same RNN architecture (GRU network of reference 

[25]) up to 1500 epochs. Tables 14 and 15 show the original runs of training data for each MLM. 

The 1st set is derived from sinusoidal runs (similar to standard test protocols), the 2nd contains low 

amplitude sequences (large size but incomplete), and the remaining sets (3rd→6th) contain 

progressively extreme performances realized by the isolators (displacement, velocity, shear force 
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in both X and Y directions, and the axial force for the TPB case). The sinusoidal run is added as 

it is the only one-dimensional strong motion available, and MLMs are expected to learn the 

structural behavior under both one- and two-dimensional horizontal motions.  

Table 14: Selection of training data for TPB MLMs. 
Original runs of training data 

 TPB 

MLM1 

TPB 

MLM2 

TPB 

MLM3 

TPB 

MLM4 

TPB 

MLM5 

TPB 

MLM6 

Sin65 Sin65 TAB100 TAB100 TAB100 TAB100 

Sin100 WSW80 - TAK115 TAK115 TAK115 

- ELC130 - - RRS-3D RRS-3D 

- SYL100 - - LGP70 LGP70 

- KJM100 - - - Sin100 

 

Table 15: Selection of training data for LRB MLMs. 
Original runs of training data 

 LRB 

MLM1 

LRB  

MLM2 

LRB  

MLM3 

LRB  

MLM4 

LRB 

MLM5 

LRB  

MLM6 

Sin-1 VOG75-1 DIA95 DIA95 DIA95 DIA95 

- ELC130 - VOG175 VOG175 VOG175 

- - - - Sin-1 Sin-1 

- - - - - RRS-2D 

Resulting MLMs (1st→6th) are tested on their corresponding remaining data (derived 

from the remaining runs), which contain new unseen sequences. Fig. 35 shows the size of train 

data (in blue) and the MSE on test data (in red) for each case. The worst performance is realized 

for the TPB and LRB MLM1, trained by low amplitude sequences derived from the one-

dimensional sinusoidal motions. The large size of the 2nd datasets was not sufficient to design 

generalizable MLMs (second highest MSEs). By choosing progressively appropriate training data 

(3rd→6th), MSEs on test data decreased significantly. This case study emphasizes the importance 

of preparing appropriate training data, in terms of both size and quality. Datasets used to train the 

TPB/LRB MLM6 (5/4 runs out of 20/14; 36/16 samples) are considered for the rest of this study, 

and 20% of which are used for validation. The first 10 seconds duration of each sequence are used 

to design the network architecture (360/160 samples after data augmentation), and the first 30 

seconds duration for training the final MLMs (1080/480 samples after data augmentation).  

3.7.2. Artificial neural network architecture 
A study of nonlinear hysteresis prediction [25] highlighted that a stacked RNN model 

of two hidden layers of 60 GRU units each, and an output dense layer was enough to make 

accurate predictions of wavy bilinear hysteresis loops. However, the data used herein represent a 
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more realistic and complicated loading conditions of full-scale isolation devices and contain the 

epistemic uncertainty of measurement. Therefore, the aforementioned RNN architecture is taken 

as a minimum capacity, and a wider range up to 100 RNN units and 3 hidden layers is investigated 

herein (Fig. 36 and 37). Both GRU (red color) and LSTM (blue color) units are used to train each 

model 10 independent times, and final MSEs on validation data are visualized by Box and 

Whisker plots. For TPB models (Fig. 36), performances of both RNN units are overall similar 

with slightly more outliers for the LSTM case. Therefore, the simplest one (less trainable 

parameters) with minimum median/average values is selected: two hidden layers of 95 GRU units 

each. For LRB models (Fig. 37), LSTM architectures are more accurate but the two GRU hidden 

layers architectures are very precise. Not much gain of accuracy/preciseness is obtained by 

deepening networks. Thus, two candidate architectures are selected for further investigation: two 

hidden layers of 60 GRU (preciseness) and 70 LSTM units (accuracy) respectively.  

 

Figure 35: Influence of training data on performance: (a) TPB MLM; (b) LRB MLM. 
 

 

Figure 36: Random search for TPB model architecture: (a) 2 layers; (b) 3 layers. 
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Figure 37: Random search for LRB model architecture: (a) 2 layers; (b) 3 layers. 

3.7.3. Model reliability 
The robustness of previously selected architectures is checked further by performing 

independent batches of trainings on the same dataset: 10, 20, 30, 40, and 50 runs. Fig. 38 shows 

the statistical distribution of MSEs on validation data. The overall performance of each 

architecture remains similar in terms of median/mean values, but the LSTM units lead to wider 

interquartile ranges and more outliers for the regression problem treated in this study. It is worth 

mentioning that the batches of 10 runs are different from those reported in Fig. 36-a and 37-a, 

highlighting the stochastic aspect of the learning process.  

 

Figure 38: Reliability of selected architectures: (a) TPB MLM; (b) LRB MLM. 
 

3.7.4. Diagnosis of learning behavior  
The progressive learning of selected architectures is diagnosed through all training 

epochs, rather than a single evaluation at 250 epochs (Stage 3). Trainings are performed on longer 

and more representative sequences (30 seconds duration/30,000 time-steps) and up to 1500 

epochs. As stated previously in Fig. 37-a and observed again in Range 1 of Fig. 39, the LSTM 
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architecture (blue color) learns faster at an early stage of training. However, a turnaround happens 

after 100 epochs, from which MSEs of the GRU architecture become smaller and smoother than 

their LSTM counterparts. The overall noisy learning behavior of the LSTM architecture explains 

the wider interquartile ranges and outliers highlighted in Stage 3. For the LRB MLM, the GRU 

architecture is selected for the rest of this study. The same smooth and stable learning behavior 

characterizes the GRU architecture of the TPB model, as shown in Fig. 40. MSEs on both training 

and validation data decrease jointly and asymptotically to a zero value.  

 

Figure 39: Learning behavior of the selected LRB MLMs. 

 

Figure 40: Learning behavior of the selected TPB MLM. 
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3.7.5. Testing of TPB and LRB MLMs 
Dimensionless MSEs presented previously were computed on scaled data used to 

optimize the learning process of RNNs. The RMSE (Eq. (23)) and the coefficient of determination 

(R2) on unscaled data, are provided hereafter for a better appreciation of model predictions on real 

scale shear data.  

𝑅𝑀𝑆𝐸 (𝑘𝑁) = ඨ
∑ (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠ℎ𝑒𝑎𝑟௜ − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠ℎ𝑒𝑎𝑟௜)

ଶ
௧௜௠௘

𝑁௧௜௠௘ ௦௧௘௣௦

  (23) 

Final GRU architectures are evaluated on full length sequences (full duration reported 

in Tables 11 and 12). Since the number and content of samples derived from each run are different, 

grouping them all would lead to an unbalanced dataset. As shown in Tables 16 and 17, RMSEs 

are evaluated on sub-datasets corresponding to each table motion, and the average value is then 

computed for both train and test data. Bolded table motions are those used for training, and 

samples derived from the remaining ones are the new unseen data used for testing. Continuing 

the MLM numbering of Tables 14 and 15, six TPB (7→12)/LRB (6→11) models are developed 

depending on common dropout ratios (0~50%), then their respective performances are analyzed 

and compared.  

The dropout technique had more beneficial effect on the LRB case (Table 17), since all 

average RMSEs on test data (39 samples) are smaller than the one of LRB_MLM6 (0% dropout). 

This regularization method often reduces the overfitting on train data as it is highlighted for the 

TPB case, where the TPB_MLM7 (0% dropout) has the least average RMSE on train data. The 

dropout ratios leading to the best performance on test data are selected, and corresponding MLMs 

are saved as the most generalizable within the framework proposed in this study: TPB_MLM12 

(50% dropout) and LRB_MLM10 (40% dropout). As highlighted in the Tables (in bold), six 

representative cases are selected for predictions visualization in Section 5 and corresponding to: 

the sinusoidal run used for training (as the only 1D motion), the smallest and biggest errors on 

both train and test sub-datasets, the SYL100 motion (TPB test data) to check the model capability 

of predicting uplift excursions, and the IWA100 (LRB test data) long duration motion to highlight 

the long-term temporal dependency of developed GRU models. 

