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Abstract

We studied two-sided matching with dynamic preference. One of the most

well-known problems in two-sided matching is the Stable Marriage Problem

(SMP). An instance of SMP is I = (M, W, L), where M and W denote a set of

men and women agents, respectively, and L is the preference list of each agent

in M X W . In classical SMP, a matching is said to be stable if no blocking

pair is found. A blocking pair is formed of a man m and a woman w who

are not partners in a matching M but prefer each other over their current

partners. The stable matching problem with dynamic preference is near to

the real-world situation problem, where an agent is allowed to change his/her

preference at any time, a�ecting the stability of a matching. In this study, we

propose two strategies to maintain the stability of a matching problem with

dynamic preference, namely short-term stability and long-term stability.

Short-term stability is a strategy to maintain the stability of matching

by updating the matching every time the preferences change. A traditional

way that can be done on the short-term stability strategy is to start the

matching process using the Gale-Shapley algorithm from scratch. However, the

preference changes in the matching problem do not always a�ect the existing

stable matching. Sometimes the preference changes do not trigger a forming

of a blocking pair in obtained matching, which means the prior matching is

stable to the new preference. Roth and Vande [25] introduce the mechanism to

update the matching by satisfying the blocking pair. However, this mechanism

always starts the process with one pair (initial matching) and then satisfies

each agent until stable matching is found in the market. To address this issue,
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we intend to maximize the initial matching, by identifying the prior stable

matching against the new preference. By identifying the prior matching, we can

maximize the number of initial matching of the updating process. Compared

to other existing methods, our proposed concept is outperform in minimizing

re-matching costs.

The second strategy to find a stable matching with dynamic preference

is long-term stability, which is to maintain the stability of matching over a

long period. This strategy is used when the frequency of preference changes in

agents occurs frequently. Employing a short-term strategy to maintain stability

would be costly when preference changes occur frequently. A classical SMP

instance is I = (M, W, L), in the SMP with dynamic preference, agents can

change their preferences, leading to dynamic preference. An instance of SMP

with dynamic preference leading the formation of a dynamic instance. The

dynamic instance is DI = (M, W, L1, L2, . . . , Lk), where k is the number of

unique preference lists that occur due to changes in agent preferences. Thus, a

set of SMP instances for SMP under dynamic preference is DI = {I1, I2, . . . , Ik}.

Several studies used the most stable matching concept to obtain long-term

stable matching. This concept counts the number of stability of matching

against all occurred instances. They use the – as the index of strengths of

provided solutions. The matching with the highest index is selected as a

solution for stable matching. However, in some cases, some matching has an

equal value of the index, this situation is di�cult to determine the solution. In

this study, we introduce a new concept to find stable matching under dynamic

preference using the blocking pair perspective. Using the blocking pair, we

can get the new information to select the stable matching more precisely.

Considering the number of blocking pairs in the stable matching under dynamic

preference is a novel concept. By understanding the amount of blocking pairs in

detail, it is possible to obtain additional information regarding stable matching.

Consequently, the information obtained from the number of blocking pairs

can assist in determining stable matching with greater precision than the
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existing method, In other words, the usage of the index (–, —, and EV ) is

better than –. We also define the new notions of stability for a matching

problem under dynamic preference.

To demonstrate the relevance of our findings, we apply stable matching under

dynamic preference to the scheduling problem of the data center. The objective

of adopting stable matching in the scheduling problem is to achieve agent

satisfaction while maintaining data center energy e�ciency. A stable matching

is needed for the scheduling job to prevent the agents from complaining about

their pair in the matching. Hence, we can minimize the expenses associated

with re-matching, such as migration, reconfiguration, and downtime, when the

market decides to change the matching.
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Chapter 1

Introduction

1.1 Background

Numerous types of research have been conducted on the stable matching

problem in fields including computer science, mathematics, and economics.

The term “matching” refers to a collection of agents wishing to form a pair

that meets each agent’s criteria. The stable marriage problem (SMP) was

introduced by Gale and Shapley [14]. It is one of the most well-known stable

matching problems. Since its original conception in 1962, the SMP has attracted

significant attention from researchers. Numerous extended variants of SMP have

also emerged, such as the stable roommate problem, the college admissions

problem, the hospital/resident problem, and several other stable matching

problems [16, 15, 23, 19]. The SMP algorithm has been widely used to solve

several real-world problems. One of the most widely used variants is the

hospital/resident problem variant [23, 18], which is used to place medical

students in hospitals or to select new students. Nowadays, the SMP algorithm

is also widely applied to large-scale computer applications, such as content

delivery networks [12] and job scheduling of virtual machines to servers [1, 2].

The SMP is a bipartite matching problem with an equal number of agents

on each side. Each agent expresses a strict order preference that includes all

1



2 Introduction

members of the opposite side. A matching µ is unstable when at least one

blocking pair exists. A blocking pair is formed of a man m and a woman

w who are not partners in a matching µ, but prefer each other over their

current partners. In the classical SMP, each agent expresses a strict order

preference for the opposite side. However, in real-world situations, some

agents occasionally cannot express their actual preference list due to a lack

of information or observations about the opposing side, leading to the agents’

preferences changing dynamically. This study aims to find a stable matching

for the SMP with the dynamic preference model, where dynamic preferences

refer to a scenario in which agents’ preferences might change dynamically over

time.

Definition 1.1. A dynamic preference is a form of preference in a matching

problem in which the agent can express two or more di�erent preferences.

Definition 1.2. A dynamic instance is a group of stable matching instances

generated by dynamic preferences.

To illustrate the problem, we use a simple 3 ◊ 3 SMP.

Instance 1 (I1)

L1(m1) = w1, w2, w3
L1(m2) = w2, w3, w1
L1(m3) = w3, w1, w2

L1(w1) = m2, m3, m1
L1(w2) = m3, m1, m2
L1(w3) = m1, m2, m3

Instance 2 (I2)

L2(m1) = w3, w2, w1
L2(m2) = w2, w3, w1
L2(m3) = w3, w1, w2

L2(w1) = m2, m3, m1
L2(w2) = m3, m1, m2
L2(w3) = m1, m2, m3

Fig. 1.1 The 3 ◊ 3 dynamic preference of SMP.
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Example 1.1. There is a set of men M = {m1, m2, m3} and a set of women

W = {w1, w2, w3}. Assume that agent m1 has dynamic preferences by changing

his preference order. Specifically, these dynamic preferences generate two SMP

instances, as depicted in Figure 1.1:

Assume instance I1 admits matching µ1 as a stable matching. However, µ1

does not necessarily stable against I2. We need further checks to ensure that

µ1 is stable against I2. If µ1 does not admit stable in I2, we need to perform

new matching and generate new stable matching in instance I2.

This study considers two scenarios when preference changes might occur.

In the first scenario, we assume that preference changes infrequently. Therefore,

we propose a matching updating mechanism to maintain stability whenever the

preference changes. We propose a mechanism to find a new stable matching

for the latest preference by identifying the previous instance. In the second

scenario, we assume that preference changes frequently occur. In this scenario,

employing the updating mechanism would be costly. When the preference

frequently changes, there will be a lot of costs that need to spend repeatedly.

We propose a new concept for the second scenario to find a stable matching by

considering multiple instances. We categorize our strategies into two, namely

the short-term and the long-term stability strategy.

Definition 1.3. Short-term stability is a strategy to maintain the stability of a

matching every time the preference changes. This strategy requires a matching

stable to the latest preference and generates new stable matching if needed.

Definition 1.4. Long-term stability is a strategy to maintain the stability

of a matching based on multiple preferences. This strategy does not require

generating new stable matching even if the preference frequently changes.

Figures 1.2 and 1.3 illustrate the changes in preferences over the same

time period. In figure 1.2, there were three changes in preference, whereas, in

figure 1.3, there were six changes in preference. The illustrations enable us to

determine the method for finding stable matching.



4 Introduction

I1 I2 I3

Fig. 1.2 Preference rarely changes
I1 I2 I3 I4 I5 I6

Fig. 1.3 Preference frequently changes

As shown in Table 1.1, we compare the advantage and disadvantage of

each strategy. Short-term strategies produce stable matching, whereas long-

term strategies produce near-stable matching. The short-term strategy always

performs stable matching computations whenever the preference change, there

will be significant costs associated with the computational cost, and also the

cost of re-matching or reconfiguring the market. On the other hand, a long-

term strategy requires only single stable matching computation and avoids the

re-matching costs.

Table 1.1 Comparison of short-term and long-term stability strategy

Strategy Advantage Disadvantage
Short-term Produce stable matching Costly (re-matching cost)
Long-term Produce near stable matching Avoid re-matching cost

Re-matching or reconfiguration costs refer to the expenses associated with

changing or modifying an existing system or process to meet new requirements or

goals. These costs can include expenses for planning, design, implementation,

testing, training, and any other activities required to make the necessary

changes. Re-matching costs can vary depending on the complexity of the

system or process being changed, the extent of the modifications required, and

the resources needed to complete the re-matching. In some cases, re-matching

costs can be quite high, particularly if significant changes are required or if
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the system or process is critical to the market. However, re-matching costs

are important in order to adapt to changing circumstances or to improve the

stability in the market.

A classical SMP instance is I = (M, W, L). In the SMP with dynamic

preference, agents can change their preferences, leading to dynamic preference.

An instance of SMP with dynamic preference leading the formation of a dynamic

instance. The dynamic instance is DI = (M, W, L1, L2, . . . , Lk), where k is

the number of unique preference lists that occur due to changes in agent

preferences. Thus, a set of SMP instances for SMP under dynamic preference

is DI = {I1, I2, . . . , Ik}.

In a classical SMP, the stability of matching is determined by the existence

of a blocking pair. In a matching µ, a pair (m, w) is said to be a blocking pair

if m and w are not a pair in µ, but m prefers w over µ(m) and w prefers m

over µ(w). That is, (w ºm µ(m)) · (m ºw µ(w)). A matching that contains

at least one blocking pair is called unstable; otherwise, it is stable. However,

the stability concept of classical SMP cannot be used in our problem.

We also define the new concept of stability for the long-term strategy

because the original concept of matching stability is di�cult to apply in the

stable matching problem under dynamic preference.

Definition 1.5. Fully stable is a criterion for a matching that admits stability

to the dynamic instance. A matching µ is stable to ’I œ DI.

Definition 1.6. –-most stable is a criterion for a matching that admits stability

at least in one instance, such that a matching µ is stable to ÷I œ DI. – indicates

the strength of matching to all possible instances, where 1 Æ – Æ k. If – = k,

it means that the matching µ admits stable in all instances, equals to a fully

stable.

Definition 1.7. —-Least BP is a criterion for a matching that admits minimum

blocking pairs in a dynamic instance. — indicates the number of blocking pairs
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for a matching µ in a dynamic instance. If — = 0, it means that the matching

µ admits stable in all instances, equals to a fully stable and k ≠ moststable.

Definition 1.8. EV -Least BP is a criterion for a matching that admits mini-

mum blocking pairs in a dynamic instance. This notion considers the probability

of an instance occurring. EV indicates the expected value of blocking pairs for

a matching µ in a dynamic instance. Matching with the minimum EV is the

solution of stable matching under dynamic preference

Several studies related to our study have been carried out, and we summarize

several related studies regarding stable matching with dynamic preference.

Table 1.2 and 1.3 describe the related study of short-term and long-term

stability strategies, respectively.

Table 1.2 Related work to short-term stable matching. n denotes the number of
men (or women), r denotes the size of the reduced instance from the previous
matching

Authors Algorithm/ Tech-
nique

Computational
Cost

Re-matching
cost

Gale and Shap-
ley [14]

Gale-Shapley algo-
rithm

O(n2) n

Roth and
Vande [14]

Paths to Stability O(n3) n ≠ 1

Alimudin and
Ishida [4] (This
study)

Update Matching O((n≠r+1)·n2) n ≠ r

Table 1.2 describes the related work to short-term stability strategy. Gale-

Shapley is the most e�cient approach for finding stable matching in terms of

computing cost. In stable matching with dynamic preference, however, the

preference may change at any time. We must also consider the re-matching

costs that must be spent. Because Gale-Shapley always begins the matching

process from scratch, it charges an excess amount of costs. Roth and Vande

[25] introduce the mechanism to update the matching by satisfying the blocking

pair. However, this mechanism starts by satisfying one random blocking pair
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and then satisfying each agent until stable matching is found in the market. In

this research, we improve the Roth and Vande algorithm to update a matching

whenever the agent’s preferences change. When the agent’s preference changes,

our proposed approach can minimize the costs associated with re-matching.

Table 1.3 Related work to Long-term stable matching. n denotes the number
of men (or women), k denotes the number of instances in the dynamic instance

Authors Algorithm/
Technique

Computational
Cost

Objective/ Advan-
tage

Miyazaki et al.
[24]

Most stable
matching

O(k · n! · n2) Counting the num-
ber of stable match-
ing in dynamic in-
stance

Aziz et al. [7] Most stable
matching

O(k · n! · n2) Consider the proba-
bility of instance

Chen et al. [11] Most stable
matching

O(k · n! · n2) Define the concept
of stability for dy-
namic preference

Alimudin,
Ishida, and
Suzuki [5] (This
study)

Least blocking
pair

O(k · n! · n2) Blocking pair as the
new information to
define stable match-
ing under dynamic
preference

Table 1.3 describes several references in line with the long-term stability

strategy. Some studies use the most stable matching concept to find long-term

stability. Several related works used the most stable matching approach to find

long-term stability in stable matching under dynamic preference. The stability

of a matching in each instance is used as a reference for determining stable

matching in dynamic instances. In this study, the perspective of blocking pairs

is used as a reference to find stable matching under dynamic preference. Then,

the number of blocking pairs is quantified in all available instances to select a

matching with the smallest number of blocking pairs. Biro et al. [9] try to find

the maximum stable matching with the minimum blocking pair in the stable

matching problem with ties (SMT). However, SMT is the restriction of the

stable matching problem under dynamic preference. Based on the knowledge
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of this research, there seems to be no existing study on the stable matching

problems under dynamic preference that consider the blocking pair approach

to find a stable matching. Only Aziz et al. [7] mention this idea in their open

questions part.

