ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文

ラベル伝搬によるトレンドクエリのカテゴリ推定

https://repo.lib.tut.ac.jp/records/1579
https://repo.lib.tut.ac.jp/records/1579
d27c9002-313b-4908-ad63-d770b3cf10aa
名前 / ファイル ライセンス アクション
j13460714-0030-161.pdf j13460714-0030-161 (348.5 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2015-01-13
タイトル
タイトル ラベル伝搬によるトレンドクエリのカテゴリ推定
タイトル
タイトル Trend Query Classification using Label Propagation
言語 en
言語
言語 jpn
資源タイプ
資源タイプ journal article
著者 吉田, 光男

× 吉田, 光男

吉田, 光男

en Yoshida, Mitsuo

Search repository
荒瀬, 由紀

× 荒瀬, 由紀

荒瀬, 由紀

Search repository
Arase, Yuki

× Arase, Yuki

en Arase, Yuki

Search repository
抄録
内容記述タイプ Abstract
内容記述 Query classification is an important technique for web search engines, allowing them to improve users' search experience. Specifically, query classification methods classify queries according to topical categories, such as celebrities and sports. Such category information is effective in improving web search results, online advertisements, and so on. Unlike previous studies, our research focuses on trend queries that have suddenly become popular and are extensively searched. Our aim is to classify such trend queries in a timely manner, i.e., classify the queries on the same day when they become popular, in order to provide a better search experience. To reduce the expensive manual annotation costs to train supervised learning methods, we focus on a label propagation method that belongs to the semi-supervised learning family. Specifically, the proposed method is based on our previous method that constructs a graph using a corpus, and propagates a small number of ground-truth categories of labeled queries in order to estimate the categories of unlabeled queries. We extend this method to cut ineffective edges to improve both classification accuracy and computational efficiency. Furthermore, we investigate in detail the effects of different corpora, i.e., web/blog/news search results, Tweets, and news pages, on the trend query classification task. Our experiments replicate the situation of an emerging trend query; the results show that web search results are the most effective for trend query classification, achieving a 50.1% F-score, which significantly outperforms the state-of-the-art method by 7.2 points. These results provide useful insights into selecting an appropriate dataset for query classification from the various types of data available.
書誌情報 人工知能学会論文誌
en : Transactions of the Japanese Society for Artificial Intelligence : AI

巻 30, 号 1, p. 161-171, 発行日 2015-01
出版者
出版者 人工知能学会
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 10.1527/tjsai.30.161
権利
権利情報 Copyright © 人工知能学会 2015
関連サイト
識別子タイプ URI
関連識別子 https://www.jstage.jst.go.jp/article/tjsai/30/1/30_30_161/_article/-char/ja/
関連名称 J-Stage
著者版フラグ
出版タイプ VoR
キーワード
主題 query classification
キーワード
主題 graph construction
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 07:37:59.371634
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3