For each MLM, prediction samples (red color) from the six representative cases 

highlighted in Tables 16 and 17, are visualized and compared with the experimental data (black 

color). The isolator position of each presented sample is provided in accordance with Fig. 27.  
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Table 16: Regularization and testing of the selected TPB architecture. 

No. 
Table 

motion 
N* 

RMSE (kN)_R2 on full length sequences 
TPB_MLM

7 
TPB_MLM

8 
TPB_MLM

9 
TPB_MLM

10 
TPB_MLM11 TPB_MLM12 

0% Dropout 10% 
Dropout 

20% 
Dropout 

30% 
Dropout 

40% Dropout 50% Dropout 

1 Sin65 8 08.00_0.92 09.70_0.88 08.63_0.92 09.33_0.91 09.02_0.90 08.50_0.92 

2 Sin100 8 01.08_1.00 02.08_0.99 01.50_1.00 01.16_1.00 01.25_1.00 01.19_1.00 

3 WSW80 8 05.63_0.88 05.27_0.90 05.38_0.84 05.84_0.83 06.51_0.84 05.67_0.87 

4 ELC130 8 07.58_0.89 08.07_0.86 07.54_0.85 06.65_0.90 08.52_0.85 07.37_0.87 

5 RRS-3D 4 02.42_0.99 02.88_0.99 02.67_0.99 02.69_0.99 02.76_0.99 02.77_0.99 

6 SYL100 7 10.65_0.82 10.24_0.83 10.57_0.83 10.96_0.82 11.67_0.79 10.87_0.81 

7 TAB50 8 08.30_0.86 08.88_0.84 11.18_0.76 10.53_0.78 07.92_0.86 10.30_0.78 

8 LGP70 9 01.94_0.99 02.50_0.98 02.38_0.98 01.98_0.99 01.93_0.99 02.10_0.98 

9 TCU50 9 14.32_0.85 13.38_0.82 11.55_0.83 11.45_0.80 13.09_0.82 10.78_0.87 

10 TCU70 9 11.62_0.80 15.49_0.53 13.29_0.78 13.39_0.69 13.71_0.69 10.72_0.83 

11 IWA100 9 10.74_0.53 11.81_0.58 12.51_0.51 13.38_0.51 09.44_0.52 11.45_0.51 

12 TAK100 9 09.19_0.92 09.65_0.92 09.98_0.91 09.77_0.92 09.88_0.92 9.67_0.93 

13 KJM100 8 09.84_0.83 10.70_0.79 11.03_0.77 11.25_0.76 10.76_0.80 10.76_0.81 

14 RRS-2D 7 09.22_0.88 8.88_0.89 09.29_0.88 08.69_0.89 07.53_0.92 08.75_0.89 

15 TCU80 8 15.18_0.82 19.63_0.77 15.44_0.82 16.48_0.72 12.19_0.86 14.55_0.84 

16 TAB80 8 13.72_0.82 17.07_0.65 16.62_0.63 15.52_0.69 14.28_0.78 13.77_0.81 

17 TAB90 8 12.75_0.81 12.85_0.78 12.04_0.84 13.63_0.79 12.17_0.82 12.51_0.83 

18 TAB100 7 01.54_1.00 02.12_0.99 01.73_0.99 01.58_1.00 01.59_1.00 01.58_1.00 

19 SCT100 8 10.62_0.90 12.09_0.91 12.78_0.90 11.65_0.89 12.02_0.89 10.93_0.91 

20 TAK115 8 02.70_1.00 03.59_0.99 02.59_0.99 02.84_1.00 02.46_1.00 02.72_1.00 

Averag
e error 

Train data 36 01.94_1.00 02.63_0.99 02.17_0.99 02.05_1.00 02.00_1.00 02.07_0.99 

Test data 122 10.49_0.83 11.58_0.80 11.19_0.80 11.24_0.79 10.58_0.82 10.44_0.83 
*Number of full-length samples without data-augmentation.  

Table 17: Regularization and testing of the selected LRB architecture. 

No. 
Table 

motion 
N* 

RMSE (kN)_R2 on full length sequences 
LRB_MLM

6 
LRB_MLM

7 
LRB_MLM

8 
LRB_MLM

9 
LRB_MLM10 LRB_MLM11 

0% Dropout 10% 
Dropout 

20% 
Dropout 

30% 
Dropout 

40% Dropout 50% Dropout 

1 Sin-1 4 04.78_0.99 02.64_0.99 02.67_0.99 02.71_0.99 03.81_0.99 03.51_0.99 

2 VOG75-1 4 10.39_0.94 09.98_0.95 09.83_0.95 08.63_0.96 08.63_0.96 08.20_0.96 

3 VOG100 3 10.96_0.96 10.12_0.97 11.04_0.96 09.06_0.97 09.10_0.97 08.54_0.98 

4 VOG125 4 09.66_0.98 08.55_0.98 10.65_0.98 09.06_0.98 09.10_0.98 08.54_0.98 

5 VOG150 4 07.97_0.99 07.53_0.99 08.30_0.98 07.18_0.99 07.37_0.99 07.78_0.99 

6 VOG175 4 06.27_0.99 05.69_0.99 05.52_0.99 05.96_0.99 06.23_0.99 07.98_0.99 

7 DIA80 4 10.16_0.98 09.67_0.98 08.83_0.98 09.66_0.98 08.93_0.99 10.18_0.98 

8 DIA95 4 06.02_0.99 04.40_0.99 04.27_0.99 04.92_0.99 05.85_0.99 05.58_0.99 

9 ELC130 4 10.18_0.94 10.38_0.94 10.33_0.94 10.02_0.95 09.94_0.95 10.53_0.95 

10 IWA100 4 09.61_0.91 08.62_0.93 09.16_0.92 08.45_0.89 08.66_0.89 11.76_0.82 

11 RRS-2D 4 05.44_0.99 04.79_0.99 03.74_0.99 05.54_0.99 04.88_0.99 05.03_0.99 

12 RRS-3D 4 05.91_0.99 05.59_0.99 05.23_0.99 06.02_0.99 05.91_0.99 06.20_0.99 

13 VOG75-2 4 10.78_0.94 10.15_0.95 11.25_0.95 09.92_0.95 09.33_0.96 09.46_0.96 

14 Sin-2 4 08.63_0.98 06.41_0.99 08.08_0.99 07.52_0.99 07.88_0.99 07.61_0.99 

Averag
e error: 

Train data 16 05.63_0.99 04.38_0.99 04.05_0.99 04.78_0.99 05.19_0.99 05.53_0.99 

Test data 39 09.42_0.96 08.70_0.97 09.27_0.96 08.50_0.97 08.42_0.97 08.88_0.96 
* Number of full-length samples without data-augmentation. 

Prediction samples from train and test data are presented in Fig. 41 and 42 respectively. 

Overall, the TPB_MLM predictions are outstanding for the train data cases and very good for the 

test ones. One model could predict different and complex structural behaviors of typical TPB 

devices, in terms of extremum shears and hysteresis loops performed in 1D/2D/3D motions. Many 
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cases of uplift excursions happened in the realized experimental tests due to overturning moment 

and/or vertical excitations [55], the TPB_MLM could, not only, learn such a behavior from few 

training samples (such as TPB-S under RRS-3D presented in Fig. 41), but also predict it under 

new circumstances (TPB-C under SYL100 presented in Fig. 42). It is worth mentioning that 

during uplift excursions, conventional analytical models calculating the shear normalized by the 

instantaneous axial force might fail since the ratio diverges (no tensile resistance). On the contrary, 

the TPB_MLM showed some limitations in predicting the residual shear for few test data. 

Run 
Devic

e 

X-direction Y-direction 

Shear time history Hysteresis Shear time history Hysteresis 

Sin100 
TPB-C - - 

TAB10
0 

TPB-
NE 

RRS-
3D 

TPB-S 

Figure 41: TPB MLM_Train data: Predictions (red) vs. Experiment (black). 