1.2 Research Focus

This study focuses on the two-sided matching problem under dynamic preference.

We used the Stable Marriage Problem (SMP), a one-to-one model of the two-

sided matching problem, as our primary model in this study. We solve SMP

under dynamic preference, where the agent is allowed to change their preference,

thus a�ecting the stability of a matching. In this study, we o�er two strategies

to obtain matching stability under dynamic preferences.

Our first strategy is short-term stability, which is a step to maintain the

stability of a matching whenever preferences change. In this model, an agent’s

preferences can change over a certain period, a�ecting the stability of the

matching that has been obtained. The preference changes with certain specifi-

cations trigger our system to perform re-matching to get stable matching for

the latest preferences. This strategy is suitable for matching problems where

the intensity of preference changes is not too high.

Our second strategy is long-term stability, a step to finding stable matching

under dynamic preference for a long period. Thus, the preference changes do

not always trigger re-matching. In this strategy, we o�er a new concept for the

stability of matching under dynamic preference. The definition of stability of

classical SMP needs to be extended for this model. We propose a new concept

to find the stable matching under dynamic preference using the blocking pair

perspective. Furthermore, we also introduce three notions of stability for the

long-term stable matching.

We implemented our system into virtualization technology to show that our

strategy can be applied to real-world problems. We use our algorithm for a
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job scheduling application on Kubernetes container orchestration technology.

In this implementation, the goal of job scheduling focuses on server benefits

(stable matching with server-optimal), aiming for resource utilization e�ciency

in the data center.

1.3 Contributions

This thesis focuses on stable matching problem under dynamic preference. We

propose several strategies to find the stable matching under dynamic preferences.

This research’s key contributions will be summarized as follows:

• Our first strategy, the short-term stability. We maintain matching stability

by updating a matching when the preference changes (rematching). Our

contribution to the first strategy is to minimize revision costs when per-

forming rematches. Our theorem demonstrate how to update a matching

starting with a smaller stable matching.

• Our second strategy, the long-term stability. We introduce a new concept

to find a stable matching under dynamic preference based on the blocking

pair perspective. Our findings show that our approach has more detailed

results. The more detailed result can help determine the stable matching

precisely.

• Since the original concept of matching stability is di�cult to implement in

the matching problem with dynamic preference, we introduce three notions

of stability for the stable matching problem under dynamic preference.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:
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• In Chapter 2, we provide some relevant background theories, funda-

mental concepts, and related work that were underlying this thesis. The

related background concept includes stable matching problems and appli-

cations.

• In Chapter 3, we provide our first proposed solution to handle stable

matching under dynamic preference. We introduce a mechanism and

Theorems to find a short-term stable matching under dynamic preference.

• In Chapter 4, we provide our second proposed solution to handle stable

matching under dynamic preference. We introduce a mechanism to find a

long-term stable matching under dynamic preference. We also introduce

a new concept of stability for stable matching under dynamic preference.

• In Chapter 5, to show the applicability of our findings, we demonstrates

the implementation of stable matching under dynamic preference for data

center scheduling problem.

• In Chapter 6, we are summing up the overall results of this thesis and

identifying the remaining challenges for future works.



Chapter 2

Background Concepts

2.1 Stable Matching Problem

The term "matching" refers to a collection of agents wishing to form a pair

that meets each agent’s criterion. The criterion in question is stability, which

depends on each agent’s fixed preferences. The essential characteristic of a

stable matching is that it cannot be broken by unmatched agents or by any

coalition of agents.

2.1.1 Stable Marriage Problem

The stable marriage problem (SMP) was introduced by Gale and Shapley [14].

An SMP is a two-sided matching problem with an equal number of agents

on each side. Each agent expresses a strict order preference that includes all

members of the opposite side. The goal of the Gale-Shapley algorithm is to

find a stable matching for all involved agents. A matching process is a step

to determine the pairs of participants (sets of men and women) to meet the

specified criteria.

The size n of the SMP instance is I = (M, W, L), where M denotes the

set of male agents M = {m1, m2, . . . , mn}, W denotes the set of female agents

W = {w1, w2, . . . , wn}, and L represents a list of the preference order of an

11
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Fig. 2.1 The illustration of stable marriage problem.

agent for the opposite sex. To express the preference order list of agent m1,

we can denote it by L(m1). For such an instance, a matching µ is a one–one

correspondence between the men and the women. If a man m and a woman w

are matched in µ, they are referred to as partners, and we write m = µ(w) and

w = µ(m). µ(m) is the partner of w in µ, and µ(w) is the partner of m in µ.

In the SMP, the stability of matching is determined by the existence of a

blocking pair. In a matching µ, a pair (m, w) is said to be a blocking pair if m

and w are not a pair in µ, but m prefers w over µ(m) and w prefers m over

µ(w). That is, (w ºm µ(m)) · (m ºw µ(w)). A matching that contains at least

one blocking pair is called unstable; otherwise, it is stable. The illustration of

SMP is depicted in Figure 2.1.

2.1.2 Find Stable Matching

The Gale-Shapley algorithm is a solution to find stable matching in a stable

marriage problem. The Gale-Shapley algorithm can always find stable matching

in a stable marriage problem. The basic Gale-Shapley algorithm in which the

men as the proposer (man-oriented version), is summarized as follows in

Algorithm 1

All possible executions of the Gale-Shapley algorithm (the men as proposers)

yield the exact stable matching, and in this stable matching, each man has the
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Algorithm 1: Basic Gale-Shapley algorithm
while some man m is free do

w Ω first woman on m’s list to whom m has not yet proposed;
if w is free then

assign m and w to be engaged {to each other}
else

if w prefers m to her fiance mÕ then
assign m and w to be engaged and mÕ to be free

else
w rejects m { and m remains free}

end if
end if

end while
output the stable matching consisting of the n engaged pairs

best partner he can have in any stable matching. The Gale-Shapley algorithm

drives the result based on the proposing side. If the men are proposers, each

man will get the best partner he can, and vice versa; if the women are proposers,

each woman will get the best partner she can.

In order to check the stability of a matching, the following Algorithm 2 can

simply check the stability of a matching

Algorithm 2: Checking a matching stability
for m Ω 1 to n do

for each w such that m prefers w to M(m) do
if w prefers m to M(w) then

report matching unstable
halt

end if
end for

end for
report matching stable

2.1.3 The Set of Stable Matchings

In an SMP instance, the Gale-Shapley algorithm will always produce optimal

stable matching. Namely man-optimal and woman-optimal matching. In a
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Fig. 2.3 Lattice structure for the current instance

man-optimal matching algorithm, the goal is to find a stable matching in which

each man agent is matched with the best possible partner according to his

own preference. Similarly, in a woman-optimal matching algorithm, the goal

is to find a stable matching in which each woman agent is matched with the

best possible partner according to her own preference. In SMP, sometimes

man-optimal and woman-optimal stable matching can be equal. However, the
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number of stable matching for each SMP instance can be more than man-

optimal and woman-optimal. There are several matching intermediate values.

A set of stable matching will form a lattice structure. Consider the example of

size 4 described by the preference list in Figure 2.2. The instance in Figure

2.2 admits a total of ten stable matchings. The lattice structure is illustrated

in Figure 2.3 is a directed graph with a node for each element of the lattice,

and a directed edge from node x to node y if x ª y and there is no z such that

x ª z ª y.

2.2 The Hospitals/ Residents Problem

Hospitals/Residents Problem (HRP) is a generalization of SMP. SMP is a

two-sided matching with one-to-one agent correspondence, where the number

of disjoint sets equals. In SMP, the agent is illustrated with men and women.

HRP is a two-sided matching with a one-to-many model, where the number of

disjoint agent sets is allowed to be di�erent. In HRP, agents are represented

by hospitals and residents (interns). In HRP, a hospital can accommodate one

or more residents by defining their quota in advance. Figure 2.4 illustrate the

hospitals/residents problem.

Fig. 2.4 Illustration of hospitals/residents problem

We formally define the hospitals/residents problem (HRP). An instance of

HRP is a set of residents R = r1, r2, . . . , rn and hospital H = h1, h2, . . . , hm.
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Each hospital hj œ H has a positive integer of capacity value denoted by C(hj),

where C(hj) Ø 1. Each resident ri œ R has a set of preference list L where

residents will rank each member of H in strict order. To denote the preference

of agent ri, we can write L(ri). Likewise, hospitals hj œ H also have a set of

preference list where the hospital will rank each member of R in strict order.

An agent p œ R fi H is acceptable in q œ R fi H if agent p appears on q’s

preference list, p œ L(q); otherwise, p cannot be accepted at q. A matching M

is a subset of RxH, where (r, h) œ M with conditions (i) r and h acceptable

to each other, (ii) r is assigned at most one hospital, (iii) h accepts residents

at most C(h). a matching M is said to be stable if no blocking pair is found.

(r, h) is a blocking pair in matching M , if (i) r and h accept each other, (ii)

r is unassigned, or r prefers h over M(r), and (iii) h is under-subscribed or

prefers r over at least one member of M(h).

2.3 Paths to Stability Mechanism

Since its introduction in 1962, the Gale-Shapley algorithm has attracted much

research interest. Several stable matching variants also emerged, followed by

the extension of the Gale-Shapley algorithm. The Gale-Shapley algorithm

always terminates when it finds a stable matching, requiring O(n2).

One of the well-known extensions of the Gale-Shapley algorithm is the paths

to stability mechanism [25], known as the RV mechanism. The mechanism is

based on the Gale-Shapley algorithm but can perform stable matching searches

starting with an arbitrary pair. The Gale-Shapley algorithm always finds

optimal stable matching (man or woman optimal), however, the Gale-Shapley

algorithm cannot find stable matching other than man or woman optimal. One

of the advantages of this mechanism is that it can discover stable matching

other than man and woman optimal.

Jinpeng Ma [21] shows that the RV mechanism can find stable matching

other than optimal man and woman, although not all stable matching in an
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instance is entirely discovered. They also summarized the RV mechanism and

admitted that stable matching can always be achieved with a probability of

one starting from satisfying blocking pairs in arbitrary matching.

Matching Process Room

Gale-Shapley Algorithm

(w1, m1) w2 m3 m2 w3

Queue line

1 2 3 4 5

Fig. 2.5 Paths To Stability Mechanism Illustration

Roth’s and Vande’s work can be analogized as follows:

1. Imagine that there is one room with one entrance; randomly select a pair

from each matching process. Let the selected pair enter the room. The

selected pair can be confirmed as a stable matching in this room because

no other choice can break the pair. Meanwhile, the rest of the agents

form a queue outside the room to enter the room one by one.

2. Ask an agent who is in front of the room to enter the room. There will

be a matching process inside the room. The door of the room will remain

closed before a stable matching is formed in the room.

3. Repeat the second step until there are no remaining queues and a stable

matching is obtained. As a result, a stable matching will be obtained

without any blocking pairs.

Figure 2.5 illustrated how the RV mechanism finds stable matching.
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Chapter 3

Short-term Stability for

Matching Problem under

Dynamic Preference

3.1 Introduction

In the stable matching problem, generally, each agent expresses a preference

with certainty. However, as we discussed in the introduction, in real-world

situations, sometimes an agent cannot express their preference in certainty,

causing their preference to be dynamic. Consequently, a preference change in

an agent may a�ect the stability of the obtained matching.

This study aims to find a stable matching for the SMP with the dynamic

preference model, where dynamic preferences refer to a scenario in which agents’

preferences might change dynamically over time. To illustrate the problem, we

use a simple 3 ◊ 3 SMP.

Example 3.1. There is a set of men M = {m1, m2, m3} and women W =

{w1, w2, w3}. Assume that agent m1 has dynamic preferences by changing his

preference order. Specifically, these dynamic preferences generate two SMP

instances, as depicted in Figure 3.1:

19
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Instance 1 (I1)

L1(m1) = w1, w2, w3
L1(m2) = w2, w3, w1
L1(m3) = w3, w1, w2

L1(w1) = m2, m3, m1
L1(w2) = m3, m1, m2
L1(w3) = m1, m2, m3

Instance 2 (I2)

L2(m1) = w3, w2, w1
L2(m2) = w2, w3, w1
L2(m3) = w3, w1, w2

L2(w1) = m2, m3, m1
L2(w2) = m3, m1, m2
L2(w3) = m1, m2, m3

Fig. 3.1 The 3 ◊ 3 dynamic preference of SMP.

In this chapter, we assume that preference changes infrequently occur.

Traditionally, we can use the Gale–Shapley algorithm to find a stable matching

solution for each instance. In Example 3.1, we can find the stable matching

for Instances 1 and Instance 2 by processing them separately. However, the

agent’s preference changes do not necessarily a�ect all pairs’ stability in a

matching. Some small preference changes may not a�ect all agents, and only

a few pairs want to change their partners, while others prefer to stay with

their current partners. This motivates us to maintain stability in the SMP

with dynamic preferences by updating the matching. The SMP with dynamic

preferences is an extended version of the original SMP; the goal is to obtain a

stable matching on the SMP instance. The Gale-Shapley algorithm is one way

to find a stable matching for the SMP. However, the Gale-Shapley algorithm

cannot update the matching, the algorithm always starts the matching with an

empty matching. Roth and Vande [25] introduce the mechanism to update the

matching by satisfying the blocking pair. This mechanism starts by satisfying

one random blocking pair and then satisfying each agent until stable matching

is found in the market.

We try to minimize the re-matching costs when preferences change. Using

the Gale-Shapley algorithm, we can always find a stable matching, but the
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matching process starts from the beginning (empty matching). We try to

minimize the re-matching cost when performing the new matching by using

the update mechanism. Our theorems and mechanism demonstrate the process

of finding stable matching by updating the previous matching.

The main contribution of this chapter is we introduce a short-term strategy

for maintaining a stable matching by updating a matching when the preference

changes. We demonstrate the process of finding stable matching by updating a

matching without a cyclic process.

