ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "c7a82710-89cf-42a9-9ec2-e106e3731460"}, "_deposit": {"created_by": 24, "id": "1141", "owners": [24], "pid": {"revision_id": 0, "type": "depid", "value": "1141"}, "status": "published"}, "_oai": {"id": "oai:repo.lib.tut.ac.jp:00001141", "sets": ["9"]}, "author_link": ["2275", "2273", "2274", "2156", "2272"], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1998-01-15", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "9", "bibliographicPageStart": "1", "bibliographicVolumeNumber": "41", "bibliographic_titles": [{"bibliographic_title": "JSME international journal. Series A, Solid mechanics and material engineering"}, {"bibliographic_title": "JSME international journal. Series A, Solid mechanics and material engineering", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "This paper presents a numerical shape optimization method for continua that minimizes some maximum local measure such as stress or displacement. A method of solving such min-max problems subject to a volume constraint is proposed. This method uses the Kreisselmeier-Steinhauser function to transpose local functionals to global integral functionals so as to avoid non-differentiability. With this function, a multiple loading problem is recast as a single loading problem. The shape gradient functions used in the proposed traction method are derived theoretically using Lagrange multipliers and the material derivative method. Using the traction method, the optimum domain variation that reduces the objective functional is numerically and iteratively determined while maintaining boundary smoothness. Calculated results for two- and three-dimensional problems are presented to show the effectiveness and practical utility of the proposed method for min-max shape design problems.", "subitem_description_type": "Abstract"}]}, "item_10001_description_6": {"attribute_name": "内容記述", "attribute_value_mlt": [{"subitem_description": "・rights:日本機械学会\n・rights:本文データは学協会の許諾に基づきCiNiiから複製したものである\n・relation:isVersionOf:http://ci.nii.ac.jp/naid/110002965260/\n", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "一般社団法人日本機械学会"}]}, "item_10001_relation_17": {"attribute_name": "関連サイト", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "CiNii"}], "subitem_relation_type_id": {"subitem_relation_type_id_text": "http://ci.nii.ac.jp/naid/110002965260/", "subitem_relation_type_select": "URI"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "13447912", "subitem_source_identifier_type": "ISSN"}]}, "item_10001_version_type_20": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Shimoda, Masatoshi"}], "nameIdentifiers": [{"nameIdentifier": "2272", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Azegami, Hideyuki"}, {"creatorName": "AZEGAMI, Hideyuki", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "2156", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "1000070175876", "nameIdentifierScheme": "NRID"}, {"nameIdentifier": "70175876", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://kaken.nii.ac.jp/ja/search/?qm=70175876"}]}, {"creatorNames": [{"creatorName": "Sakurai, Toshiaki"}], "nameIdentifiers": [{"nameIdentifier": "2273", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "SHIMODA, Masatoshi", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "2274", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "SAKURAI, Toshiaki", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "2275", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2013-06-06"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "j13447912-0041-1.pdf", "filesize": [{"value": "1.0 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_11", "mimetype": "application/pdf", "size": 1000000.0, "url": {"label": "j13447912-0041-1", "url": "https://repo.lib.tut.ac.jp/record/1141/files/j13447912-0041-1.pdf"}, "version_id": "d5f85603-4eab-47db-a340-52901f833336"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Optimum_Design", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Finite_Element_Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Shape_Optimization", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Min-Max_Problem", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Kreisselmeier-Steinhauser_Function", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Traction_Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Material_Derivative_Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Adjoint_Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Multiple_Loading", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Optimum_Design", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Finite_Element_Method", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Shape_Optimization", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Min-Max_Problem", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Kreisselmeier-Steinhauser_Function", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Traction_Method", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Material_Derivative_Method", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Adjoint_Method", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Multiple_Loading", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)"}, {"subitem_title": "Numerical Solution for Min-Max Shape Optimization Problems : Minimum Design of Maximum Stress and Displacement", "subitem_title_language": "en"}]}, "item_type_id": "10001", "owner": "24", "path": ["9"], "permalink_uri": "https://repo.lib.tut.ac.jp/records/1141", "pubdate": {"attribute_name": "公開日", "attribute_value": "2013-06-06"}, "publish_date": "2013-06-06", "publish_status": "0", "recid": "1141", "relation": {}, "relation_version_is_last": true, "title": ["Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)"], "weko_shared_id": -1}
  1. 学術雑誌論文

Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)

https://repo.lib.tut.ac.jp/records/1141
https://repo.lib.tut.ac.jp/records/1141
cf9a8324-b25a-466b-a0c7-37986a4ff2e8
名前 / ファイル ライセンス アクション
j13447912-0041-1.pdf j13447912-0041-1 (1.0 MB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2013-06-06
タイトル
タイトル Numerical Solution for Min-Max Shape Optimization Problems (Minimum Design of Maximum Stress and Displacement)
タイトル
言語 en
タイトル Numerical Solution for Min-Max Shape Optimization Problems : Minimum Design of Maximum Stress and Displacement
言語
言語 eng
資源タイプ
資源タイプ journal article
著者 Shimoda, Masatoshi

× Shimoda, Masatoshi

WEKO 2272

Shimoda, Masatoshi

Search repository
Azegami, Hideyuki

× Azegami, Hideyuki

WEKO 2156
NRID 1000070175876
e-Rad 70175876

Azegami, Hideyuki

en AZEGAMI, Hideyuki

Search repository
Sakurai, Toshiaki

× Sakurai, Toshiaki

WEKO 2273

Sakurai, Toshiaki

Search repository
SHIMODA, Masatoshi

× SHIMODA, Masatoshi

WEKO 2274

en SHIMODA, Masatoshi

Search repository
SAKURAI, Toshiaki

× SAKURAI, Toshiaki

WEKO 2275

en SAKURAI, Toshiaki

Search repository
抄録
内容記述タイプ Abstract
内容記述 This paper presents a numerical shape optimization method for continua that minimizes some maximum local measure such as stress or displacement. A method of solving such min-max problems subject to a volume constraint is proposed. This method uses the Kreisselmeier-Steinhauser function to transpose local functionals to global integral functionals so as to avoid non-differentiability. With this function, a multiple loading problem is recast as a single loading problem. The shape gradient functions used in the proposed traction method are derived theoretically using Lagrange multipliers and the material derivative method. Using the traction method, the optimum domain variation that reduces the objective functional is numerically and iteratively determined while maintaining boundary smoothness. Calculated results for two- and three-dimensional problems are presented to show the effectiveness and practical utility of the proposed method for min-max shape design problems.
内容記述
内容記述タイプ Other
内容記述 ・rights:日本機械学会
・rights:本文データは学協会の許諾に基づきCiNiiから複製したものである
・relation:isVersionOf:http://ci.nii.ac.jp/naid/110002965260/
書誌情報 JSME international journal. Series A, Solid mechanics and material engineering
en : JSME international journal. Series A, Solid mechanics and material engineering

巻 41, 号 1, p. 1-9, 発行日 1998-01-15
出版者
出版者 一般社団法人日本機械学会
ISSN
収録物識別子タイプ ISSN
収録物識別子 13447912
関連サイト
識別子タイプ URI
関連識別子 http://ci.nii.ac.jp/naid/110002965260/
関連名称 CiNii
著者版フラグ
出版タイプ VoR
キーワード
主題 Optimum_Design
キーワード
主題 Finite_Element_Method
キーワード
主題 Shape_Optimization
キーワード
主題 Min-Max_Problem
キーワード
主題 Kreisselmeier-Steinhauser_Function
キーワード
主題 Traction_Method
キーワード
主題 Material_Derivative_Method
キーワード
主題 Adjoint_Method
キーワード
主題 Multiple_Loading
キーワード
主題 Optimum_Design
キーワード
主題 Finite_Element_Method
キーワード
主題 Shape_Optimization
キーワード
主題 Min-Max_Problem
キーワード
主題 Kreisselmeier-Steinhauser_Function
キーワード
主題 Traction_Method
キーワード
主題 Material_Derivative_Method
キーワード
主題 Adjoint_Method
キーワード
主題 Multiple_Loading
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 07:57:33.013537
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3