Prediction samples from train and test data are presented in Fig. 43-44 respectively. The 

overall behavior of tested LRB devices could be described by a degrading trilinear analytical 

model, the conventional smooth bilinear model would over-estimate the energy dissipation 

capacity. However, some observed local softening and hardening (LRB-W/S under 

VOG175/RRS-3D presented in Fig. 43-44), strength degradation (LRB-S under Sin-1 presented 

in Fig. 43), and pinching effects (all cases) would be difficult to combine together in one single 

analytical model. The same LRB_MLM could capture all aforementioned hysteresis features with 

a very good accuracy. It performed also very well for the longest table motion duration used in 

this study of 180 seconds (LRB-N under IWA100 presented in Fig. 44), proving that developed 

GRU models could behave well even for long-term temporal dependency problems. It is worth 

mentioning that the sudden shear drops observed in the LRB-E under RRS-2D (Fig. 43), are 

because of some bolt slippage that occurred at the bottom connecting steel plate [49]; 

unsurprisingly, the LRB_MLM did not capture these spikes unrelated to the isolator itself.  
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Run 
Devic

e 

X-direction Y-direction 

Shear time history Hysteresis Shear time history Hysteresis 

WSW8
0 

TPB-
SE 

TCU80 
TPB-N 

SYL10
0 

TPB-C 

Figure 42: TPB MLM_Test data: Predictions (red) vs. Experiment (black). 
 

 

 

Run 
Devic

e 

X-direction Y-direction 

Shear time history Hysteresis Shear time history Hysteresis 

Sin-1 
LRB-S - - 

RRS-
2D 

LRB-E 

VOG17
5 

LRB-
W 

Figure 43: LRB MLM_Train data: Predictions (red) vs. Experiment (black). 
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Run 
Devic

e 

X-direction Y-direction 

Shear time history Hysteresis Shear time history Hysteresis 

RRS-
3D 

LRB-S 

ELC13
0 

LRB-
W 

IWA10
0 

LRB-N 

Figure 44: LRB MLM_Test data: Predictions (red) vs. Experiment (black). 
 

3.7.6. Computation time 
A summary of elaborated TPB/LRB MLMs is presented in Table 18. These RNN 

models are accurate since their RMSEs on the substantial test data are acceptable in Structural 

Engineering (10.44/8.42 kN), and the R2 values of 0.83/0.97 highlight the strong correlation 

between experimental and predicted data. Furthermore, models architectures were optimized to 

minimize the number of trainable parameters (83,412/33,602); thus, the training time 

(20h52/9h16). A MLM accuracy and simplicity are crucial for a successful implementation in the 

hybrid analysis [25].  

Table 18: Summary of final TPB and LRB MLMs. 

 Input Output Architecture 
Training 

(1500Epochs) 
Average RMSE (kN)-R2 

Sampl
es* 

Time Train 
data 

Test data  

TPB 
X-Y Displacement histories 

Axial force history 
X-Y Shear 
histories 

95 GRU cells 
Dropout: 50% 
95 GRU cells 
2 Dense cells 

1080 20h52 02.07_0.99 
(36 samples) 

10.44_0.83 
(122 samples) 

LRB X-Y Displacement histories 
X-Y Shear 
histories 

60 GRU cells 
Dropout: 40% 
60 GRU cells 
2 Dense cells 

480 09h16 05.19_0.99 
(16 samples) 

08.42_0.97 
(39 samples) 

        

3.8.Surrogate models for model isolation systems 

3.8.1. Artificial neural network architecture 
The architecture of a pure RNN is described mainly by the depth (number of recurrent 

layers), the width (number of recurrent cells in each layer), and the type of the recurrent cell (or 
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unit). It is very common to add a fully connected Dense layer for the output layer, as presented in 

the original 1997 LSTM paper [60]. More developed configurations may be considered depending 

on the problem treated [54]. Since the objective is to predict the shear time history from the 

displacement time history, a sequence-to-sequence model is adopted. Once trained and tested, the 

MLM would be implemented to perform hybrid seismic analyses by predicting the shear force at 

each integration time step; thus, its architecture should be as small as possible to optimize the 

computation time. Deep RNNs may not systematically increase the performance of the network 

[68], as opposed to MLPs and CNNs and as long as overfitting-type problems are treated. When 

unfolded through time, a shallow RNN is actually a deep network. Therefore, a stacked RNN of 

only three layers is adopted herein: first recurrent layer as an input layer, second recurrent layer 

as a hidden layer, and a one-unit Dense layer as an output layer. The network depth being fixed, 

random searches are performed to optimize the type of the recurrent cell (first screening) and the 

network width (second screening). 

LSTM [60] and GRU [61] are the most common and widely used recurrent cells (or 

units) since they outperform traditional RNN cells [64]. They are gated recurrent units capable of 

learning long-term temporal dependencies, which is important in this study to predict the 

nonlinear shear force from the displacement time history. The GRU is a recent variant of the 

LSTM with less trainable parameters. However, the performance of one relative to the other is 

still an open research field [63]. Both LSTM and GRU cells are used and compared in this study. 

Box and Whisker plots are visualized to describe the statistical distribution of models’ final 

performances. For each RNN architecture, scores (MSE on validation data after 500 training 

epochs) are dot marked next to the boxplot, their mean value by a cross mark, and the median 

value by a horizontal line within the Inter Quartile Range (IQR). Fig. 45 shows the performance 

of LSTM (red color) and GRU (blue color) models, all with the same depth but different widths. 

The horizontal axis represents the number of RNN cells per each of the two recurrent layers. A 

5-units step is adopted from 10 up to 100 units. For each architecture, 10 independent runs are 

performed, leading to 10 different evaluations, which attest to the aleatory uncertainty of the 

training process. MSEs of both LSTM and GRU models are decreasing uniformly up to 35-cells 

width. From 35 to 100-cells width, the performance of GRU models is more stable compared to 

LSTM models, which have more outliers and larger IQRs. Therefore, the GRU cell slightly 

outperforms the LSTM cell for the problem treated in this study. The width range between 60- 

and 80-GRU cells are selected for the second screening since there is no major gain in accuracy 

and precision for larger widths, and the minimization of network architecture is a crucial criterion 

for an efficient implementation of MLMs in hybrid seismic analyses. 
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Figure 45: Isolation layer-MLM1:1st Screening for random search of architecture. 

3.8.2. Models reliability  
GRU architectures within the previously selected width range are trained and evaluated 

20 independent times again, as shown in Fig. 46(A). The global performance is still stable as all 

MSE means and median values are less than 3 × 10−4, and data are less scattered (tighter IQRs). 

Since all these models perform similarly (in terms of mean value, median value, and IQR), the 

one with the fewer GRU units is selected to minimize the computation time when implemented 

for hybrid seismic analysis. The reliability of the selected 60-GRU architecture is tested further 

to ensure its robustness, as shown in Fig. 46(B). All MSE means and median values are again less 

than 3 × 10−4, although few outliers are included within the data. It is worth mentioning that the 

cases of 10- and 20-runs of the selected 60-GRU architecture are independent of those performed 

at first and second screenings. The difference in results is due to the randomness of the training 

process. 

 

Figure 46: Isolation layer-MLM1: (A) 2nd Screening and (B) reliability of GRU model. 
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3.8.3. Sensitivity analysis to hyperparameters 
The optimizer, the number of epochs, and the batch size are commonly recognized as 

the most influencing hyperparameters on the performance (accuracy and computation time) of 

neural networks [54]. More specifically, the learning rate of the optimizer (here, Adam optimizer 

[69]) that scales the magnitude of the network weights update is a key hyperparameter [70]. The 

loss may be a highly non-convex function [71]. Very small learning rates delay the network 

learning and/or may stick the loss function to a local minimum. Very high learning rates make 

the learning very noisy with a risk of divergence. The number of epochs combined with the batch 

size defines how often the weights are updated, which influences both the learning accuracy and 

the computation time. For a fixed number of 500 epochs, the sensitivity of the selected RNN to 

commonly used values of learning rate and batch size is investigated. As shown in Fig. 47(A), 

high learning rates (0.005~0.01) and frequencies of weights updates (batch size of 16 and 32) lead 

to a divergence of the loss function, and a small learning rate (0.0001) delays the learning and 

especially for small frequencies of weights updates (batch size of 64 and 128). A good balance is 

obtained for intermediate (diagonal) values. The learning rate has almost no influence on the 

training duration, which is inversely proportional to the batch size, as shown in Fig. 47(B). Since 

the RNN architecture was minimized at Stage 3 and GRU cells have less trainable parameters 

than LSTM cells, the training time is less than one hour in all cases. Therefore, the values of 

learning rate (0.001) and batch size (32) used previously at Stage 3 are kept unchanged. 