3.1.1 Problems

In this section, we will examine the issues that will be addressed in this chapter.

This chapter discusses an SMP with dynamic preferences, in which an agent’s

preferences can change. Many existing algorithms can be utilized to find stable

matching, however, they are less e�cient for SMP with dynamic preferences.

Here is a summary of the problems we intend to address in this chapter:

1. What is an e�cient method for obtaining stable matching when prefer-

ences change

2. How to e�ciently update a matching so that it remains stable against

the new preferences.

The two issues listed above are the issues that will be addressed in this

chapter. In the first issue, the Gale-Shapley algorithm can be used to discover

a stable matching whenever the preferences change. However, the Gale-Shapley

algorithm’s limitation is that it must always begin the matching process from

scratch (empty matching). In this chapter, we propose a solution for finding a

matching each time the preferences change by modifying the prior matching.

By utilizing the update method, we may reduce the re-matching costs.

The second issue we encounter is how to e�ciently update a matching to

obtain a stable matching against the new preference. Roth and Vande [25]
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introduce the mechanism to update the matching by satisfying the blocking

pair. However, this mechanism always starts the process with one pair (initial

matching) and then satisfies each agent until stable matching is found in the

market. To address this issue, we intend to maximize the initial matching,

by identifying the blocking pair of the prior stable matching against the new

preference. Our findings help identify the blocking pair of prior matching and

produce the maximum initial matching. Therefore, the re-matching costs can

be minimized.

3.2 Find Stable Matching using Gale-Shapley

I1 I2 I3 Ik

GS Algorithm 

SM1

GS Algorithm

SM2

GS Algorithm

SM3

GS Algorithm

SMk

Fig. 3.2 Maintaining Stability of SMP using Gale-Shapley Algorithm

Re-matching is one of the possible strategies to maintain short-term stability

in dynamic preference, this strategy requires starting the process of finding

stable matching when the preference changes. A stable matching for each

instance can be found by simply using the Gale-Shapley algorithm.

Figure 3.2 is an illustration of maintaining the stability for each instance

using the Gale-Shapley algorithm. However, preference changes for an agent

do not necessarily a�ect the stability of all pairs in a matching. Some small
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preference changes may not a�ect all agents, and only a few pairs want to

change their partners, while others prefer to stay with their current partners.

To illustrate the problem, consider Example 3.2.

Example 3.2. There is a set of men M = {m1, m2, m3} and women W =

{w1, w2, w3}. Assume that agent w1 change her preference.

Instance 2 (I2)
L2(m1) = w2, w1, w3
L2(m2) = w2, w3, w1
L2(m3) = w3, w1, w2

L2(w1) = m3, m1, m2
L2(w2) = m3, m1, m2
L2(w3) = m1, m2, m3

Instance 1 (I1)
L2(m1) = w2, w1, w3
L2(m2) = w2, w3, w1
L2(m3) = w3, w1, w2

L2(w1) = m2, m3, m1
L2(w2) = m3, m1, m2
L2(w3) = m1, m2, m3

Suppose µ1 is the man-optimal of I1, where µ1 = {(w1 : m3), (w2 : m1), (w3 :

m2)}. In I2. However, we do not sure whether µ1 is stable or not. Then we

need to find the stable matching for I2 using Gale-Shapley. The stable matching

for I2 is µ2 = {(w1 : m3), (w2 : m1), (w3 : m2)}. In I2. Turn out that µ1 © µ2,

means that µ1 is stable in I2. This motivates us to maintain stability in the

SMP with dynamic preferences by using a matching-updating mechanism.

3.3 Updating Matching Mechanism

Our prior research investigated the RV mechanism to establish stable match-

ing with dynamic preference [3]. In this research, we attempt to identify every

stable pairing of all potential preferences that can arise when preferences are

dynamic. We attempt to identify stable matching solutions for each generated

preference using the modified RV mechanism. This work is the preliminary
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Fig. 3.3 Maintaining Stability of SMP using Updating Mechanism

step to the development of an update matching mechanism as a short-term sta-

ble matching strategy. In this study, we attempted to compare the Gale-Shapley

algorithm with the RV mechanism for stable matching with dynamic preference.

In terms of algorithm e�ciency, the Gale-Shapley algorithm is a very e�cient

algorithm to discover stable matching. However, in the case of stable matching

with dynamic preference, the study shows that the RV mechanism is useful

when it is unclear whether the Gale-Shapley algorithm should be implemented

using man-optimal or woman-optimal settings.

Re-matching can maintain the stability of a matching. Figure 3.2 shows

how to find stable matching using the traditional method by performing the

matching process from scratch on each existing instance using the Gale-Shapley

algorithm. Instead of using the conventional method of finding stable matches

for each instance, we use the previous update matching mechanism to find new

stable matching, as illustrated in Figure 3.3. To update a matching, we use

the following three steps:

1. Identify the preference changes for each agent, whether these changes

have the potential to form a blocking pair or not

2. If a potential blocking pair is detected, initiate update matching
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3. Else, the previous matching remains stable on the new instance

3.3.1 Identifying the Preference Changes

Preference changes in an instance do not necessarily a�ect the stability of a

stable matching. Sometimes specific changes do not destroy the stability of a

stable matching. Therefore, we classify preference changes into two, minor and

major changes.

Definition 3.1. A minor preference change is a change in the agent’s preference

that does not a�ect the pair involving the agent in a matching. Preference

changes for this agent will not trigger the formation of a blocking pair.

Definition 3.2. A major preference is a change in the agent’s preference that

potentially breaks a pair of stable matching. This major change directly impacts

the stability of an existing matching.

Every agent can change their preferences at any time in the dynamic

preference model. A change in an agent’s preference does not always lead to a

change in matching. However, it can occasionally allow for the appearance of

blocking pairs, leading to the instability of a previous matching.

Given an SMP with a dynamic preference of size n and with the initial in-

stance I = (M, W, L) and a stable matching µ, where M = {m1, m2, . . . , mn}, W =

{w1, w2, . . . , wn}, Suppose that a man agent (m1) changes his preference through

permutation, we will have another instance of the SMP: I Õ = (M, W, LÕ), where

L(m1) ”= LÕ(m1). By referencing the previous SMP instance, we determine

the occurrence of potential blocking pairs. We identify whether the preference

change for agent m1 is a minor change or not.

Theorem 3.1. Under the assumption that the preference change occurs on

only one side. Let l µ L(m1) and (µ(m1) ºm1 l). IF µ(m1) ºm1 l in LÕ, m1

preference changes is minor change.
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Proof. Assume that the position of agent µ(m1) in L(m1) is the (n ≠ 1)th rank;

this means that agents from the first rank to the (n ≠ 2)th rank in L(m1) prefer

other male agents over m1. The agent at the nth rank is a worse agent than

µ(m1), which means that µ(m1) is the best option for m1 at I (man-optimal).

Thus, as long as the nth agent’s position remains lower than µ(m1) in LÕ(m1),

any permutation in the agent from the 1st rank to µ(m1) in L(m1) does not

a�ect the pair (m1, µ(m1)). This results in µ(m1) = µÕ(m1).

Based on Theorem 3.1, we describe the following corollaries.

Corollary 3.1.1. If µ(m1) is the last choice of m1 in L(m1), then any permu-

tation in L(m1) leads to minor change.

Proof. If µ(m1) is the last order in L(m1), µ(m1) is considered the best choice

that m1 can get because other women agents prefer other men agents over m1.

As a result, (m1, µ(m1)) will not change, although the rank of µ(m1) increases

in LÕ(m1).

Corollary 3.1.2. If µ(m1) becomes the first choice of m1 in LÕ(m1), then it is

a minor change.

Proof. If µ(m1) is the first option in LÕ(m1), then no agent that is worse than

µ(m1) in L(m1) becomes better than µ(m1) in LÕ(m1). Moreover, if the rank of

µ(m1) increases in LÕ(m1), it strengthens the pair between µ(m1) and m1.

Corollary 3.1.3. If there is any permutation in L(m1) from the first rank to

µ(m1) or any permutation from the rank of µ(m1) + 1 to the nth rank, then it

is a minor change.

Proof. The permutation of the first rank to µ(m1) does not lead to a worse

agent being superior to µ(m1). Meanwhile, permutations from the rank of

µ(m1) +1 to the lowest-ranked agent will also be inferior to µ(m1). According

to Theorem 1, it is a minor change if no agent worse than µ(m1) at L(m1)

increase in LÕ(m1).
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Theorem 3.1 and its corollary define the constraints under which the e�ect

of changing agents on male agents (proposing side) can be identified. However,

Theorem 3.1 and its corollary hold true when female agents (the proposed side)

possess a change in their preferences. We identify the impact of changing an

agent’s preferences using Theorem 3.1 and its corollary and whether the change

has the potential to lead to the establishment of a blocking pair in the new

instance or not. This identification accelerates the decision-making regarding

updating a matching.

Algorithm 3: Finding potential blocking pair
Input :

• m = man agent, w = woman agent

• current SMP Instance: P (m) = men preference, P (w) = women
preference

• previous SMP Instance: P0(m) = men preference,P0(w) = women
preference

• SM0 = Previous Stable Matching

Def checkPreferenceChange:
for m,w in SM0 do

if P (m) != P0(m) then
for w0 in P0(m) do

if rank(w) in P0(m) > rank(SM0(w0)) in P0(m) then
assign w0 to PotentialBP

end if
end for
for w in P (m) do

if w in PotentialBP then
if rank(m) in P (w) > rank(SM0(w0)) in P (w) then

remove pair (m, w) from SM0
end if

end if
end for

end if
end for
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We define Algorithm 3 to detect potential blocking pairs based on Theorem

3.1 and its corollaries. If Theorem 1 and its corollaries are satisfied in an agent,

the agent might not have the incentive to change his/her partner. However, if

Theorem 3.1 and its corollary are not satisfied, a deeper checking process using

the stability-checking algorithm [15] will be performed. If a blocking pair is

detected, the algorithm will mark the pair for removal and initiate the update

of the matching process.

Theorem 3.1 assumes that the preference changes only occur on one side.

Theorem 3.1 is used to determine the type of preference change that occurs in

an agent, i.e., whether it is a major or minor change. The aim is to determine

whether the preference changes incentivize an agent to change their partner.

By checking the type of preference change for all agents with Theorem 1, we

are still able to identify the potential blocking pair, even though both sides

of the agents change their preferences simultaneously. Given an SMP with a

dynamic preference of size n and with initial instance I = (M, W, L) and a

stable matching µ, where M = {m1, m2, . . . , mn}, W = {w1, w2, . . . , wn}, if we

suppose that a male agent (m1) and his partner (µ(m1)) change their preference

simultaneously, we will have another instance of the SMP: I Õ = (M, W, LÕ),

where L(m1) ”= LÕ(m1) and L(µ(m1)) ”= LÕ(µ(m1)).

Corollary 3.1.4. If m1 and µ(m1) confirm a minor change in I Õ, then the

pair (m1, µ(m1)) does not trigger a blocking pair

Proof. If agent m1 confirms that his preference change is minor, µ(m1) is the

best possible woman that agent m1 can get. In addition, if agent µ(m1) also

confirms that her preference change is minor, then agent m1 is the best possible

option for agent µ(m1) because the proposer is m1. Thus, if both agents

agree that their current partners are the best partners they can get, then the

preference changes of agents µ1 and µ(m1) do not have the potential to form a

blocking pair.
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It is worth noting that Theorem 3.1 is employed to determine whether a

change in an agent’s preference can motivate an agent to change their current

partner. Theorem 1 is used to verify agents’ wishes about their partners

following their preference changes. In other words, although both agents in a

pair confirm a minor change, the pair is still likely to change if provoked by

another agent that does not confirm a minor change.

3.3.2 Initiating the Matching Update

Once a blocking pair is confirmed to exist in a matching, the next step is to

initiate a matching update. We modified Roth’s and Vande’s mechanism to

update the stable matching. Random Paths to Stability [25] is a mechanism for

discovering a stable matching solution by satisfying the matching’s blocking pair.

Ref. [21] summarized the RV mechanism and admitted that stable matching can

always be achieved with a probability of one starting from satisfying blocking

pairs in arbitrary matching. Roth’s and Vande’s work can be analogized as

follows:

1. Imagine that there is one room with one entrance; randomly select a pair

from each matching process. Let the selected pair enter the room. The

selected pair can be confirmed as a stable matching in this room because

no other choice can break the pair. Meanwhile, the rest of the agents

form a queue outside the room to enter the room one by one.

2. Ask an agent who is in front of the room to enter the room. There will

be a matching process inside the room. The door of the room will remain

closed before a stable matching is formed in the room.

3. Repeat the second step until there are no remaining queues and a stable

matching is obtained. As a result, a stable matching will be obtained

without any blocking pairs.
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Matching Process Room

Gale-Shapley Algorithm

(w1, m1) w2 m3 m2 w3

Queue line

1 2 3 4 5

(w2, m1), (w1, m3) w3 m2

Matching Process Room

Gale-Shapley Algorithm

Queue line

1 2 3

(a)

(b)

Fig. 3.4 Comparison of the original Roth and Vande mechanism (a) and our
update mechanism

The RV mechanism begins the matching process by asking a single random pair

to enter the room. Typically, a blocking pair will be selected in the initialization

process. Following that, the remaining agents in the queue will be asked to

enter the room separately. In the RV mechanism, new agents are not permitted

to enter the room until all agents in the room reach stability. Therefore, this

motivated us to shorten the finding of stable matching in the RV mechanism.

The RV mechanism begins the matching process with a single pair for the initial

part, while our proposed algorithm enables the initial process with multiple

pairs. This significantly speeds up the process of finding stable matches by
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introducing multiple pairs into the room simultaneously. Here is our mechanism

for updating a stable matching:

1. Imagine that there is one room with one entrance; select some pairs that

have been confirmed as a stable matching. Let of all the selected pairs

enter the room together. Meanwhile, the rest of the agents form a queue

outside the room to enter the room one by one.