 

Figure 47: Sensitivity analysis to hyperparameters: (A) MSE; and (B) Training time. 
 

3.8.4. Diagnosis of learning behavior  
The selected GRU architecture has shown satisfactory final performance up to 500 

epochs. In order to decide the number of training epochs to train the final model, the learning 

behavior has been diagnosed throughout the first 1500 epochs for five independent runs (5 colors 

in Fig. 48). The MSE on training data is represented by solid lines and dashed lines for validation 
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data. The most important phase of learning is established in the first 125 epochs (Range 1). Both 

validation and training losses decrease and stabilize jointly for the five independent runs. No 

exaggerated underfitting or overfitting behavior is observed after 125 training epochs. The mean 

loss of both training and validation data decreases below 5 × 10−5 after only 1000 epochs and 

keeps converging asymptotically to a zero value (Range 2). Similar nonlinear dynamic response 

prediction problems treated in recent studies using recurrent networks required 10,000 [72] and 

50,000 [4] epochs to reach losses of the same order and with networks having about 130,000 [4] 

trainable parameters (here, only 33,361 for the selected 60 GRU architecture). MLM1 is trained 

up to 1500 epochs, and its MSE on validation data is 1.69 × 10−5. This outstanding performance 

is due to the quality/size of training data and to the network optimization process. 

 

Figure 48: Isolation layer-MLM1: Learning behavior. 

MLM2 and MLM3 are designed for a sequence prediction problem of the same nature 

as MLM1. The only differences are the properties of the isolation layers they simulate (Table 10). 

Therefore, the same architecture and hyperparameters adopted for MLM1 were used for their 

training activities on datasets of the same size but with different contents. The MLM2 (MLM3 

respectively) MSE on validation data is 6.51 × 10−6 (1.24 × 10−5 respectively). 

3.8.5. Testing of isolation layer MLMs 
Three test datasets of 50 samples each were derived from GMs 3~5 (Stages 1 and 2). In 

order to test developed MLMs, their MSEs on these new unseen data are evaluated. As shown in 
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Table 19, all MSEs are in the order of 10−4, which are greater than those of training data (~10−5), 

but it is still a very good performance knowing that test data were intentionally generated from 

GMs with different properties than GM2 used for training (see Table 13 and Fig. 30).  

Table 19: Isolation layers-MLMs: MSEs on test datasets. 

 
Test Dataset 3 

(GM3: Taft 1952 EW) 
Test Dataset 4 

(GM4: Tohoku 1978 NS) 
Test Dataset 5  

(GM5: El Centro 1940 NS) 
MLM1 2.73 × 10−4 6.04 × 10−4 3.84 × 10−4 
MLM2 5.04 × 10−4 7.04 × 10−4 4.97 × 10−4 
MLM3 6.75 × 10−4 9.72 × 10−4 6.63 × 10−4 

To illustrate the accuracy of developed models on real scale data, shear time history 

predictions of a few random samples are unscaled, then combined with their respective 

displacement time histories to draw the corresponding nonlinear cyclic hysteresis loops. Fig. 49 

to 51 show respectively the resulting curves compared with reference ones of NTHAs. It is worth 

mentioning that for each sample case, both MLM and NTHA have the same displacement time 

history; thus, RMSE is provided only for the shear sequence. The predicted hystereses fit very 

well reference curves, and all RMSEs are in the order of tens of kN, which is widely accepted in 

earthquake engineering. 

 

Figure 49: MLM1: Prediction (black) vs reference (red) of a random sample. 

 

Figure 50: MLM2: Prediction (black) vs reference (red) of a random sample. 
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Figure 51: MLM3: Prediction (black) vs reference (red) of a random sample. 

3.8.6. Computation time 
Table 20 shows the consumed computation time for each step of Stages 3 and 4. GRU 

models are about 27% faster than LSTM models since they were initially designed with less 

trainable parameters. The third stage is the most time-consuming in the proposed framework since 

630 independent training acts were performed for a cumulative computation time of almost 3 days. 

The sequence length is the number of integration time-steps used for NTHAs, which is equal to 

the GM duration divided by the modified time-step of its original record (here, 0.02/5 = 0.004 s). 

The time subdivision by five is commonly used for an accurate nonlinear analysis. Considering 

the randomness of the training process of ANNs, the skill of a model should never be evaluated 

by a single run. The number of repetitive training acts is limited only by the available time and 

the computation resources. 

Table 20: Isolation layer: Computation time for developing the MLMs. 

Training 
Sequence 

Length 
Epochs 

Batch 
Size 

Number of Training Time (h) 

1st screening 1251 500 32 
LSTM: 19 × 10 = 190 23.93 
GRU: 19 × 10 = 190 18.87 

2nd screening 1251 500 32 5 × 20 = 100 09.82 
Model reliability 1251 500 32 10 + 20 + 30 + 40 + 50 = 150 14.80 

Sensitivity analysis 3751 500 16~128 20 10.27 
MLM1 3751 1500 32 5 08.49 
MLM2 3751 1500 32 1 01.65 
MLM3 3751 1500 32 1 01.66 
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Chapter 4: HYBRID SEISMIC ANALYSIS OF BUILDING STRUCTURES 

4.1.Introduction 

The conventional method to simulate the time history response of a building model 

subjected to dynamic loadings, such as earthquake ground motion and wind load, is based on the 

principle of mechanics. Newton’s laws of motion are the essence behind the establishment of the 

equilibrium equations. When considering the complexity of the original formulation and the 

development of numerical computation resources in the second half of the 20th century, the 

resulting second-order differential equations had been reformulated and numerically solved 

through discretization in space and time using the Finite Element Method (FEM) and time 

integration algorithms, respectively. Many analytical models to simulate the nonlinear behavior 

of common structural members, such as reinforced concrete (RC) structural components, had 

already been formulated and validated by experimental results [73]. The combination of all these 

modules makes it possible to compute a building response by performing NTHA. Many 

assumptions and/or simplifications are considered, whether in the original physics laws, the FEM, 

or the hysteresis models of structural components. Time integration methods also generate 

numerical errors, and their stability may be compromised [74,75]. Despite all these inevitable 

limitations, the NTHA remains the most accurate and reliable mechanics-based method to 

evaluate the seismic performance of a structural model. This know-how must be the reference for 

response prediction problems (RPPs) of building structures. 

For RPPs, deep learning (DL) models such as multilayer perceptrons (MLPs), 

convolutional neural networks (CNNs), and RNNs are becoming more attractive since no need to 

identify features within input data are required, and more sophisticated DL algorithms are being 

constantly developed [76]. Even though RNNs were initially designed for time series forecasting 

problems, only very few of their applications are counted in earthquake engineering. Zhan et al. 

[18] predicted the nonlinear inter-story drifts of three building structures (five degrees-of-freedom 

system, six-story instrumented RC building, and three-story steel building model) using LSTM 

[60] recurrent networks. In general, very high prediction accuracy was observed for a close-to-

linear structural response, and it decreases with nonlinearities. The same research team had 

improved the prediction accuracy and robustness of the previously developed LSTM models by 

encoding some laws of physics in the network architecture and embedding them in the overall 

loss function [72]. Eshkevari et al. [77] developed a physics-based recurrent cell (DynNet) that 

predicts the full state space (acceleration, velocity, displacement, and internal forces of MDOF, 

given a ground motion. Nonlinear responses of two 4DOF systems with different nonlinearity 
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types (elastoplastic and nonlinear elastic stiffnesses) were quite successfully predicted; thus, 

concluding that the performance of the DynNet in capturing the nonlinear response is promising. 

All these implementations of RNNs for RPPs highlighted some drop of accuracy in predicting 

large nonlinearities, and their respective models remain limited to predict limited response 

quantities of the studied structures. 

In order to address many of the aforementioned limitations, the hybrid seismic analysis 

proposed in this Chapter combines the advantages of both NTHA (mechanics-based method) and 

MLMs (data-driven method) as shown in Fig. 52. The term hybrid is related to the time integration 

algorithm of the NTHA, not to the input data nor to the model architecture. Some existing or 

newly developed materials, structural components, or devices may have an excessively 

complicated analytical model and/or a still not-exhaustive understanding of their true behavior 

among researchers and practitioner communities. Instead of adopting simplified analytical models 

based on many assumptions which introduce a modeling error, an RNN trained by available 

experimental data can capture the true behavior of the target component or group of components, 

then make predictions on new unseen data at each time-step of the hybrid seismic analysis. 

Therefore, this study presents the novelty of implementing DL models into the numerical time-

integration algorithm, targeting only structural components of interest. The proposed hybrid 

analysis is not limited to a specific building structure since the MLM can be saved and reused in 

any new building model containing the same target component(s), it can compute the full dynamic 

response, and it aims to increase further the accuracy of conventional NTHAs. Both synthetic and 

experimental data are used in this Chapter to check the efficiency of the method. 

 

Figure 52: Principle of the proposed hybrid seismic analysis. 
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4.2.Principle of the proposed hybrid seismic analysis 

4.2.1. Background 
The proposed hybrid analysis is inspired by the hybrid simulation developed by 

Nakashima et al. [78,79] for real-time pseudo-dynamic testing. The target structure is divided into 

a numerical model and a physically tested model. The latter one may be a structural component 

or a group of components as a sub-structure. It is an efficient and most economical alternative to 

testing an entire structure. The control and the limitation of the numerical error require the choice 

of an appropriate numerical integration method [80]. Nakashima et al. [81] proposed a mixed 

implicit-explicit direct integration method that incorporates the physically measured restoring 

force into the numerically solved second order equation of motion. It is a predictor-one-corrector 

displacement method based on the operator splitting technique proposed by Hughes et al. [82] 

and the implicit Newmark-β method [83]. It was proven that this method (referred to as the OpS 

method in the remainder of this dissertation) is unconditionally stable for pseudo-dynamic testing 

of structures with softening-type nonlinearities. 

4.2.2. Proposed deep learning-based integration method 
Instead of measuring the restoring force developed in the tested physical model, the 

proposed hybrid seismic analysis evaluates it using a MLM, previously trained to simulate the 

hysteretic behavior of the target component or group of components. The commonly used OpS 

method is selected as a suitable numerical integration algorithm for NTHA. Fig. 53 summarizes 

the hybrid integration loop. Assuming a building structure and an input ground motion, the 

predictor displacement vector is first evaluated at the current time step following the algorithm of 

the OpS method. Restoring forces of structural components with already mastered hysteresis 

behavior, such as reinforced concrete or steel columns and beams, are evaluated using available 

validated analytical models. Some existing or newly developed materials, components, or devices 

may have an excessively complicated analytical model and/or still not-exhaustive understanding 

of their true behavior among researchers and practitioner communities. Instead of adopting 

simplified analytical models based on many assumptions, a MLM previously trained by available 

experimental data can capture the true behavior of the target component or group of components 

and then be used to make predictions within the time integration algorithm. It would predict the 

component restoring force at the next time step, based on the displacement time history and the 

current predictor displacement. Then, the full seismic response at the next time step is computed 

as performed in the OpS method. The same process is repeated till the end of the analysis. 
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Figure 53: Principle of the deep learning-based integration method. 

The concept of the proposed hybrid seismic analysis is general to any structure and 

relies on developing MLMs beforehand. The development of MLMs from experimental data is 

nonrepetitive since it can be saved and reused in any new structure containing the same target 

components. For instance, the same isolation device can be used in different buildings but with 

different configurations and numbers. New experimental data of the same nature may be used to 

update the MLM, though. 

Python scripts were made to process the data and to perform conventional and hybrid 

NTHAs using the TensorFlow machine learning library under Python 3.6. All runs are performed 

with 16 Intel® Xeon® W-2245 CPUs. Source codes are provided in Appendices A and B.  

4.3.Hybrid seismic analysis of lumped-mass building models 

4.3.1. Isolated building models 
Three base-isolated buildings of 5, 10, and 15 stories are considered in this study. A 

Lumped Mass Model (LMM) is adopted for the superstructure, which behaves linearly. The 

isolation layer is formed by NRB, LRB, and Oil Damper (Oil), as shown previously in Fig. 25. 

The combination of both NRB and LRB devices is assumed to perform a bilinear hysteresis 

behavior. The force developed in the Oil Damper device is assumed to depend only on the relative 

velocity of its edges. The three buildings were designed according to Japanese engineering 
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practice [53] and modeled using the software STERA_3D [12]. Tables 21 and 22 provide all the 

necessary properties to reproduce the same models. More design information and even the 

STERA_3D may be downloaded online [84]. MLMs developed in Chapter III are used herein to 

perform the hybrid seismic analyses of studied isolated buildings.  

Table 21: Lumped-mass model properties of model building structures. 
 Building 1 Building 2 Building 3 

Ref. MB1 MB2 MB3 
Period Tn,1 = 0.5 (s) Tn,2 = 1.0 (s) Tn,3 = 1.5 (s) 
Story 
Level 

Stiffness Weight Stiffness Weight Stiffness Weight 
(kN/mm) (kN) (kN/mm) (kN) (kN/mm) (kN) 

15th - - - - 80 3000 
14th - - - - 156 3000 
13th - - - - 225 3000 
12th -  - - 290 3000 
11th - - - - 349 3000 
10th - - 121 3000 402 3000 
9th - - 229 3000 451 3000 
8th - - 326 3000 494 3000 
7th - - 410 3000 531 3000 
6th - - 483 3000 563 3000 
5th 241 3000 543 3000 590 3000 
4th 435 3000 592 3000 612 3000 
3rd 579 3000 628 3000 628 3000 
2nd 676 3000 652 3000 639 3000 
1st 724 3000 664 3000 644 3000 

 

Table 22: Isolation level properties of model building structures. 
Isolation Level Building 1 Building 2 Building 3 

Effective Period (s) Teff,1 = 2.5 Teff,2 = 4.0 Teff,3 = 6.0 
Base Weight  (kN) 4500 4500 4500 

Oil Damper 
C1 (kN.s/mm) 2.194 1.617 1.237 

C2/C1  0.067 0.067 0.067 
Vr (mm/s) 320 320 320 

LRB+NRB 
K1 (kN/mm) 175.5 129.4 99 

K2/K1  0.046 0.042 0.031 
Fy (kN) 1755 1294 990 

ML model designation MLM1 MLM2 MLM3 
 

4.3.2. Input ground motions 
GMs used to perform NTHAs are the same as those presented previously in Table 13 

and their acceleration response spectra were presented in Fig. 30. Fundamental horizontal periods 

of the building’s superstructures (Tn,1, Tn,2, and Tn,3) and the effective periods of their respective 

isolation layers (Teff,1, Teff,2, and Teff,3) were marked with vertical dashed lines, covering the 

common period range of based isolated structures. 
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4.3.3. Isolation system response 
Seismic analyses of Building 1, 2, and 3 subjected to GMs 2, 3, 4, and 5 are performed 

using both the conventional NTHA (OpS method) taking as a reference and the new proposed 

hybrid analysis (MLM1~3 simulating the isolation layer: NRB, LRB, and Oil Damper). The 

superstructure response is evaluated by its analytical models in both cases. The isolation system 

response, the peak story deformation, and the peak story acceleration obtained by both analyses 

are presented hereafter for comparison. Since both drift and shear are computed at each time-step, 

the drift RMSE is also evaluated as follows, 

The isolation system response of Building 1 is presented in Fig. 54. Hysteresis loops of 

the isolation layer are not perfectly bilinear because of the effect of the Oil Damper. Hybrid 

seismic analyses results fit very well reference curves for all the GMs considered in this study, 

despite the long nonlinearities (drift up to 13.5 cm for the case of GM2). The maximum drift 

RMSE (respectively shear RMSE) is 0.098 cm for GM5 (respectively 32.4 kN for GM4). All 

RMSEs are of the same order and remain within an acceptable range. The maximum shear RMSE 

is 27.1 kN (GM4, first floor). Similar remarks may be formulated for isolation system response 

of Buildings 2 and 3 presented in Fig. 55 and 56 respectively.   