2. Ask an agent who is in front of the room to enter the room. There will

be a matching process inside the room. The door of the room will remain

closed before a stable matching is formed in the room.

3. Repeat the second step until there is no remaining queue and a stable

matching is obtained. As a result, a stable matching will be obtained

without any blocking pairs.

Figure 3.4 shows an illustration of the original RV mechanism and our

updating mechanism. Our mechanism allows more than one pair to enter the

room at the initial stage.

3.3.3 Reducing the Previous Matching

Given an SMP of size n with an instance I = (M, W, L), where M = {

m1, m2, . . . , mn }, W = {w1, w2, · · · , wn }, the matching µ is unstable if there

exists a blocking pair (mi, wj) such that (wj ºmi µ(mi)) · (mi ºwj µ(wj)) for

mi œ M, wj œ W , where i = 1, 2, . . . , n and j = 1, 2, . . . , n. Equivalently, the

stability for matching µ can be expressed as: (µ(mi) <mi wj) ‚ (µ(wj) <wj mi)

for ’mi œ M, ’wj œ W , where i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Theorem 3.2. If we remove any pair from the stable matching µ and SMP

instance I, the reduced matching µr remain stable for the reduced instance Ir.

Proof. Without loss of generality, we assume the removal of (m1, w1) = (m1, µ(m1)).

Then, M Õ © M\m1 and W Õ © W\w1, µr = {(m2, µ(m2)), . . . , (mn, µ(mn))}.
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The stability condition for the matching µr is expressed as: (µ(mi) <mi

wj) ‚ (µ(wj) <wj mi) for ’mi œ M Õ, ’wj œ W Õ, where i = 2, . . . , n and

j = 2, . . . , n. When we remove m1 from the preference list of women and w1

from the preference list of men, there are only two possibilities for men: mi

prefers w1 to the partner µ(mi) in the stable matching µ, or mi prefers the

partner µ(mi) to w1 in the stable matching µ. Likewise, there are only two

possibilities for women, which makes 2 ◊ 2 = 4 combined cases altogether. We

will check the stability condition above for the reduced matching µr for the

reduced instance Ir.

Case 1: If (w1 ºmi µ(mi)) and (µ(wj) ºwj m1), then the statement (µr(wj) <wj

mi) for the stability condition of matching µr is true.

Case 2: If (µ(mi) ºmi w1) and (m1 ºwj µ(wj)), then the statement (µr(mi) <mi

wj) for the stability condition of matching µr is true.

Case 3: If (µ(mi) ºmi w1) and (µ(wj) ºwj µ(m1)), then both statements

(µr(mi) <mi wj) and (µr(wj) <wj mi) for the stability conditions of matching

µr are true.

Case 4: If (w1 ºmi µ(mi) and (m1 ºwj µ(wj)), since both conditions of agents

cannot directly provide the true statement, then we need further investigation

for this condition: mi and wj are a pair in µ and also in µr. Then, we can

write mi = µ(wj) and wj = µ(mi). If we remove w1 from the men’s preferences,

then µ(mi) increases; still, we cannot confirm whether µ(mi) becomes mi’s

first choice or not. If we assume that µ(mi) is not mi’s first choice, then mi

prefers another woman (wx) over µ(mi), that is, (wx ºmi µ(mi)). Currently,

the partner of wx is µ(wx). Since µ is stable, then (mi ºwx µ(wx)) is not

possible in µ, although we also remove m1 from the women’s preferences. Then,

wx and mi never become partners in µ. Thus, the statement (µr(mi) <mi wj)

holds true for the stability condition of matching µr. The true condition holds

for all possible combinations of pair removals. That said, the stability condition

for matching µr still holds true.
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As a prior section’s discussion, we meant to obtain as many pairs as possible

for the initial stage. The pairs wishing to enter at the initial step must be

stable with each other. Therefore, we reduce the size of the previous matching

to obtain a stable matching with a smaller size. The reduction procedure is

performed by removing the unwanted pairs (m, w) from a matching µ that

causes the formation of a blocking pair. It should be noted that removing m

and w from the previous matching is not permanent. The removal is intended to

keep the remaining pairs stable. Thus, the stable reduced matching can be used

as the initial stage for finding a stable matching. We must introduce a procedure

for determining which pairs to exclude from the matching µ. By using Theorem

3.2, we can safely remove any pair from the previous matching to get the

reduced stable matching. Consider the following examples in Figure 3.5. We

1st 2nd 3rd 4th

m1 w1 w2 w3 w4

m2 w1 w2 w3 w4

m3 w1 w2 w3 w4

m4 w1 w2 w3 w4

1st 2nd 3rd 4th

w1 m4 m3 m2 m1

w2 m4 m3 m2 m1

w3 m4 m3 m2 m1

w4 m4 m3 m2 m1

Men preference Women preference

Fig. 3.5 The 4 ◊ 4 SMP instance before reduction.

have stable matching (man-optimal) {(w1, m4), (w2, m3), (w3, m2), (w4, m1)}.

Now, we will try to reduce the instance by randomly removing one pair in the

stable matching. Suppose that we remove (w2, m3). Thus, the size of the SMP

instance will change to 3 ◊ 3, as depicted in Figure 3.6.

Figure 3.6 shows the result of reducing the SMP instance from 4 ◊ 4 to 3

◊ 3 by randomly deleting one pair, which keeps the reduced matching stable

with respect to the reduced instance.

Example 3.3. Given the SMP instance I = (M, W, L), a set of men M =

{m1, m2, m3, m4, m5}, and a set of women W = {w1, w2, w3, w4, w5}, we assume

that agent m1 changes his preference and generates two instances as follows:
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1st 2nd 3rd 4th

m1 w1 w3 w4

m2 w1 w3 w4

m4 w1 w3 w4

1st 2nd 3rd 4th

w1 m4 m2 m1

w3 m4 m2 m1

w4 m4 m2 m1

Men preference Women preference

Fig. 3.6 The 3 ◊ 3 SMP instance after reduction.

Instance 0 (I0) 

L0(m1) = w5, w4, w1, w3, w2
L0(m2) = w1, w3, w4, w2, w5
L0(m3) = w1, w3, w2, w4, w5
L0(m4) = w3, w2, w4, w1, w5

L0(m5) = w5, w2, w1, w3, w4
 

L0(w1) = m5, m4, m2, m1, m3
L0(w2) = m2, m5, m3, m1, m4 
L0(w3) = m1, m3, m2, m4, m5 
L0(w4) = m1, m2, m4, m3, m5 
L0(w5) = m3, m4, m2, m5, m1

Instance 1 (I1) 

L1(m1) = w2, w5, w1, w3, w4
L1(m2) = w1, w3, w4, w2, w5
L1(m3) = w1, w3, w2, w4, w5
L1(m4) = w3, w2, w4, w1, w5

L1(m5) = w5, w2, w1, w3, w4

L1(w1) = m5, m4, m2, m1, m3
L1(w2) = m2, m5, m3, m1, m4 
L1(w3) = m1, m3, m2, m4, m5 
L1(w4) = m1, m2, m4, m3, m5 
L1(w5) = m3, m4, m2, m5, m1

Fig. 3.7 The 5 ◊ 5 SMP instances with dynamic preference.

The stable matching of instance 0 is µ0 = {(w1, m2), (w2, m4), (w3, m3), (w4, m1),

(w5, m5)}. Now, we want to find the stable matching of instance 1 by updating

µ0. Comparing L0 and L1, it is known that the pair (w3, m1) will become a

blocking pair in matching µ0 if we use L1 as the preference. (w3, m1) blocks

(w3, m3) and (w4, m1) in matching µ0. By using Theorem 2, we allow the

removal of the pair (w4, m1). Removing (w4, m1) from instance 1 will produce

the reduced matching µr = {(w1, m2), (w2, m4), (w3, m3), (w5, m5)}, which is

stable to the reduced SMP instance (Ir). As illustrated in Figure 3.4b, mem-

bers of µr may immediately enter the room together. Meanwhile, the removed
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pair (w4, m1) forms a queue outside the room. Algorithm 4 summarizes how

to find stable matching by updating the previous matching. By combining

Algorithm 3 with the reduced matching, we can update the previous matching

and obtain the new stable matching for a new instance. Since we can start the

initial process by processing several pairs simultaneously, the revision cost of

rematching can be minimized.

3.3.4 Controlling the Matching Orientation

The interesting aspect of the RV mechanism is the variety of stable matchings

obtained. Unlike the Gale–Shapley algorithm, which always provides the same

stable matching, the RV mechanism can produce a di�erent stable matching for

each execution. While it is impossible to guarantee that all stable matchings

in the lattice structure are obtained, man- and woman-optimal matching can

be guaranteed. According to Jinpeng Ma’s research [21], certain circumstances

can result in a stable matching that leads to a particular orientation or, at

the very least, in close proximity to the optimal orientation within the lattice

structure. According to his study, if the last agent in the matching process

is a man agent, a man-optimal or fairly stable matching is obtained that is

close to the man-optimal orientation in the lattice structure. In the opposite

direction, if the last agent in the matching process is a woman, it will obtain a

woman-optimal or fair stable matching close to the woman-optimal orientation

in the lattice structure. This allows us to control the orientation of the stable

matching that we want to produce by sorting the queueMember variable in

Algorithm 4. By simply putting all men agents at the end of the queue, we

will be able to obtain the man-optimal matching, or we can put all the women

agents at the end of the queue if we want woman-optimal matching.
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3.4 Time Complexity

This section discusses the computational cost of finding stable matching. In

this study, we modify the Roth and Vande (RV) mechanism [25] to find stable

matching by updating the previous matching. The RV mechanism employs the

Gale-Shapley algorithm, which requires O(n2) to find a stable matching. Thus,

The RV mechanism requires O(n · n2) or O(n3) to find a stable matching. Our

updating mechanism is the modified version of the RV mechanism. The RV

system uses a single pair to start the matching process, whereas our updating

mechanism can use several pairs for the first matching procedure. The number

of pairs that we use for the initial matching process is based on the size of the

reduced matching (r) from the previous matching. Therefore, our updating

mechanism requires O((n ≠ r + 1) · n2). In the worst-case scenario, for instance,

if the reduced matching r = 1, our updating mechanism requires O(n · n2),

equivalent to the original Roth and Vande mechanism.

Table 3.1 Comparison of short-term stable matching algorithm. n denotes the
number of men (or women), r denotes the size of the reduced instance from
the previous matching

Algorithm Time complexity Re-matching cost
Gale-Shapley O(n2) n
Roth and Vande O(n3) n ≠ 1
Proposed method O((n ≠ r + 1) · n2) n ≠ r

3.5 Summary

This chapter proposes an algorithm for finding stable matching in the SMP

with dynamic preference. In the SMP with dynamic preference, the agents’

preference might change dynamically, a�ecting the stability of the previous

stable matching. One traditional method for maintaining matching stability is

to perform new matching every time the preference changes. However, in some

situations, preference changes do not always a�ect the matching stability, such
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as with minor changes in preference. In other words, the prior matching remains

stable in the presence of the new preference. This motivates us to update the

matching to find a stable matching with dynamic preferences. Compared to

other existing methods, our proposed concept is outperform in minimizing

re-matching costs.

Our main contributions in this chapter are Theorems 3.1 and 3.2, which

demonstrate how to update the matching when the previous preference changes.

Thus, we can minimize the re-matching cost when performing the new matching.

In this chapter, we assume that preference changes rarely occur, employing

the short-term strategy may be costly when the preference changes frequently

occur.

In the next chapter, we will discuss a long-term strategy to find a stable

matching under dynamic preference, when preference changes frequently occur.
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Algorithm 4: Updating Stable Matching
Input :

• m = man agent, w = woman agent

• current instance: P (m) = men pref.,P (w) = women pref.

• previous instance: P0(m) = men pref., P0(w) = women pref.

• SM0 = Previous Stable Matching

Def updateMatching:
for m,w in SM0 do

if P (m) != P0(m) then
for w0 in P0(m) do

if rank(w) in P0(m) > rank(SM0(w0)) in P0(m) then
assign w0 to PotentialBP

end if
end for
for w in P (m) do

if w in PotentialBP then
if rank(m) in P (w) > rank(SM0(w0)) in P (w) then

remove pair (m, w) from SM0
end if

end if
end for

end if
if P (w) != P0(w) then

for m0 in P0(w) do
if rank(m) in P0(w) > rank(SM0(m0)) in P0(w) then

assign m0 to PotentialBP
end if

end for
for m in P (w) do

if m in PotentialBP then
if rank(w) in P (m) > rank(SM0(m0)) in P (m) then

remove pair (m, w) from SM0
end if

end if
end for

end if
end for
SM Ω SM0\removedpair
roomMember Ω SM0
queueMember Ω removedpair
for newMember in queueMember do

assign newMember to roomMember
pathToStability(newMember)

end for



Chapter 4

Long-term Stability for

Matching Problem under

Dynamic Preference

4.1 Introduction

In the short-term stability strategy, we assume that preference changes rarely

occur. We propose an update matching mechanism as a short-term strategy

to address the problem. In this chapter, we assume that preference changes

frequently occur, and employing a short-term strategy will be costly. This

chapter introduces a new concept of finding stable matching under dynamic

preference and assuming the preference changes frequently occur.

This chapter proposes a long-term stability strategy for a matching problem

under dynamic preference. Several concepts of stability for the matching

problem with dynamic preference have been published. References [24, 11, 8, 7]

use the most stable approach to find stable matching under dynamic preference.

The most stable approach means finding a matching that is most stable to

all instances of a dynamic instance. Chen et al. [11] introduce the –-layer

global stability to define the stability for a matching problem under dynamic

39
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preference by extending the original stability concept of SMP. They use – to

quantify the strengths of the stability with 1 Æ – Æ ¸, where ¸ is the number

of layers, which is similar to the number of instances in a dynamic instance in

our current study. Our fully stable notions is equivalent with ¸≠layer globally

stable. Aziz et al. [8] defined the certain stable and possibly stable concept

when a probability of preference is given. The certain stable concept is also

equivalent to our fully stable notions of stability.