 

Figure 54: MB1 isolation layer hystereses: Hybrid vs. Conventional analyses. 

 

Figure 55: MB2 isolation layer hystereses: Hybrid vs. Conventional analyses. 

𝐷𝑟𝑖𝑓𝑡 𝑅𝑀𝑆𝐸 (𝑐𝑚) = ඨ
∑ ൫𝑑𝑟𝑖𝑓𝑡ை௣ௌ,௜ − 𝑑𝑟𝑖𝑓𝑡ு௬௕௥௜ௗ,௜൯

ଶ

௧௜௠௘

𝑁௧௜௠௘ ௦௧௘௣௦

 (24)
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Figure 56: MB3 isolation layer hystereses: Hybrid vs. Conventional analyses. 
 

4.3.4. Peak story deformations 
Peak deformation at geometric center of all floors of Building 1 are presented in Fig. 57 

for each GM (4 colors) and each seismic analysis (solid lines for hybrid analysis and dashed lines 

for conventional one). The deformation is unsurprisingly concentrated in the isolation and layer 

superstructure deforms linearly. The height wise distribution of peak deformations matches with 

the flexural deformation of the fundamental mode of the fixed base configuration. Evaluations by 

both analyses fit very well. The maximum drift RMSE is 0.00528 cm (GM 2, roof). Similar 

remarks may be formulated for Buildings 2 and 3 presented in Fig. 58 and 59 respectively.   

 

Figure 57: Peak floor deformations of MB1: Hybrid vs. Conventional analyses. 
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Figure 58: Peak floor deformations of MB2: Hybrid vs. Conventional analyses. 

 

Figure 59: Peak floor deformations of MB3: Hybrid vs. Conventional analyses. 

0 2 4 6 8 10 12 14 16 18 20 22 24
Ground level

BF

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

S
to

ry
 le

ve
l

Peak deformation (cm)

 Kobe_Conventional  Taft_Conventional  Tohoku_Conventional  ElCentro_Conventional

 Kobe_Hybrid            Taft_Hybrid             Tohoku_Hybrid            ElCentro_Hybrid

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Ground level

BF

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

11th

12th

13th

14th

15th

St
or

y 
le

ve
l

Peak deformation (cm)

 Kobe_Conventional  Taft_Conventional  Tohoku_Conventional  ElCentro_Conventional

 Kobe_Hybrid            Taft_Hybrid             Tohoku_Hybrid            ElCentro_Hybrid



Chapter IV  

 

63 

4.3.5. Peak story accelerations 
Peak acceleration at geometric center of all floors of Building 1 are presented in Fig. 60 

for each GM (4 colors) and each seismic analysis (solid lines for hybrid analysis and dashed lines 

for conventional one). Acceleration transmissibility from the ground level exhibits a significant 

drop due to the isolation layer, followed by a relatively constant distribution of peak floor 

accelerations throughout the height until a quite moderate increase at the top levels. Peak floor 

accelerations are lower than corresponding PGAs in most of cases. Evaluations by both analyses 

fit very well. Similar remarks may be formulated for Buildings 2 and 3 presented in Fig. 61 and 

62 respectively.   

 

Figure 60: Peak floor accelerations of MB1: Hybrid vs. Conventional analyses. 

 

Figure 61: Peak floor accelerations of MB2: Hybrid vs. Conventional analyses. 
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Figure 62: Peak floor accelerations of MB3: Hybrid vs. Conventional analyses. 
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negligible. Considering the accuracy advantage and the reasonable computation time, the 

efficiency of the proposed hybrid seismic analysis is proven in this study. 

Table 23: Computation time of hybrid seismic analyses of model Buildings. 

 GM2 
(Kobe 1995 NS) 

GM3 
(Taft 1960 EW) 

GM4 
(Tohoku 1978 NS) 

GM5 
(El Centro 1940 NS) 

GM duration (s) 15 19 23 27 
Integration time steps 3750 4750 5750 6750 

Time 
(min) 

MB1 12.71 19.18 29.93 39.30 
MB2 12.66 20.25 29.53 38.76 
MB3 12.93 19.08 26.75 36.31 

 

4.4.Hybrid seismic analysis of a tested full-scale building specimen 

4.4.1. Overview of the tested building specimen  
The building specimen tested at E-Defense shake table in August 2011, is a full-scale 

5-story steel moment frame superstructure isolated consecutively by a TPB and a LRB/CLB 

isolation layers as described in Chapter III (Fig. 26-27). The specimen was initially constructed 

in 2008 for a previous test program about the performance of inter-story dampers [85]. It was 

designed according to Japanese code and design practice. The same specimen had been adapted 

and reused in August 2011 for the test program object of this study. Its structural layout is 

presented in Fig. 63. Many non-structural elements and content were incorporated to the structure 

for different research objectives. In this study, only the performance of the main structure in 

investigated. Details about design and structural drawings may be found in [49, 55, 85]. 

 

Figure 63: Structural layout of tested specimen: (a) Regular floor; (b) Roof; (c) Elevation 
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A series of 20 and 14 table motions were performed for the TPB and the LRB/CLB 

isolation support systems respectively (Tables 11-12). It includes harmonic waves and a large 

spectrum of synthetic and real earthquake ground motions. It is worth mentioning that realized 

table motions represent realistic loading conditions of different amplitudes, frequency contents, 

durations, and components (1D, 2D, 3D). 

4.4.2. 3D-Frame model of the superstructure 
In this Chapter, hybrid simulations are performed on a one-dimensional LMM derived 

from a 3D-frame model. The isolation layer is simulated by the TPB and LRB MLMs designed 

in Chapter 3, and the superstructure with Physics-based analytical models. Therefore, the latter 

should be as realistic as possible to minimize computation uncertainties from the superstructure. 

To this end, the fixed-base configuration has been modeled beforehand using the Software 

STERA_3D [12], and its natural modes were compared with test data (from 1D white noise 

excitations) and a reference OpenSees model [55]. Table 24 presents natural periods and mode 

shapes up to the 7th mode in accordance with STERA_3D values. Relative errors to test data are 

provided, except for torsional modes which test data are not available. Eigen modes obtained from 

the STERA_3D model match very well with experimental data and even better than those 

obtained from the OpenSees model, with a maximum relative error of 2.15% in the 2nd mode.   

4.4.3. LMM of the superstructure 
Hybrid analyses performed in this research work are applied on one-dimensional LMMs. 

The tested specimen was a 5-story steel moment frame building that can be assumed as a shear 

building, and it has deformed within the linear range in both isolation support configurations. 

Therefore, story weights, initial story stiffnesses, and inherent damping would be sufficient to 

model its equivalent one-dimensional LMMs. To this end, the following procedure is adopted:  

 Automatic generation of LMM from the STERA_3D frame model [12], 

 Optimization of story initial stiffnesses using the BOT (Chapter 2), 

 Modeling of inherent damping matrix based on Stiffness and/or Mass matrices, and 

damping ratios of fundamental modes determined from white noise excitations of the 

fixed-based configuration of the tested specimen.  