A classical SMP instance is I = (M, W, L). In the SMP with dynamic

preference, agents can change their preferences, leading to dynamic preference.

An instance of SMP with dynamic preference leading the formation of a dynamic

instance. The dynamic instance is DI = (M, W, L1, L2, . . . , Lk), where k is

the number of unique preference lists that occur due to changes in agent

preferences. Thus, a set of SMP instances for SMP under dynamic preference

is DI = {I1, I2, . . . , Ik}.

The main contribution of this chapter is summarized as follows: 1. We

introduce a new concept to find a stable matching under dynamic preference.

2. We introduce the stability notions for stable matching under dynamic

preference.

4.1.1 Problems

In this section, we will examine the issues that will be addressed in this chapter.

This chapter discusses the strategy to maintain the long-term stability of a

matching. Some existing method is proposed to find stable matching for long

period. However, in some cases, it is still hard to select the solution for stable

matching under dynamic preference. Here is a summary of the problems we

intend to address in this chapter:

1. How to find the long-term stable matching

2. How to select the matching solution more accurately
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The two issues listed above are the issues that will be addressed in this

chapter. In the first issue, the most stable matching concept is the existing

concept used by other researchers [24, 7, 11] to define stable matching under

dynamic preference. This concept counts the number of stability of matching

against all occurred instances. They use the – as the index of strengths of

provided solutions. The matching with the highest index is selected as a

solution for stable matching. However, in some cases, some matching has an

equal value of the index, this situation is di�cult to determine the solution.

The second issue is how to determine the stable matching solution more

accurately. In this study, we propose a new concept to define stable matching

using the blocking pair perspective. Using the blocking pair, we can get the

new information to select the stable matching more precisely. In this study,

we also introduce two indexes to select stable matching solutions using the

blocking pair perspective. The first index is — which represents the number of

blocking pairs of a matching in all instances. The second index is EV , which

represents the expected value of blocking pairs of a matching in all instances.

The matching with the lowest — and EV is the solution for the stable matching

problems.

4.1.2 Most stable matching concept

Agent preference changes are very likely to occur in real-world situations, and

this could be due to a lack of information from agents about the opposite

sex. The preference changes that continue to occur will form a probability

distribution of preferences. Before discussing our proposed concept, we sum-

marize the concept of finding stable matching using the most stable concept.

Several studies [7, 24, 11, 8] employ the most stable concept to find the stable

matching under dynamic preference. To illustrate the problem, we use a 3x3

SMP instance as shown in Example 4.1.
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  m1 = w1, w2, w3
L1  m2 = w2, w3, w1
  m3 = w3, w1, w2

w1 = m2, m1, m3
w2 = m3, m2, m1
w3 = m1, m3, m2

  m1 = w2, w3, w1
L2  m2 = w2, w3, w1
  m3 = w3, w1, w2

w1 = m2, m1, m3
w2 = m3, m2, m1
w3 = m1, m3, m2

Fig. 4.1 The 3x3 SMP instances with dynamic preference.

Example 4.1. Given an SMP instance under dynamic preference. A set of

men M = m1, m2, m3 and women W = w1, w2, w3. The two sets of preference,

L1 and L2, are depicted in Figure 4.1.

The preferences in Figure 4.1 imply the occurrence of two SMP instances,

such that DI = I1, I2 where I1 = (M, W, L1) and I2 = (M, W, L2). Let M1 and

M2 be the stable matching sets for I1 and I2, respectively. This setting admits

three unique matching with positive probability: µ1 = {w1 : m1, w2 : m2, w3 :

m3}, µ2 = {w1 : m2, w2 : m3, w3 : m1}, and µ3 = {w1 : m3, w2 : m2, w3 : m1}.

µ1 and µ2 stable against I1, such that M1 = {µ1, µ2}. Whereas I2 admits µ2

and µ3 as the stable matchings, such that M2 = {µ2, µ3}. To find the most

stable matching, we need to find the – value for each matching. – shows the

stability strength of each matching against a dynamic instance; – is a function

that contains the probability of stability for each matching against a dynamic

instance.

–(µ) =
kÿ

i=1
SMi(µ) (4.1)

Where:

• –(µ) = Number of matching µ being stable in a dynamic instance
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• DI = a set of dynamic instance, such that I1, I2, . . . , Ik

• SMi(µ) = x | x = 1 if µ stable to Ii, otherwise x = 0

• k = cardinality of dynamic instance DI

Using (4.1), we get that – for µ1, µ2, and µ3 are 1, 2, and 1, respectively.

The next step is finding the matching with the highest – value. In Example

4.1, the – for matching µ1 and µ3 is 1, whereas µ2 is 2 = k. We can simply

decide that µ2 is the stable matching for the current matching problem.

We summarize the algorithm to find the stable matching using the most

stable concept, as follows:

1. Find all stable matching for each instance

2. Check the stability of each stable matching found in all instances

3. Calculate the – of each matching, eq (4.1)

4. Find the matching with the highest –

The Gale-Shapley algorithm cannot generate all stable matching of an SMP

instance because it only generates the optimal matching (man- or woman-

optimal). Currently, the most e�cient algorithm to find all stable matching

solutions for a single instance is brute force [13]. Wirth’s method [27] of trial-

and-error and backtracking is a straightforward but ine�cient approach to

discovering all solutions of stable matching. Algorithm 5 shows how to find a

stable matching under dynamic preference using the most stable concept.

4.1.3 Probability Distribution of Instances

This section considers a preference that changes frequently and repeatedly.

Assuming the probability of an instance is given, we can determine the proba-

bility of stability of matching against a dynamic instance. In the most stable
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Algorithm 5: Finding the most stable matching
Input: k = number of instances in dynamic instance

n = size of SMP
1: SMDI = array() //matchings in dynamic instance
2: for i = 1 to k do
3: allSM(Ii) //find all stable matching of instance i
4: SMDI .append(allSM(Ii))
5: end for
6: for each sm in unique(SMDI) do
7: – Ω 0
8: for i = 1 to k do
9: checkStability(sm,i) //check stability of sm in i

10: if (sm is stable) then
11: – Ω – + 1
12: end if
13: end for
14: mostStable[sm] Ω –
15: end for
16: SORTDESC(mostStable[sm])

matching concept, [8] considers the probability of stability of matching to

determine the stable matching with uncertain preference.

We can perform a deeper search based on the preference probability distri-

bution to get the most stable matching. Using the Bayesian formula, we can

get the probability of the occurrence of a stable matching against each instance

of the dynamic instance.

P (µ) =
kÿ

i=1
P (Ii fl µ) =

kÿ

i=1
P (Ii)P (µ|Ii) (4.2)

Where:

• P (Ii) = Probability of instance i

• P (µ|Ii) = Probability of matching µ in instance i

• k is the number of instances in the dynamic instance

Recalling the Example 4.1, we set the probability of each instance as depicted

in Figure 4.2
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  m1 = w1, w2, w3
L1  m2 = w2, w3, w1
  m3 = w3, w1, w2

w1 = m2, m1, m3     
w2 = m3, m2, m1 Pr=0.4
w3 = m1, m3, m2       

  m1 = w2, w3, w1
L2  m2 = w2, w3, w1
  m3 = w3, w1, w2

w1 = m2, m1, m3     
w2 = m3, m2, m1 Pr=0.6
w3 = m1, m3, m2       

Fig. 4.2 Probability distribution of 3x3 SMP dynamic instance

Using the Bayesian formula (4.2), we can find the probability of each stable

matching relative to a dynamic instance. P (µ1), P (µ2), and P (µ3) are 0.2, 1,

and 0.3, respectively. Since µ2 is stable in all instances, µ2 still has the highest

probability of being stable.

4.2 The Least Blocking Pair Concept

We propose a new concept to find long-term stable matching. In Section 4.1.2,

we find the stable matching under dynamic preference based on the "stable

matching" perspective by counting the number of instances that the matching

can be stable. This section intends to find stable matching under dynamic

preference from another perspective. We want to find the stable matching

using the blocking pair, which means we intend to find the stable matching

using the "unstable matching" perspective. A matching is unstable if at least

one blocking pair is found. In unstable matching, the number of blocking pairs

is Ø 1. Whereas in stable matching, the number of blocking pairs is zero. The

following example motivates us to use the blocking pair approach to find stable

matching under dynamic preference.

Example 4.2. Given the 3x3 SMP instance I = (M, W, L) as follows:
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L(m1) = w3, w2, w1
L(m2) = w1, w3, w2
L(m3) = w3, w1, w2

L(w1) = m3, m1, m2
L(w2) = m3, m2, m1
L(w3) = m2, m3, m1

Given M1 = {(w1 : m1), (w2 : m3), (w3 : m2)} and M2 = {(w1 : m2), (w2 :

m3), (w3 : m1)}. Both M1 and M2 are unstable to instance I. However, we

want to know the best matching among the two worst choices. Recall the

definition of stability of the stable marriage problem; a matching is stable if no

blocking pair is found. Our proposed concept is to try to find the best among

the worsts.

Table 4.1 Quantifying the number of blocking pairs for each matching

Matching #BP Description
M1 1 BP = {(m3, w1)}
M2 2 BP = {(m3, w1), (m3, w3)}

We quantify the number of blocking pairs for each matching to determine

the best matching as shown in Table 4.1. Matching with the minimum number

of blocking pairs is the best matching. In Example 4.2, we found that a pair

(m3, w1) is the blocking pair in M1. Whereas (m3, w1) and (m3, w3) are the

blocking pairs in M2. Because the number of blocking pairs in M1 is less than

the number of blocking pairs in M2, M1 is better than M2 in the instance

I. This motivates us to use the blocking pair as a perspective to find stable

matching in the stable matching problem under dynamic preference.

Example 4.2 shows how to find the best matching among the worst choices

in a single instance by looking for matching with the lowest number of blocking

pairs. We also apply this concept to find the matching with the minimum

blocking pairs in the dynamic instance. To determine the best matching on

a dynamic instance, we calculate the — value of each matching µ. — is the

cardinality of distinct blocking pairs in a dynamic instance and indicates the

number of the blocking pairs for matching in a dynamic instance. The blocking
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pair (BP) of matching µ in dynamic instance DI is defined as follows:

BPDI(µ) = fik
i=1BPi(µ) = {BP1(µ) fi · · · fi BPk(µ)} (4.3)

—(µ) = | fik
i=1 BPi(µ)| (4.4)

where:

• BPDI = consists of the union of blocking pairs in instance i.

• —(µ) = The number of blocking pairs in a dynamic instance.

Matching with the smallest — is the most stable among the other matchings.

Algorithm 6 shows how to find a stable matching under dynamic preference

using the least blocking pair concept.

Consider the following Example 4.3 to understand how to find the stable

matching problem under dynamic preference using the blocking pair perspective.

Example 4.3. Given the 3x3 SMP instance I = (M, W, L), suppose agent m3

changes his preference, and the preferences are as follows:

Instance 1 (I1) 

L1(m1) = w3, w2, w1
L1(m2) = w1, w3, w2
L1(m3) = w3, w1, w2

L1(w1) = m3, m1, m2
L1(w2) = m3, m2, m1
L1(w3) = m2, m3, m1

Instance 2 (I2) 

L2(m1) = w3, w2, w1
L2(m2) = w1, w3, w2
L2(m3) = w2, w3, w1

L2(w1) = m3, m1, m2
L2(w2) = m3, m2, m1
L2(w3) = m2, m3, m1

This setting admits four unique matching with positive probability: µ1 =

{w1 : m2, w2 : m1, w3 : m3}, µ2 = {w1 : m3, w2 : m1, w3 : m2}, µ3 = {w1 :
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m1, w2 : m3, w3 : m2}, and µ4 = {w1 : m2, w2 : m3, w3 : m1}. µ1 and µ2 stable

against I1, such that M1 = {µ1, µ2}. Whereas I2 admits µ3 and µ4 as the

stable matchings, such that M2 = {µ3, µ4}.

Table 4.2 Find — of each matching

Matching — Description
µ1 1 BP = {(w2, m3)}
µ2 1 BP = {(w2, m3)}
µ3 1 BP = {(w1, m3)}
µ4 2 BP = {(w1, m3), (w3, m3)}

There are no obtained matching in Example 4.3 admits stable to the dynamic

instance. Each matching only stable to a single instance. Our proposed concept

can help determine the stable matching among the worst options. Table 4.2

shows — of each matching. Using obtained —, we can eliminate µ4 because

it has the most blocking pairs. We intend to find the stable matching with

least blocking pair. Thus, the solution for Example 4.3 is µ1, µ2, and µ3. For

temporary solution, we can select randomly from three provided options. Our

next discussion discuss how to find the specific stable matching when the

probability of instance is given.

4.2.1 The Expected Value of The Blocking Pairs

In the stable matching problem with dynamic preference, the number of in-

stances that appear is more than one, where each instance has a probability

of occurrence. In this study, we also consider the probability of instances

occurring. Therefore, we want to find the stable matching by finding the stable

matching that has the minimum expected value of the blocking pair. To find

the expected value of the blocking pair for each matching, we need to quantify

the number of blocking pairs for each matching, and we calculate the expected
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Algorithm 6: Finding the least blocking pairs
Input: k = number of instances in dynamic instance

n = size of SMP
1: SMDI = array() //matchings in dynamic instance
2: for i = 1 to k do
3: allSM(Ii) //find all stable matching of instance i
4: SMDI .append(allSM(Ii))
5: end for
6: for each sm in unique(SMDI) do
7: for i = 1 to k do
8: checkStability(sm,i) //check stability of sm in i
9: if (sm is unstable) then

10: BP.append(BPsmi)
11: end if
12: end for
13: BPsmDI .append(BP )
14: cBPsmDI Ω count.unique(BPsmDI)
15: end for
16: SORTASC(cBPsmDI)

value of blocking for each matching using the following (4.5).

EV (µ) =
kÿ

i=1
#(BP (µ)|Ii)P (Ii) (4.5)

where:

• EV (µ) = Expected value of the number of blocking pairs of matching µ

in dynamic instance.