As shown in Table 25, test data from two table motions of the fixed-base configuration 

were used to this end: the 1987 Superstition Hills motion (Westermorland 3D) for BOT purpose, 

and the 1994 Northridge motion (Rinaldi 2D) for test purpose. The fixed-base specimen behaved 

linearly in both cases. Table 26 summarizes structural parameters of the optimized equivalent 1D 

LMMs. Fig. 64-67 show the comparison between acceleration responses simulated by the 

equivalent LMMs and the experiment. Both responses fit very well; thus, confirming the LMMs. 
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Table 24: Eigen modes of the tested specimen. 

Mode 
No. 

Nature Direction 
Period (sec.) / relative error (%) 

Shape Test 
[55] 

STERA_3D 
OpenSees 

[55]  

1 Trans. X 0.677 
0.677 
0.00% 

0.687 
1.48% 

 

2 Trans. Y 0.686 
0.638 
2.15% 

0.666 
2.15% 

 

3 Tors. * 0.454 0.515 0.472 

 

4 Trans. Y 0.212 
0.215 
1.90% 

0.219 
3.79% 

 

5 Trans. X 0.205 
0.200 
1.96% 

0.213 
4.41% 

 

6 Tors. * * 
0.167 

 
* 

 

7 Trans. Y 0.113 
0.114 
0.88% 

0.111 
1.77% 

 
*Unreferred 
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Table 25: Table motions used to design the equivalent LMMs of the tested specimen. 
Support 

configuration 
Table motion 

Scale 
factor 

Peak Axy  
(g) 

Peak 
Az (g) 

Purpose 

Fixed base 

1987 Superstition Hills-
Westermorland 3D-WSW 

80% 0.17 0.2 BOT of LMM 
(Target floors: 1st & 5th) 

1994 Northridge- 
Rinaldi (XY)-RRS 

35% 0.28 0.0 Test the LMM 

 

Table 26: Equivalent LMMs properties of the tested specimen. 

Story Level 
Story stiffness (kN/cm) Damping Matrix 

X Y X Y 
5 127 157 

Stiffness 
proportional 

(1st mode: 3.3%) 

Stiffness 
proportional 

(1st mode: 2.5%) 

4 127 157 
3 88 90 
2 88 90 
1 136 113 

 

 

 

 

 

 

 

Figure 64: Fixed base_WSW_X: LMM acceleration responses vs. experiment. 
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Figure 65: Fixed base_WSW_Y: LMM acceleration responses vs. experiment. 

 

 

 

 

 

Figure 66: Fixed base_RRS_X: LMM acceleration responses vs. experiment. 
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Figure 67: Fixed base_RRS_Y: LMM acceleration responses vs. experiment. 
 

4.4.4. Structural responses of LRB-isolated specimen 
The optimized LMM of the tested specimen (Chapter 4) was combined together with 

the LRB_MLM (Chapter 3) to perform hybrid analyses of the base-isolated configurations. Even 

though the LRB_MLM predicts the 2D structural behavior of the isolator, only 1D response was 

taken into consideration. The other component was set to zero. The four LRB devices (Fig. 27-b) 

are assumed to behave identically; therefore, the isolation layer response is assumed to be 4-times 

the one of a single LRB device. The initial stiffness of the isolation layer was included in the 

overall stiffness matrix but not in the damping matrix since both inherent and hysteretic damping 

of the isolator are included in its corresponding MLM. Fig. 68-72 show the comparison between 

hybrid analysis results and the experiment for three representative table motions in term of: 

isolation layer response, peak story acceleration, and peak story displacement. Even though the 

1D LMM does not simulate the real behavior of the tested specimen such as the 2D interactions 

and torsional oscillations, but it could capture quite well the isolation layer energy dissipation 

capacity and peak story responses. It is worth mentioning that the LMM hybrid analysis 

overestimates slightly the deformation response of the isolation layer which is actually safe for 

the design. These results provide an experimental validation of the proposed hybrid analysis.  
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Figure 68: LRB_Sin1_Y: Hybrid analysis (black) vs. experiment (red). 

 

 

Figure 69: LRB_RRS-2D_X: Hybrid analysis (black) vs. experiment (red). 
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Figure 70: LRB_RRS-2D_Y: Hybrid analysis (black) vs. experiment (red). 

 

 

Figure 71: LRB_ELC130_X: Hybrid analysis (black) vs. experiment (red). 



Chapter IV  

 

73 

 

 

Figure 72: LRB_ELC130_Y: Hybrid analysis (black) vs. experiment (red). 

4.4.5. Structural responses of TPB-isolated specimen 
The optimized LMM of the tested specimen (Chapter 4) was combined together with 

the TPB_MLM (Chapter 3) to perform hybrid analyses of the base-isolated configurations. Even 

though the TPB_MLM predicts the 2D structural behavior of the isolator, only 1D response was 

taken into consideration. The other component was set to zero. The nine TPB devices (Fig. 27-a) 

are assumed to behave identically; therefore, the isolation layer response is assumed to be 9-times 

the one of a single TPB device. The initial stiffness of the isolation layer was included in the 

overall stiffness matrix but not in the damping matrix since both inherent and hysteretic damping 

of the isolator are included in its corresponding MLM. Since the analysis is performed on a LMM, 

the input vertical force for the TPB_MLM is set constant to 1/9th the total weight of the specimen. 

Fig. 73-77 show the comparison between hybrid analysis results and the experiment for three 

representative table motions in term of: isolation layer response, peak story acceleration, and peak 

story displacement. Even though the 1D LMM does not simulate the real behavior of the tested 

specimen such as the 2D interactions and torsional oscillations, but it could capture quite well the 

isolation layer energy dissipation capacity and peak story responses for the Sin100 run. The LMM 

hybrid simulation failed to capture the true structural response of the tested specimen for other 

earthquake-like motions. TPBs are friction-based devices which behavior is strongly related to 

their axial force. The variable vertical force on each isolator can’t be simulated by a LMM. 



Chapter IV  

 

74 

 

 

Figure 73: TPB_Sin100_X: Hybrid analysis (black) vs. experiment (red). 

 

 

Figure 74: TPB_RRS-3D_X: Hybrid analysis (black) vs. experiment (red). 
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Figure 75: TPB_RRS-3D_Y: Hybrid analysis (black) vs. experiment (red). 

 

 

Figure 76: TPB_SYL100_X: Hybrid analysis (black) vs. experiment (red). 
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Figure 77: TPB_SYL100_Y: Hybrid analysis (black) vs. experiment (red). 
 

4.4.6. Computation time  
Tables 27-28 present the computation times of the three hybrid seismic analyses 

performed for each isolator type: LRB and TPB. A Python script is written to perform the 

structural analysis of equivalent LMMs and to load previously developed MLMs (Chapter 3). All 

computations are performed on the same CPU (16 Intel® Xeon® W-2245 CPUs). When assuming 

a specific computer’s performance, the consumed time depends mainly on the number of 

integration time-steps since the MLM would make predictions at each step. This number is a 

function of the duration of the GM, the original time step of the record (here, 0.001 sec.), and its 

subdivision (here, by 1). The computation is always fast at the beginning of each simulation (about 

1 sec per 20 integration-steps), then it slows down progressively as the sequence length 

(deformation time history) of the MLM is constantly increasing. Furthermore, the computation 

time is directly proportional to the number of MLM predictions performed at each time-step. 
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Table 27: Computation time of hybrid seismic analyses of tested LRB-specimen. 
 Sin1 RRS-2D ELC130 

TM* duration (s) 20 20 40 
Integration time steps 20001 20001 40001 

Time 
(h:min) 

X - 4h27 17h13 
Y 3h41 4h25 17h20 

                 *Table motion 

 

Table 28: Computation time of hybrid seismic analyses of tested TPB-specimen. 
 Sin100 RRS-3D SYL100 

TM* duration (s) 35 20 22 
Integration time steps 35001 20001 22001 

Time 
(h:min) 

X 13h12 4h32 5h28 
Y - 4h34 5h10 

*Table motion 

4.5.Conclusion 

A hybrid seismic analysis is elaborated in this Chapter to compute the full response of 

a building structure, by incorporating both analytical and RNN models into an explicit time 

integration method. TPB and LRB MLMs designed in Chapter 3 are used to predict the nonlinear 

response of interest at each time-step of computation. Both synthetic building models and tested 

building specimens were used to check the efficiency of the proposed hybrid analysis. Hence, the 

following conclusions are formulated:  

 The proposed hybrid seismic analysis computes the full response in term of acceleration, 

velocity, and displacement at each degree of freedom. The term hybrid is related to the 

time integration algorithm, not to the input data nor to the MLM architecture, offering a 

novel application of ML in civil engineering. Once the MLM is developed, it can be saved 

and reused to perform structural analysis of any building model containing the same 

component or group of components the MLM was trained to simulate. Therefore, the 

novel hybrid analysis proposed herein overcomes the shortcoming of most applications 

of ML in structural RPPs being limited to predict specific response quantity (s) of the 

structure (s) used in the training process. 