• #(BP (µ)|Ii) = number of blocking pairs in µ in instance i

• P (Ii) = Probability of Instance i

• k = number of instances in dynamic instance

Now we summarize the algorithm to find the stable matching by finding

the expected value of the blocking pair, as follows:

1. Find all stable matching for each instance
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2. For each instance, find the blocking pairs in the dynamic instance

3. Calculate the expected value of the blocking pairs (EV) of each matching,

eq. (4.5)

4. Find the matching with the minimum expected value of the blocking pair

Example 4.4. Consider the following example of the stable matching problem

under dynamic preference, depicted in Figure 4.3.

  m1 = w3, w2, w1
L1  m2 = w1, w3, w2
  m3 = w3, w1, w2

w1 = m3, m1, m2     
w2 = m3, m2, m1 Pr=0.4
w3 = m2, m3, m1       

  m1 = w3, w2, w1
L2  m2 = w1, w3, w2
  m3 = w2, w3, w1

w1 = m3, m1, m2     
w2 = m3, m2, m1 Pr=0.6
w3 = m2, m3, m1       

Fig. 4.3 The 3x3 SMP instances with dynamic preferences with a probability
of instance.

This setting admits four unique matching with positive probability: µ1 =

{w1 : m2, w2 : m1, w3 : m3}, µ2 = {w1 : m3, w2 : m1, w3 : m2}, µ3 = {w1 :

m1, w2 : m3, w3 : m2}, and µ4 = {w1 : m2, w2 : m3, w3 : m1}. µ1 and µ2 stable

against I1, such that M1 = {µ1, µ2}. Whereas I2 admits µ3 and µ4 as the

stable matchings, such that M2 = {µ3, µ4}. There is no stable matching that

can be stable to all instances. The next step is to quantify the number of

blocking pairs for each matching, as shown in Table 4.3

Now, the BP expected value for each matching can be found using eq. 4.5.

The expected value of the blocking pair for µ1, µ2, µ3, and µ4 are 0.6, 0.6,

0.4, and 0.8, respectively. Because the matching with the minimum expected

value of the blocking pair is µ3, it is the stable matching for the current stable
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Table 4.3 Quantifying the number of blocking pairs for each matching

Matching #BP|I1 #BP|I2 Description
µ1 0 1 Stable in I1
µ2 0 1 Stable in I1
µ3 1 0 Stable in I2
µ4 2 0 Stable in I2

matching problem. If the previous mechanism is used in finding the – for each

matching, all the corresponding – values will be 1.

4.3 Stability Notions for Matching Problem

Under Dynamic Preference

In a stable matching problem with dynamic preference, it is di�cult to satisfy

the concept of stability of a classical SMP, where blocking pairs are not allowed

in a matching. In the stable matching problem with dynamic preference, the

dimensions of the instance become more expansive, we need to consider multiple

instances’ stability. A matching might be stable in one instance but unstable

in other instances. A matching with fully stable character is a matching that

can satisfy the classical stability concept since fully stable admits no blocking

pair in a dynamic instance. A fully stable means matching with – = k, where

k is the number of instances in a dynamic instance; Or also means matching

with — = 0.

In classical SMP, the definition of stability is determined by the existence

of a blocking pair in a matching. If one blocking pair is found in a matching µ,

matching µ is unstable. Otherwise, it is stable. an instance of classic SMP is

I = (M, W, L), and the matching stability is tied only to a single instance. In

this study, we discuss a stable matching with dynamic preference. An instance

of an SMP with dynamic preference is DI = (M, W, L1, L2, . . . , Lk). Thus, we

can write DI = {I1, I2, . . . , Ik}. Stable matching under dynamic preference

considers not only the stability of matching on a single instance but also
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the stability of matching against multiple instances. As discussed earlier, we

discussed two approaches to find a stable matching under dynamic preference

in this study. The existing approach is to find the most stable matching to the

dynamic instance, and our proposed approach is to find a matching with the

minimum blocking pairs in a dynamic instance.

In the most stable concept, as explained in Chapter 4.1.2, we calculate the

value of – as an indication of the strength of matching in a dynamic instance.

To find the –, we count the number of stability for each matching against all

instances in the dynamic instance. In quantifying the number of stability, we

refer to the concept of classic SMP, where matching is unstable if at least one

blocking pair is found. To determine the – value of each matching, we count

the number of stable matching to all instances. In our proposed approach, as

discussed in Chapter 4.2, we calculate the number of blocking pairs for each

matching in a dynamic instance.

The most stable concept and least blocking pair concept (our proposed

concept) depends on the existence of a blocking pair to determine the stable

matching. In the most stable concept, the blocking pair is used to determine

the stability for each instance to find the –. Whereas for the least blocking

pair concept, we quantify the number of blocking pairs to determine the —.

Given an SMP instance, I = (M, W, L) and matching µ, a matching µ is

stable if the number of blocking pairs is zero. For the SMP under dynamic

preference, the instance is DI = (M, W, L1, L2, . . . , Lk) or DI = {I1, I2, . . . , Ik}.

We have the probability distribution of preference in the SMP with dynamic

preference. In this study, we define the stability of matching for the stable

matching problem under dynamic preference based on the most stable matching

and the expected value of the number of blocking pairs. The blocking pair is

the key factor for the two approaches we employ. Using matrix notation, we

illustrate the relationship between the two approaches for determining stable
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matching under dynamic preference.

µ =

I1 I2 Ik
S

U

T

V
BP1 BP2 · · · BPk

P1 P2 · · · Pk

(4.6)

Where:

µ = matching of dynamic instance

I = an instance of dynamic instance

P = Probability of instance occurs

BP = a set of blocking pairs of matching µ in an instance

k = number of instances in dynamic instance

In the most stable matching approach, we determine the best matching

by finding the value of – for each obtained matching. For this approach, the

matching with the highest – value is a solution for stable matching under

dynamic preference. Based on the matrix notation (4.6), we can find the – of

matching µ as follow:

–(µ) =
kÿ

i=1
SMi(µ) (4.7)

where: SMi = x|x = 0 if |BPi| > 0, otherwise x = 1.

We intend to find the matching with minimum blocking pairs in the least

blocking pair approach. Therefore, we quantify the number of blocking pairs in

the dynamic instance by finding the — of matching µ, where — is the cardinality

of blocking pairs for matching µ in the dynamic instance DI.

—(µ) = | fik
i=1 BPi(µ)| (4.8)

In this study, we also consider finding the expected value of the blocking

pair based on the probability distribution of instances in the dynamic instance.
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Based on the matrix notation 4.6, we can find the expected value (EV ) of

blocking pair of matching µ as follow:

EV (µ) =
kÿ

i=1
#(BP (µ)|Ii)P (Ii) (4.9)

where: #(BP (µ)|Ii)= the number of blocking pairs in instance i.

This section discusses the relationship between our concept and the existing

concept to find stable matching. We shows that we can find – (4.7), — (4.8)

and 4.9 using the matrix notation (4.6). To find the –, it is only considered

the matching without any blocking pair in an instance i. For the most stable

approach, 1 Æ – Æ k. When – = k, it means a matching is stable to all

instances. Whereas – = 1 means the matching is only stable in a single

instance among a set of dynamic instances. Our proposed concept has the

advantage of quantifying the number of blocking pairs. Moreover, considering

the probability of instance gives a more detailed result to define the stable

matching using the expected value of the blocking pairs.

In contrast to the most stable concept, which counts the number of stable

matchings and selects the one with the largest –, our proposed concept counts

the number of blocking pairs that cause instability of matching on the dynamic

instance. Further, we select a matching with the minimum number of the

blocking pair as the solution of the stable matching under dynamic preference.

For example, when all provided matchings have the same stability score (–), and

none of the matchings has an – = k. Our concept o�ers a solution by choosing

the matching with the minimum number of the blocking pair. Example 4.5

shows the merit of our proposed concept compared to the most stable matching

concept.

Example 4.5. Given an SMP instance with dynamic preference. A set of men

M = m1, m2, m3 and women W = w1, w2, w3. Suppose we have three di�erent

preferences L1, L2 and L3.
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  m1 = w1, w2, w3
L1  m2 = w2, w3, w1

  m3 = w3, w1, w2

w1 = m2, m1, m3   
w2 = m3, m2, m1                
w3 = m1, m3, m2    
  

  m1 = w1, w2, w3
L2  m2 = w2, w3, w1
  m3 = w3, w1, w2

w1 = m1, m3, m2   
w2 = m3, m2, m1 
w3 = m1, m3, m2 

  m1 = w2, w3, w1
L3  m2 = w2, w3, w1
  m3 = w3, w1, w2

w1 = m2, m1, m3   
w2 = m3, m2, m1 
w3 = m1, m3, m2 

Since we have three di�erent preferences in Example 4.5, the dynamic

instance is DI = {I1, I2, I3}, where I1 = (M, W, L1), I2 = (M, W, L2) and

I3 = (M, W, L3). I1 obtained two stable matchings, µ1 = {(w1 : m1), (w2 :

m2), (w3 : m3)} and µ2 = {(w1 : m2), (w2 : m3), (w3 : m1)}, I2 obtained two

stable matchings, µ1 and µ3 = {(w1 : m3), (w2 : m2), (w3 : m1)}, and I3

obtained µ2 and µ3. From the dynamic instance DI, we have a set of matching

µDI = {µ1, µ2, µ3}. Table 4.4 shows the – and — of each matching respective

to a dynamic instance.

Table 4.4 – and — of each matching respective to a dynamic instance

Matching — – Description
µ1 1 2 BP = {(m1, w3)}
µ2 2 2 BP = {(m1, w3), (m1, w1)}
µ3 1 2 BP = {(m1, w1)}

The results in Table 4.4 shows —(µ1) < —(µ2), then –(µ1) Ø –(µ2).
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4.3.1 Special case of preference: Dynamic preference on

one side

This section considers some special preference cases for the stable matching

problem under dynamic preference. We will discuss how the special case of

our problem can be solved. Consider the special case of the problem where

the dynamic preference only occurs on one side. Dynamic preference on one

side can arise in real-world scenarios. For example, matching between the

cloud service providers and the cloud service users. It is reasonable to assume

that the cloud service provider evaluates its potential client by resource usage

behavior, which dynamically changes (Thus, having a dynamic preference). In

contrast, the cloud service users evaluate the cloud service providers based on

the price and SLA, which is stated by providers (static preference).

Given an SMP instance of size n with dynamic preference I = (M, W, L),

where M = {m1, m2, . . . , mn} and W = {w1, w2, . . . , wn}. Assume a woman

agent expresses two di�erent preferences I = (M, W, L1, L2), such that DI =

{I1, I2}.

Theorem 4.1. Under the assumption that the men’s preference is static. If

the first option of each man is distinct, man-optimal matching is fully-stable

and always exists

Proof. If the men’s preference is static and the first option of M is distinct, all

men agents get their first option by applying man as a proposer (man-optimal).

Even if the women change their preference, all men agents can still get their

first choice of the woman. Thus, the man-optimal matching is fully-stable and

always exists.

Corollary 4.1.1. Given n-size SMP with a dynamic preference on one side.

If the men’s preference is cyclic, man-optimal is fully-stable and always exists

Proof. On Theorem 4.1, if men’s preference has the distinct first option, the

fully stable always exists. The cyclic preference also has a similar pattern with
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Theorem 4.1, which also has a distinct first preference option. Therefore, the

cyclic preference of men will generate man-optimal matching as a fully-stable

characteristic of matching.

Theorem 4.2. Under the assumption that the men’s preference is static. If

women’s preference is dynamic, –(µm≠opt) Ø –(µw≠opt).

Proof. Assume both sides of agents express a distinct first choice of preference,

thus, there will be at least two di�erent stable matching, man-optimal stable

matching(µm≠opt) and woman-optimal stable matching(µw≠opt). Without loss

of generality, assume a woman agent, say w1 changes her preference in k times.

Then we have Li = {L1, L2, . . . , Lk} and k instances, where i = 1, 2, . . . , k.

Based on Theorem 4.1, (µm≠opt) remain stable to Li, however, (µw≠opt) is

not necessarily stable to Li since w1 changes her preference. Since µm≠opt

is obviously stable to Li and µm≠opt is not necessarily stable to Li, then

–(µm≠opt) Ø –(µw≠opt).

When the state in Theorem 4.2 holds, we do not need to find all the stable

matching on each instance. By referring to the Theorem 4.2, we only need to

use the Gale-Shapley algorithm using a man as a proposer when the men’s

preferences are static; likewise, we can use a woman as a proposer when women’s

preferences are static. In addition, if Theorem 4.1 holds, we only need to find

a man-optimal stable matching in a single instance, rather than checking all

instances.

Theorem 4.3. Given matching µ1 is stable to instance I1. Under the assump-

tion that the men’s preference is static. If agent w1 changes her preference, the

possible set of blocking pairs that will appear is BP = {(w1, M \ µ1(w1))}.

Proof. Without loss of generality, we assume w1 expresses m di�erent prefer-

ences. Then the dynamic instance is DI = {I1, . . . , Im}. Let’s say matching µ1

is stable in instance I1. Assume agent w1 is paired with agent m1 in matching µ1,

then (w1, m1) = (w1, µ1(w1)), µ1 = {(w1, µ1(w1)), (w2, µ1(w2)), . . . , (wn, µ1(wn))}.
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If preference of w1 is changed in instance I2, such that L1(w1) ”= L2(w1). Then

W Õ © W \ w1, such that W Õ = {w2, . . . , wn}, and M Õ © M \ µ1(w1), such that

M Õ = {µ1(w2), . . . , µ1(wn)}. Then µ1 may not be stable against I2. When w1

changes her preference, the possibilities are as follows:

Case 1: (µ1(w1) ºwi M Õ). If µ1(w1) is the first choice of w1, then w1 cannot

form a blocking pair.

Case 2: (M Õ ºwi µ1(w1)) If w1 prefers other man rather than her current

partner, then w1 could possibly form a blocking pair with the man in M Õ.