 Hybrid seismic analyses responses of the studied building models under the four GMs 

are compared with results of the conventional analysis (OpS method) taking as a reference 

in this study. The linear response of the superstructures is very well evaluated with a 

maximum drift RMSE (respectively shear RMSE) of 0.00528 cm (respectively 27.1 kN) 
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among all the twelve cases. The hybrid analysis could accurately capture the nonlinear 

hysteresis loops of isolation layers. The maximum drift RMSE (respectively shear 

RMSE) at the isolation level was of 0.338 cm (respectively 46.3 kN) among all 

configurations. These results offer a numerical validation of the accuracy of the proposed 

hybrid seismic analysis since all RMSEs are acceptable in the earthquake engineering 

practice. 

 Hybrid analyses of the tested LRB specimen showed quite well results compared to 

experiment. It could capture the complex nonlinear behavior of the isolation level and 

approximate peak story accelerations and deformations as well. However, hybrid 

analyses performed for the TPB case showed some limitations for earthquake-like 

excitations and cannot be reliable. It is mainly due to the incapability of a LMM to 

simulate the variable axial force on TPB devices. Such a limitation did no influence the 

LRB case since the latter was used together with CLB devices that take over the vertical 

weight under large deformations of the isolation layer. 

 The computation times of the hybrid seismic analysis depends mainly on the number of 

time-integration steps, the number of MLM predictions at each integration step, and the 

MLM input sequence length. For synthetic building models, the maximum computation 

time was of 39.30 minutes corresponding to 6750 integration time-steps. For the tested 

specimen, , the maximum computation time was of 17h20min corresponding to 40001 

integration time-steps. The capability of the proposed hybrid seismic analysis to simulate 

the true structural behavior of a structural model in a relatively acceptable time, proves 

its efficiency for the engineering practice.  
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Chapter 5: CONCLUSIONS AND FUTURE WORKS 

This research work proposes an original way to predict the seismic response of building 

structures, by combining AI-based algorithms and conventional Physics-based models. AI is used 

as a complementary solution when conventional models fail to predict the real structural behavior 

under realistic loading conditions.   

At the story level, two optimization methods, Response Surface Method (RSM) and 

Bayesian Optimization Technique (BOT), were investigated to calibrate story stiffnesses of the 

equivalent LMMs of three existing buildings using very limited acceleration records. Acceleration 

responses of updated LMMs fit very well with recorded wavs of studied buildings. The BOT 

showed constantly higher accuracy than RSM and less computational time. In case of TCH-EB, 

BOT took around 2 minutes to perform 50 iterations in a common laptop, whereas RSM took 

more than 10 hours. Moreover, the BOT could also perform well the non-linear case study. The 

developed Python script is considered as a program to be implemented in the seismic diagnosis 

system for online LMM updating; thus, for a more reliable 1st stage seismic evaluation.   

At the component level, RNN algorithms are designed to simulate the structural 

behavior of complex component so far not well mastered by Physics. Isolation devices are 

selected as target components for this study. The framework proposed for developing the MLMs 

considers the main three steps to design a sequence-to-sequence prediction model: data framing, 

tuning of model architecture, and diagnosis of learning behavior. For the synthetic isolation 

system (LRB+NRB+Oil damper), a shallow GRU model with two recurrent layers of 60 cells 

each and a one-unit Dense layer as an output layer has been found the most appropriate in terms 

of accuracy, reliability, and simplicity. The MSEs were in the order of 10-4 on testing data. For 

the real full scale TPB and LRB isolators, Shallow recurrent networks of two hidden layers were 

found sufficient for the development of accurate and reliable MLMs for the problem treated in 

this study. Moreover, the learning behavior of GRU architectures was stable and less noisy than 

the LSTM counterpart. Therefore, two GRU layers of 95 units each were adopted for the 

TPB_MLM, and 60 units each for the LRB_MLM. The dropout regularization technique reduced 

the overfitting on train data and improved the generalization capability of developed models. A 

dropout ratio of 50% (40% respectively) applied to the 1st hidden layer, lead to the best 

performance on test data for the TPB_MLM (LRB_MLM respectively). The average shear RMSE 

of the TPB_MLM (LRB_MLM respectively) on test data was of 10.44 kN (8.42 kN respectively), 

which is considered acceptable in Structural Engineering. The R2 values of 0.83 (0.97 

respectively) reveal a strong correlation between experimental and predicted data. This excellent 
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performance is due to the data curation and the optimization of network architecture and 

hyperparameters, performed by following the proposed framework. Visualized prediction 

samples proved that developed MLMs could learn very well the two-dimensional behavior of 

studied isolators, by capturing most of the hysteresis features of experimental data: extremum 

shears, strength degradation, local softening and hardening, uplift excursions of TPBs, and 

pinching effects for LRBs; thus, the energy dissipation capacity. However, the TPB_MLM 

showed some limitations in predicting the residual shear.  

The surrogate MLMs of structural components were then incorporated into an explicit 

time-integration method to perform the proposed hybrid seismic analysis. Simulated responses of 

the studied building models under the four GMs are compared with results of the conventional 

analysis (OpS method). The linear response of the superstructures is very well evaluated with a 

maximum drift RMSE (respectively shear RMSE) of 0.00528 cm (respectively 27.1 kN) among 

all the twelve cases. The hybrid analysis could accurately capture the nonlinear hysteresis loops 

of isolation layers. The maximum drift RMSE (respectively shear RMSE) at the isolation level 

was of 0.338 cm (respectively 46.3 kN) among all configurations. Hybrid analyses of the tested 

LRB specimen showed quite well results compared to experiment. It could capture the complex 

nonlinear behavior of the isolation level and approximate peak story accelerations and 

deformations as well. However, the TPB case showed some limitations for earthquake-like 

excitations and couldn’t provide reliable response. It is mainly due to the incapability of a LMM 

to simulate the variable axial force on TPB devices. Such a limitation did no influence the LRB 

case since the latter was used together with CLB devices that took-over the vertical weight under 

large deformations of the isolation layer. 

The surrogate models developed in this study revealed the capability of ML in 

describing the complex structural behavior of the studied seismic isolation devices. These MLMs 

can be implemented within an explicit integration method to perform hybrid seismic analysis of 

the isolated building specimen. However, they are limited to the specific isolators used in the test 

program, and they do not include other known effects such as initial offset, fatigue, and aging. 

Furthermore, performed hybrid analysis of 1D LMMs showed its efficiency for synthetic data and 

the LRB experimental test, but it was not any more reliable for the TPB experimental case. These 

limitations concern more the LMM rather than the concept of the hybrid analysis. The former 

cannot include the 2D-interaction, torsional oscillation, overturning effect, and the specific 

variable vertical force on TPB devices. 3D-frame model analyses are strongly recommended for 

further studies to simulate better the isolation layer hystereses provided in Appendices C and D.  
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APPENDIX A: Python script for conventional seismic analysis of MDOF 
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APPENDIX B: Python script for hybrid seismic analysis of MDOF 
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APPENDIX C: TPB isolation layer hystereses-Experiment 
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APPENDIX D: LRB Isolation layer hystereses-Experiment 
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D-4 LRB_VOG125 
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D-13 LRB_VOG75-2 
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