The other woman in W Õ will not form a blocking pair since they and their

partner do not change their preference.

Corollary 4.3.1. Given the n-size of SMP with dynamic preference. If the

preference of each man (m) in men M is static and women’s preference is

dynamic, then —max= (n ◊ number of dynamic agents) - number of dynamic

agents.

Proof. Based on Theorem 4.3, if agent w1 has the dynamic preference, the

possible blocking pairs in matching µ is the combination of w1 and the member

of M , (w1, M). The maximum combination is the number of dynamic agents

multiplied by the members of the opposite side. The current pair (w1, µ(w1))

cannot be a blocking pair of itself. Thus, the maximum number of blocking

pairs is

—max= (n ◊ number of dynamic agents) - number of dynamic agents.

4.3.2 Relation of Dynamic Preference and Stable Match-

ing With Ties

In stable matching research, many extensions have been discussed [19]. One

variant of the stable matching problem that is widely known is Stable Matching

with Ties (SMT) [17]. Under certain conditions, the stable matching problem

under dynamic preference can form a preference with ties. In SMT, an agent
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is allowed to express two or more agents with equal positions in the agent’s

preference. In other words, SMT is a restriction of the stable matching problem

under dynamic preference. If agent wx and wy are in the same position of mz’s

preference, we write wx =mz wy. In SMT, there are three notations of stability:

weakly stable, strongly stable, and super stable matching. In the weakly stable

matching, blocking pair of matching µ is defined as a pair (m, w) such that

µ(m) ”= w, w ºm µ(m) and m ºw µ(w). In the strongly stable matching, (x, y)

is a blocking pair of matching µ if µ(x) ”= y, y ºx µ(x) and x <y µ(y). Finally,

for super stable matching, (m, w) is said to be a blocking pair of matching µ if

µ(m) ”= w, w <m µ(m) and m <w µ(w). Consider the following example.

Example 4.6. Given 3x3 SMP instance with tie

L(m1) = (w3, w2), w1
L(m2) = w1, w3, w2
L(m3) = w3, w1, w2

L(w1) = m3, m1, m2
L(w2) = m3, m2, m1
L(w3) = m2, m3, m1

In Example 4.6, m1 expresses the preference with tie, where w3 and w2 m1

are in the same position. We can break down these preference settings into

the stable matching problem under dynamic preference, and we get two SMP

instances, as shown in Figure 4.4. Each instance has a probability distribution

in a stable matching problem with dynamic preference. Worth to noting the

SMT stated that an agent might express two or more agents with an equal

position in his/her preference. This means for each instance must have an

equal probability. In Example 4.6, I1 and I2 must have the same probability of

occurrence, where the probability I1 = I2 = 0.5.

Theorem 4.4. Fully stable of stable matching with dynamic preference is

strongly stable of stable matching with ties

Proof. A matching µ in stable matching under dynamic preference is fully

stable unless found a couple (x, y) such that µ(x) ”= y, y ºx µ(x) and x ºy µ(y)
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Instance 1 (I1) 

L1(m1) = w3, w2, w1
L1(m2) = w1, w3, w2
L1(m3) = w3, w1, w2

L1(w1) = m3, m1, m2
L1(w2) = m3, m2, m1
L1(w3) = m2, m3, m1

Instance 2 (I2) 

L2(m1) = w2, w3, w1
L2(m2) = w1, w3, w2
L2(m3) = w3, w1, w2

L2(w1) = m3, m1, m2
L2(w2) = m3, m2, m1
L2(w3) = m2, m3, m1

Fig. 4.4 Transformation of SMP with a tie to SMP under dynamic preference

to ÷I œ DI.

Consider the definition of strongly stable in stable matching with ties and

fully stable in stable matching under dynamic preference. The blocking pair of

strongly stable matching is (x, y) such that µ(x) ”= y, y ºx µ(x) and x <y µ(y).

Or (x, y) such that µ(x) ”= y, y ºx µ(x) and x ºy µ(y) or x =y µ(y).

Based on the definitions of both stability notions, the Theorem statement is

true.

Theorem 4.5. Given an SMP Instance I = (M, W, L) with stable matching µ.

Suppose agent m expresses dynamic preference and form a tie. If µ(m) is not

tied, then strongly stable exists.

Proof. Without loss of generality, suppose agent m1 changes his preference,

we have a dynamic preference due to m1 changes his preference such that

DI = (M, W, L1, L2), where L1 ”= L2. If µ(m1) is not tied, there are two

possibilities of m1’s new preference.

Case 1: The women who are better than µ(m1) in m1’s preference, say W ’,

form a tie. This condition will not form a blocking pair because W ’ prefers

other men over m1.

Case 2: The women who are worst than µ(m1) in m1’s preference, say W”,
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form a tie. This condition will not form a blocking pair because m1 prefers

µ(m1) over W”.

4.4 The Generalization to Many-to-one Model

In this study, we also try to generalize the one-to-one model to the many-to-one

model. Hospitals/ Residents Problem (HRP) is a generalization of SMP. An

instance of classical HRP I = (H, R, C, L) is a set of residents R = r1, r2, . . . , rn

and hospital H = h1, h2, . . . , hm. Each hospital hj œ H has a positive integer

of capacity value denoted by C(hj), where C(hj) Ø 1. Each resident ri œ R

has a set of preference list L where residents will rank each member of H in

strict order. In the HRP with dynamic preference, each agent also can change

their preference and lead to the dynamic preference. An instance of HRP with

dynamic preference also leads to the formation of a dynamic instance. The

instance of HRP with dynamic preference is DI = (H, R, C, L1, L2, . . . , Lk),

where k is the number of unique preference lists that occur due to changes

in agent preferences. Thus, a set of SMP instances for SMP under dynamic

preference is DI = {I1, I2, . . . , Ik}.

In line with SMP, to solve HRP with dynamic preferences, we can use the

most stable matching concept by finding index –, and also by using the least

blocking pair concept by finding — and EV . To find –, we can refer to section

4.1.2. Whereas to find the — and EV , we can refers to section 4.2 and 4.2.1.

4.5 Time complexity

This section discusses the computational cost of finding stable matching under

dynamic preference. Algorithm 5 discovers stable matching under dynamic

preference using the most stable matching approach. There are two main loops

in Algorithm 5. The first is a single loop used to discover all stable matchings of

each instance. Within the loop is a function that identifies all stable matchings
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for every instance i. The brute-force technique was utilized to discover all

stable matching on a given instance. Function allSM(Ii) is used to discover all

stable matching of each instance i, which requires O(n!) to find all combinations

and O(n2) time to verify whether each matching is stable against an instance

i. Therefore, the time required to complete the first loop is O(n! · n2). The

second loop verifies the stability of a found matching over k instances in which

the checkStability function is used to check the stability of a matching in an

instance, requiring O(n2) time [14]. Assuming the maximum number of unique

stable matchings is n!, the time required to check all matchings and determine

the – value is O(k · n! · n2). The matching with the highest – value is selected

in the final step. Hence, the time required to find a stable matching with the

most stable approach is O(k · n! · n2).

Table 4.5 Comparison of the long-term stable matching algorithm. n denotes
the number of men (or women), k denotes the number of instances arise in the
dynamic instance.

Algorithm Time complexity
Most stable matching O(k · n! · n2)
Least blocking pair O(k · n! · n2)

Following the most stable matching concept, the least blocking pair concept

(Algorithm 6) also requires O(k · n! · n2) time to find a stable matching. The

cost of achieving stable matching is extremely high due to the necessity of

finding all stable matchings for each instance, regardless of whether the most

stable matching or least blocking pair concept is employed. However, in the

special case preference outlined in Section 4.3.1, a stable matching can be

found in less time. In Theorem 4.1 conditions, the Gale-Shapley algorithm

is only employed once; hence the time required to discover a stable matching

solution is O(n2). Meanwhile, the cost to find a stable matching that satisfies

the constraints of Theorem 4.2 is O(k · n2). The constraints in Theorem 4.2

employ the Gale-Shapley algorithm in k times, where k represents the number

of instances contained in the dynamic instance.
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4.6 Summary

This chapter introduces a new concept for finding stable matching with dynamic

preference. We propose — and EV as the index to define the number of blocking

pairs in the stable matching under dynamic preference. In several studies, the

most stable concept is widely used to find stable matching under dynamic

preference, which finds a matching that is the most stable for all occurred

instances. Existing studies use – to indicate the strengths of stable matching

under dynamic preference.

The most stable concept and our proposed concept are similar in determining

stable matching. Both concepts observe the presence of blocking pairs in a

matching. In the most stable concept, a matching is unstable if at least one

blocking pair is found. This concept ignores the diversity of blocking pairs,

whether a matching has the same or a di�erent number of blocking pairs. A

matching remains unstable if a blocking pair is found. For the computational

cost, both concepts require the same cost O(k · n! · n2).

Considering the number of blocking pairs in the stable matching under

dynamic preference is a novel concept. By understanding the amount of blocking

pairs in detail, it is possible to obtain additional information regarding stable

matching. Consequently, the information obtained from the number of blocking

pairs can assist in determining stable matching with greater precision than

the existing method, In other words, the usage of the index (–, —, and EV ) is

better than –.
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Chapter 5

Applications of Stable Matching

under Dynamic Preference

5.1 Introduction

The stable matching problem has been implemented extensively to solve real-

world problems. For example, the hospitals/residents problem variant is em-

ployed to assign residents (the intern medical students) to hospitals NRMP,

JRMP, etc. Several studies have been conducted regarding implementing a

stable matching problem for computer applications. References [28, 20] use

stable matching to migrate virtual machines (VMs) between servers in the

data center. The objective of migrating virtual machines is to improve energy

e�ciency in the data center while maintaining the virtual machines’ quality of

service. References [10, 1, 2] use stable matching to deploy containers on the

server by implementing the hospitals/ residents problem to improve the power

e�ciency of servers. The Akamai engineers use a stable marriage problem

to assign users to servers in content delivery networks [22], the stable match-

ing algorithm helps to balance the loads within server clusters. However, all

mentioned references do not consider when agents’ preference changes. For

example, the resource usage of a VM at di�erent times, such as during the day

65
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and night, might be di�erent. In this study, a stable matching problem with

dynamic preferences is applied to the job scheduling of containers and servers.

5.1.1 Stable Matching and Optimization

Stable matching and optimization are essential concepts in numerous fields, but

they do not compete with one another. A stable matching is a concept that

focuses on finding a matching between two sets of agents that is stable, meaning

no agent prefers to be paired with each other over their current partner. On the

other hand, optimization refers to the process of locating the optimal solution

to a problem within the confines of a set of constraints. It is utilized in many

di�erent industries, including engineering, economics, and finance, and can

entail either the maximization or minimization of an objective function that is

subject to restrictions.

Stable matching can be viewed as a sort of optimization in certain circum-

stances, where the objective is to discover the optimal pairing that satisfies

specific requirements (such as stability). However, stable matching is frequently

more concerned with fairness and stability than with optimization, and there

may be instances in which an ideal solution is neither stable nor optimal. In

conclusion, both stable matching and optimization are significant notions that

can be utilized in a variety of contexts and are not mutually exclusive. In

certain instances, stable matching can be viewed as a sort of optimization.

Nevertheless, the two concepts have di�erent objectives and priorities, and may

necessitate distinct solutions.

5.2 Scheduling Problem in the Data Center

Figure 5.1 illustrates the job scheduling problem between servers and containers

in a data center. It is a job assignment that involves two groups of agents

consisting of a set of containers and a set of servers. Virtualization technology



5.2 Scheduling Problem in the Data Center 67

Server 1 Server 2 Server 3

Servers

Containers

Data Center Matching Market

Container 1 Container 2 Container 3 Container 4 Container 5 Container 6 Container 7

Fig. 5.1 Illustration of data center matching market, between servers and
containers.

scheduling has several objectives, such as increasing the availability of containers

or reducing the power consumption in a data center. The data center manager

may use the optimization technique to solve this scheduling problem to maximize

the company profit or optimize the application availability. However, job

scheduling involves a collection of containers and servers, each of which has a

di�erent profile and preferences for the other side. For example, a container

requires a server with a high-speed CPU and an internet connection, while

another requires a large memory or storage capacity. On the servers, each

wants to maximize their resources to optimize the company’s benefit. Using

the optimization technique, conflicts of interest between agents are resolved

arbitrarily so that not all agents are satisfied with the results obtained. For

instance, some containers may be dissatisfied with the outcome if server resource

utilization is optimized. This is because optimization only works to achieve

group goals but ignores each individual’s wishes.

In the job scheduling problem, it is essential to maintain stability between

the containers and servers. Stability is important to minimize the cost of

re-matching or re-pairing between containers and servers. When an agent

decides to change the partner, this entails costs that need to spend, such as
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migration, reconfiguration, and downtime of the application while performing

the migration.

5.2.1 Problem Definition

A traditional SMP is a two-sided matching problem based on the one-to-one

model, meaning that one male agent can pair with one female agent and vice

versa. In the containers and server scheduling problems, the hospitals/residents

problem [18] [23] is employed, which is a two-sided matching problem for

a many-to-one model in which one hospital may couple with one or more

residents (medical interns). In the current problem, a server acts as a resource

provider, whereas a container acts as a resource consumer. We provide a formal

definition of the problem. An instance of the problem is I = (S, C, Q, L), where

S and C denote a set of servers and containers, respectively. A set of servers

S = {s1, s2, . . . , sm} and containers C = {c1, c2, . . . , cn}. Each server sj œ S

has a positive integer of quota value denoted by Q(sj), where Q(sj) Ø 1. Each

container ci œ C has a preference list L where containers rank each member

of S. The preference of agent ci is denoted as L(ci). Likewise, server sj œ S

also has a preference list where the server ranks each member of C. In this

simulation scenario, we assume that the preference for containers may change

frequently. Thus, the instance is I = (S, C, Q, L1, L2, . . . , Lk), and the dynamic

instance is DI = {I1, I2, . . . , Ik}, k denotes the number of instances that arises

in the simulations. Since preference changes occur frequently, we implement a

long-term strategy to address the problem.

In this implementation, a server’s resource specifications, such as CPU

and memory, are persistently defined; this indicates that server resources

remain static. Whereas for containers, resource usage fluctuates dynamically

in response to the amount of computation and requests made by applications

within the container. In the stable matching problem, each agent defines the

order of preference for the opposite side. A container defines the preference
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order based on the server’s specifications. At the same time, the server also

defines the order of preference based on the resource utilization of containers.

Based on the agent’s characteristics, the container’s preference for the server is

static because the resources provided by the server are fixed. At the same time,

the server’s preference for containers is dynamic because resource utilization

changes dynamically. Since the resource utilization of containers dynamically

changes, the problem is defined as a stable matching problem under dynamic

preference. Since the containers’ preferences are static, Theorem 4.2 is employed

to solve the problem.

5.2.2 The Preference Rule

The preference rule of servers to containers

It is typical for a company to maximize its profit. The data center company

can increase profits by improving the power e�ciency of each server in the

data center. Thus, servers tend to select containers that increase their resource

utilization rate. To determine a server’s preference, a server prefers a container

that requires as many resources as possible; the greater a server’s utility, the

greater its potential profit.

In this study, CPU and memory usage of the container are used to determine

the preference ranking. Using the Euclidean distance formula, the similarity

between the resource capacity provided by the server and the resources utilized

by the containers is determined (see Table 5.1). Since the container resource

utilization is dynamically changed, the dynamic preference of the server is

defined for a periodic time. Two daily preferences, for day and night utilization,

over the course of seven days are generated for the simulation.

The preference rule of containers to servers

In this simulation, we define the container’s preference based on the similarity

between the container’s initial resource requests and the server’s resource
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capacity. It is assumed that containers have defined their initial resource

requests. For this simulation, the average resource usage data (CPU and

memory) is used for one week. Therefore, the containers’ preferences remain

static. The distance between the initial CPU request and the servers’ resource

capacity is calculated to determine the containers’ preference.

5.3 Evaluation Scenario

For the simulation scenario, it is necessary to make clear assumptions first. In

this evaluation scenario, a company that manages its private data center is

assumed. We have five servers with various resource specifications (see Table

5.1) and 50 containers containing web applications with di�erent resource needs.

This simulation assumes that the data center model is a shared resource, where

each container must determine its minimal resource requests. If the container’s

resource utilization exceeds the minimum request, a burstable scheme will be

applied, i.e., the containers are allowed to use the remaining resources of the

server if available. Table 5.1 shows the servers’ specifications for this simulation.

Moreover, we define the servers’ quota for container placement.

Table 5.1 Servers’ resource specification and quota for containers

Hostname CPU Memory Max Power Quota
server01 2◊VCPUs 2 GB 220 Wh 12
server02 2◊VCPUs 4 GB 225 Wh 12
server03 4◊VCPUs 2 GB 240 Wh 14
server04 4◊VCPUs 4 GB 250 Wh 14
server05 4◊VCPUs 8 GB 260 Wh 14

For the simulation scenario, 50 web page applications that perform CPU and

memory-intensive computations to simulate load in the cluster were deployed.

The Locust load testing framework was used to generate load tra�c on each

container with varying behavior as experimental data. The resource usage of the

containers are generated for seven days. Each server’s CPU usage was recorded
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for the evaluation scenarios to evaluate each server’s power consumption. In

this experiment, we obtained seven di�erent server-to-container preferences.

While the preference of the container-to-server is static. Thus, we have a

dynamic instance consisting of seven instances, with the probability of each

being 1
7 .

5.3.1 Evaluation of Agent Satisfaction

In this section, we evaluate the results of experiments by calculating the agent’s

satisfaction score. As demonstrated in Table 5.2, seven unique matchings oc-

curred during the experiment.

Table 5.2 The score of –, —, and the blocking pair expected value of obtained
matchings.

Matching – — Blocking Pair EV
µ1 1 31 17.08
µ2 1 41 13.93
µ3 1 43 20.23
µ4 1 43 16.24
µ5 1 37 16.1
µ6 1 43 22.54
µ7 1 37 16.38

As seen in Table 5.2, the seven matchings obtained have the same – value

of 1, which means that all matchings are only stable against a single instance.

When we use the most stable concept, it will be challenging to determine which

matching will be selected, and we can only determine the stable matching by

choosing randomly. Furthermore, using the least blocking pair concept, several

variants of the — value of the matching are obtained, where µ1 is the matching

with the minimum total number of blocking pairs. In this experiment, we

consider the probability of the instance and calculate the expected value of

the blocking pair on the dynamic instance. As shown in Table 5.2, µ2 has the

lowest expected value of the number of blocking pairs.



72 Applications of Stable Matching under Dynamic Preference

Xu et al. [28] analyze their work by calculating the satisfaction level of VMs

and servers. In this study, we also analyze the satisfaction level of matching

by using the satisfaction score of each matching in a dynamic instance. The

satisfaction score reflects the level to which each agent on the market is satisfied

with the acquired matching based on their defined preferences.

First, we introduce some notations to obtain the satisfaction score of

matching in a dynamic instance. Given a set of containers C = {c1, c2, . . . , cn}

and a set of servers S = {s1, s2, . . . , sm}. Container-server matching is a many-

to-one stable matching problem where a server can pair with more than one

container. Whereas a container is only paired with a server. We define the

satisfaction score of a server as follows.

sat(s) =
ÿ

cœµ(s)
n ≠ R(c) (5.1)

where R(c) denotes the rank given by s to c in s’s preference, n is the cardinality

of a set of container C, and c is the containers paired with s. Since a container

can only pair with a server, the satisfaction score of the container is as follows.

sat(c) = m ≠ R(µ(c)) (5.2)

where R(µ(c)) denotes the rank given by c to µ(c) in c’s preference, and m is

the cardinality of a set of server S. The satisfaction of matching µ is then the

sum of the score of all involved agents.

sat(µ) =
ÿ

sœS

sat(s) +
ÿ

cœC

sat(c) (5.3)

Since this study considers a stable matching under dynamic preference, the

total satisfaction score in the dynamic instance is needed. The satisfaction

score of matching in the stable matching problem under dynamic preference

might not be the same for every instance. Moreover, a potential blocking pair
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might occur in some instances. Therefore, we must consider the blocking pair

occurrence to find the satisfaction score of stable matching under dynamic

preference. In a stable matching under dynamic preference, a set of blocking

pair BP = {bp1, . . . , bpj} may occur. A pair (sx, cy) is said to be a blocking

pair in matching µ if they are not partners in µ, but sx prefers cy to µ(sx) and

cy prefers sx to µ(cy). A matching is stable if no blocking pair is found, such

as BP = {}.

If there is a set of blocking pair BP = {bp1, . . . , bpj} in matching µ, we

need to calculate the score of the blocking pair before finding the satisfaction

score.

BPscore(µ) =
ÿ

bpœBP

(m ≠ Rbp(s)) + (n ≠ Rbp(c)) (5.4)

where Rbp(s) denotes the rank of blocking agent s in bp(s)’s preference, and

Rbp(c) denotes the rank of blocking agent c in bp(c)’s preference. Thus, the

satisfaction score of matching µ is as follows.

sat(µ) =
ÿ

sœS

sat(s) +
ÿ

cœC

sat(c) ≠ BPscore(µ) (5.5)

To obtain the satisfaction score of matching µ in the dynamic example

DI = {I1, I2, . . . , Ik}, the average satisfaction score of matching µ in DI is

calculated.

satDI(µ) =
qk

i=1(sati(µ))
k

(5.6)

where k is the number of instances in a dynamic instance DI.

Table 5.3 shows the agent’s satisfaction score for each matching. The results

show that µ2 has the highest satisfaction score. In contrast, µ6 is the matching

with the lowest score among the others. Based on the results in Tables 5.2

and 5.3, we select µ2 as the solution for the problem because µ2 has the lowest

expected value of the number of blocking pairs, and µ2 also gains the highest

satisfaction score among other matchings.
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Table 5.3 Agent satisfaction score against obtained matching

Matching – — EV Satisfaction Score
µ1 1 31 17.08 770
µ2 1 41 13.93 827.42
µ3 1 43 20.23 733.25
µ4 1 43 16.24 788.28
µ5 1 37 16.1 779.57
µ6 1 43 22.54 633.14
µ7 1 37 16.38 768.28

AVG 757.13

5.3.2 Trade-o� analysis

Table 5.4 Total servers power consumption

Matching – — EV Power consumption (Wh)
µ1 1 31 17.08 933.59
µ2 1 41 13.93 931.68
µ3 1 43 20.23 931.69
µ4 1 43 16.24 931.68
µ5 1 37 16.1 931.66
µ6 1 43 22.54 931.33
µ7 1 37 16.38 931.66

AVG 931.89

Stable matching is utilized in this simulation to maintain the containers’ and

the servers’ satisfaction while enhancing energy e�ciency. This section evaluates

the servers’ power consumption for each matching. Several studies show a

linear relationship between power consumption and CPU usage of computers

[6, 20, 26]. According to these studies, the average power consumption of an

idle server is 70% of a fully utilized server. Thus, the power consumption P (S)

formula is described as follows:

P (S) = P max ◊ (0.7 + (0.3 ◊ U(CPU))) (5.7)
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where:

P (S) = Power consumption of server S in Watt per hour (Wh)

P max = Maximum power of server in Watt per hour (Wh)

U(CPU) = % CPU usage of server
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Fig. 5.2 Trade-o� diagram between the total server’s power consumption and
the agents’ satisfaction score. The color of the circle represents green energy

Table 5.4 shows the total power consumption of servers for each matching.

The results show that µ6 is the matching with the lowest power consumption

compared to the others. However, considering the results in Table 5.3, µ6 is

matching with the lowest satisfaction score among the others. The purpose of

implementing stable matching in this application is to obtain energy e�ciency

while maintaining agent satisfaction. In this experiment, we consider the

trade-o� between power consumption and the satisfaction score of agents

in the market. Despite the fact that µ2’s power e�ciency is not the best

among the others, µ2’s power consumption is still lower than the average power

consumption, and µ2 gains the highest satisfaction rating among the others.
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Figure 5.2 shows the trade-o� between the total server’s power consumption

and the satisfaction score of agents in the market. µ6 is the most energy-e�cient

(the least power consumption) compared to other matchings. However, µ6 has

the lowest satisfaction score compared to di�erent matchings. Conversely, µ2

has the highest satisfaction score of agents, despite not being superior in terms

of energy e�ciency. Considering the trade-o� between energy e�ciency and

the satisfaction score of agents, µ2 can be selected as a matching solution for

this problem.

5.4 Summary

This chapter demonstrates the implementation of a stable matching problem

under dynamic preference in the data center scheduling problem, between

servers and containers. The main objective of using stable matching in this

simulation is to maintain all agents’ satisfaction and obtain stability. In stable

matching under dynamic preference, the matching result is not perfectly stable

in all instances, however, we try to minimize the number of blocking pairs. In

the evaluation part, we show the power consumption of servers in the data

center for each obtained matching, as described in the simulation result, our

selected matching does not gain the most e�cient result in power consumption,

however, our selected matching obtain the highest score of satisfaction score.

A stable matching is needed for the scheduling job to prevent the agents from

complaining about their pair in the matching outcome. Hence, we can minimize

the expenses associated with re-matching, such as migration, reconfiguration,

and downtime, when the market decides to change the matching.



Chapter 6

Summary and Future Work

6.1 Summary

We study stable matching under dynamic preference, which is near the problem

of the real-world situation. We introduce two strategies to find stable matching,

namely short-term and long-term stability strategies. Short-term stability is the

most straightforward strategy to maintain matching stability but is costly if the

frequency of preference changes is high. Our second strategy, long-term stability,

finds stable matching based on multiple preferences, long-term stability can

avoid the re-matching costs.

In the short-term strategy, we intend to find an e�cient way the stable

matching every time the preference changes. We propose an update matching

mechanism to find a matching by updating the prior matching so that it can be

stable with the new preference. Our findings show how to update a matching

and maximized the initial matching. Compared to other existing methods, our

proposed concept is outperform in minimizing re-matching costs.

In the long-term strategy, we intend to find the solution for long-term

stable matching more accurately. We use a blocking pair perspective to find

the stable matching with the minimum blocking pair in the dynamic instance.

Considering the number of blocking pairs in the stable matching under dynamic

77
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preference is a novel concept. By understanding the amount of blocking pairs in

detail, it is possible to obtain additional information regarding stable matching.

Consequently, the information obtained from the number of blocking pairs

can assist in determining stable matching with greater precision than the

existing method, In other words, the usage of the index (–, —, and EV ) is

better than –. We also define the concept of stability for the stable matching

problem under dynamic preference.

Stable matching with dynamic preference is an often encountered stable

matching problem in real-world situations. We implement our findings to

the job scheduling of the data center. A stable matching is needed for the

scheduling job to prevent the agents from complaining about their pair in the

matching. Hence, we can minimize the expenses associated with re-matching,

such as migration, reconfiguration, and downtime, when the market decides to

change the matching.

6.2 Future Work

In this study, we propose solutions to find a stable matching under dynamic

preference. For the short-term strategy, we propose the update matching

mechanism to find stable matching for the stable marriage problem every time

the preference changes. In the two-sided matching field of study, there are a

lot of stable matching problem variants have been proposed. Generalizing our

findings to other variants would be challenging in the future.

For the long-term strategy, generalizing our findings to other variants would

also a challenging in the future. Such as considering the dynamic quota in the

Hospitals/Residents Problem (HRP) is a new problem in stable matching. In a

dynamic situation, the quota of hospitals in HRP may also dynamically change.

Based on what we learned during this research, the creation of a database

comprising many instances and matchings will be of great assistance for stable

matching research with dynamic preferences. Instead of using a matching
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algorithm or brute force to find all matching of each instance, providing a

database will speed up the process of finding the matching.
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